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Summary

The anaerobic, mesophilic and moderately halophilic

strain L21-Spi-D4T was recently isolated from the

suboxic zone of a hypersaline cyanobacterial mat

using protein-rich extracts of Arthrospira (formerly

Spirulina) platensis as substrate. Phylogenetic analy-

ses based on 16S rRNA genes indicated an affiliation

of the novel strain with the Bacteroidetes clade

MgMjR-022, which is widely distributed and abundant

in hypersaline microbial mats and heretofore com-

prised only sequences of uncultured bacteria.

Analyses of the complete genome sequence of strain

L21-Spi-D4T revealed a possible specialization on the

degradation of cyanobacterial biomass. Besides

genes for enzymes degrading specific cyanobacterial

proteins a conspicuous transport complex for the

polypeptide cyanophycin could be identified that is

homologous to typical polysaccharide utilization loci

of Bacteroidetes. A distinct and reproducible co-

occurrence pattern of environmental 16S rRNA gene

sequences of the MgMjR-022 clade and cyanobacte-

ria in the suboxic zone of hypersaline mats points to

a specific dependence of members of this clade on

decaying cyanobacteria. Based on a comparative

analysis of phenotypic, genomic and ecological char-

acteristics we propose to establish the novel taxa

Salinivirga cyanobacteriivorans gen. nov., sp. nov.,

represented by the type strain L21-Spi-D4T, and Sali-

nivirgaceae fam. nov., comprising sequences of the

MgMjR-022 clade.

Introduction

Photosynthetically active laminated microbial mats repre-

sent important model systems for the study of early life on

earth and other planets due to a resemblance to distinct

fossilized organo-sedimentary structures