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Nonlinear optical conversion is studied in thin films of wide-bandgap materials. Very high
conversion efficiency to the third-harmonic radiation is achieved for an unamplified femtosecond
Cr**:forsterite laser in a submicron-thick film of a nanocrystalline ZnO pulsed-laser-deposited on
a fused silica substrate. @003 American Institute of Physic§DOI: 10.1063/1.1623948

Wide-bandgap semiconductors have recently attracteflindamental and TH waves in a film, ahg is the power of
interest for their applications in solid-state electronics andhe incident radiation. For extremely thin films, that is, when
optics?? In particular, zinc oxidgZnO) is a II-VI semicon-  the film thickness is much less than the coherence length,
ductor with a wide bandgap of 3.37 eV, and a direct structuré ;= 27/AKk; the intensity of the TH becomes proportional
at room temperaturglt is especially attractive because of to the square of the film thickness.
the recent demonstrations of its applicability as a perspective It is clear that, in order to achieve high conversion effi-
material for near-UV emittefs® and ultrafast UV light ciency, one has to increase the incident intensity of the laser
modulators.® On the other hand, there is a significant de-and use materials with the highest possible nonlinear optical
mand for thin-film nonlinear optical materials, which can becoefficient y(®). An increase of the incident laser intensity
easily integrated into an opto-electronic deviée€'*°It has  above a certain threshold level will damage the material;
been recently pointed out that ZnO films have a strong nonhowever, wide-bandgap materials have shown resistance to
linear second-order optical susceptibiligf?), and the effi- the laser-induced damage up to the levebdf J/cn?.?t ZnO
cient second harmoniSH) has been generated in thin films is also transparent to the TH of 1200-1300 nm radiation,
of ZnOM** However, most of the nonlinear optical devices thus minimizing the probability of its damage by the intense
use higher order susceptibility®).** II-VI semiconductors TH beam. The use of femtosecond optical pulses (100 fs
fall in the group of materials with a very high nonlinear =10"%2 s) results in the intensity level of 10* W/cn?.
refractive indexn,, which has been measured for ZnO to beCompeting nonlinear optical effects, such as self-phase
2.3x107*? esu (for A=1.064 um),** or x¥=1.2x10"*  modulation, which typically lead to destruction of useful
esu, making it one of the possible materials for nonlineamonlinear optical mixing processes, are significantly reduced
optical device applications. Furthermore, nonresonant nonn thin films, because of a limited distance of light interaction
linear optical susceptibilities of these materials may be sigwith a nonlinear material.
nificantly affected by the small size of nanocrystats® Our sample is grown on a thiil mm thick fused silica
Here, we report on the efficient third-harmonic generationsupstrate by pulsed-laser deposition. The nanostructured
(THG) in thin films of ZnO leading to direct generation of 7znO films have been prepared in a mixeg Be background
UV light from an unamplified near-IR radiation of femtosec- gas atmosphere by conventional UV pulsed-ldgeF laser,
ond Cf*:forsterite lase1200—1300 nm A=193 nm) ablation?? First, ZnO nanoclusters were synthe-

THG is a nonlinear process in which incident, high in- sized in the gas phase, during laser-induced plume expansion
tensity laser radiation at the frequenay interacting with @ = and then, relatively could, stabilized, clusters were deposited
nonlinear medium, results in the generation of an additionagn fused silica substrate. The substrate temperature was
spectral component at the frequenay. ¥or a tight, focused 380 °C. Resulting nanostructured films have oriented struc-
beam, it can be generated only on the interface between Woire, with ¢ axis perpendicular to the substrate. The cluster
media’’"*"Assuming that TH is generated in a very thin film sjze distribution is narrow and can be described by a Gauss-
i.e., film thickness is much less than a confocal parameter gk, function with a maximum at 10 nm and a half-width of 3
the laser bearb, the power of the generated TH is given by nm 23 The films, prepared with the optimized substrate tem-

the following formulas:’ perature and gas partial pressures, have an intense UV exci-
tonic luminescence and a very weak, defect-related band.

:2304776|X(3)| 5 d?sinf(Akd/2) (1  The film thickness varies along the surface of a substrate,

s ndnaaje? ¢ (Akdi2)? and thus allows measurements of film parameters as a func-

tion of film thickness. The maximum film thickness is
wheren,; andnj are the refractive indices of the film at the slightly over 1 um.
fundamental frequency and the frequency of the TH, respec- First, we confirm the homogeneity of nanoclusters along
tively, A, is the wavelength of the fundamental radiatidn, the surface of the film. We use a conventional Raman mi-
is the film thicknessy(® is the nonlinear optical susceptibil- croscopy with a typical spatial resolution of about B
ity of the film, Ak is the wave-vector mismatch between theand spectral resolutior<3 cm ! to measure the Raman
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FIG. 1. Experimental setup for the THG. BSare dichroic beamsplitters, . . . )
ND is a neutral density filter wheel, F is a blue transmitting, near-IR absorb- Incident intensity (TW/cm’)

ing filter, PM is a power meter, and HWP is a half-wave plate. ) ] o
FIG. 2. Experimentally measured conversion efficieiy, /P, , where

P5, is the power of the generated TH aRyg, is the incident power of the

spectrum at different points on the film's surface. The majoifundamental beam. Dashed line shows a theoretically predicted quadratic

. . T . dependence. Inset: experimentally measured spedtsgoares of the TH
feature O_f this spectrum is a_Strong 438 ij!ne’ which has at the maximum available input power. Solid line shows a theoretically
a bandwidth of about 12 cn, corresponding to nanopar- predicted spectrum of the TH derived from the spectrum of the incident
ticles of ZnO with a size diameter of 10 mh.This line  radiation.
bandwidth remains the same over the whole surface of the
film, as we would expect from our other independent

measurementd tally confirmed by direct measurements of the SH power. It

The experimental setup we use for our experiments igppears to be many o_rders of magn_itude weaker. than.the
shown in Fig. 1. The laser system we use is a home-builP Ve of the TH. There is noldegradatlon of the TH intensity
femtosecond Cr :forsterite laser. By extending the length with time tha’g ma_1ke§ us believe that th_e damage threshold
of the laser cavity, we have recently demonstrated up to 1307 ©Ur ZnO film is higher than the maximum energy level
nJ per pulse at the repetition rate of 27 M¥zThe pulse used in our exp.erlments..We also ponflrm that the spectrum
duration is typically 30—40 fs and the center wavelength is_of Fhe TH (see inset of Fig. Rremains independent on the
around 1250 nm. The output of the laser is taken from thénCIdent power level. .
dispersive end of the cavity and is sent through the pair of Ve find that the efficiency of the TH generated at the
prisms to compensate for the dispersion of the output coupléfi@Ximum power level is surprisingly high. The energy of the
and the focusing lens. We use an aspheric igf®rLabs, generateq TH depends on the position on the film and has
Inc.) with a numerical aperturéNA) of 0.55 and a focal Strong thickness dependence_. We measure up to 1.5 mW of
length of 4.5 mm to focus the laser radiation into the sampleth€ average power at the maximum incident power. When the
The TH light is then collected from the back of the sample@PpPropriate losses on reflections and filter absorption are
by using a 0.4 NA microscope objective and is redirected@ken into account, we get a little more than 4.5 mW of
either into spectrometer with an attached CCD detector fogenerated UV light, or 1.3% conversion efficiency into the
spectral measurements or to a power meter. A calibrated filtegoherent TH. For a relatively thin film(approximately
is used to select the spectral radiation around 420(tm@  200=30 nm thick we can employ the Eq1) to calculate the
wavelength of the TH of our fundamental radiation value ofX(S) for measured conversion efficiency. We get the

By scanning the sample through the focal plane of thevalue of x(®)=(1.4+0.7)x 10~ *2 esu, assuming the incident
laser beam we can determine the confocal parameter of tHgtensity of (1.2£0.2)x 10" W/cn¥. This value is signifi-
beam and derive the beam wai$®° From these measure- cantly higher than earlier reported value of®), derived
ments, we can calculate the beam waist of the laser beam feom n, measurement,which we attribute to the nanosized
be (1.8+0.2) um (measured at the full width at half- structure of the film. This reduced dimensionality of the film
maximum). The intensity of the TH generated from the fusedalso plays a significant role in the enhancement of the
silica/air interface is at least four orders of magnitude weakesecond-order susceptibility® in thin films of ZnO? Re-
than one generated from the ZnO/air interface. We also corsently significant(~500 time$ enhancement afi, with re-
firm (see Fig. 2 that the intensity of the TH is proportional spect to the bulk value has been observed for polymer-
to the third power of the incoming intensity up to the maxi- capped ZnO nanocrystals with an estimated average size of 4
mum intensity used in our experimer®50 mW of the in-  nm® We have also tried an epitaxially grown film of ZnO,
cident power, corresponding to 13 nJ per pulse, which leadbut the energy of the TH generated from these films is more
to the energy density of 0.5 J/én While the cascaded THG than an order of magnitude smaller than one from the nano-
through the SH generation and consequent mixing of therystalline film of the same thickness, which confirms our
generated radiation with the fundamental beam is possibldyypothesis on the nanostructured nature of observed very
the efficiency of it for disorientedin the plane of the sub- efficient nonlinear optical conversion from our original films.
stratg film of ZnO is negligible. The latter fact is experimen- It is very important to understand the dependence of the
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10000~ been demonstrated recently with near-field optical measure-
ments using 800 nm excitation ligft.

z 5000 ] In summary, we have demonstrated that ZnO thin film
s has a very strong third-order nonlinear optical coefficient,
g making it possible to directly generate the third harmonic of
< 0004 —|" ultrashort pulses with the efficiency of the order of percent.
g -+ + I—!igh efficiency of_nonlinear optical conversion makgs it pos-
B —+ sible to use thin films of nanostructured ZnO for third-order
§ 4000 o+ —+ autocorrelation measurements of weak pi#saad for char-

£ = e acterization of single nanocrystals.
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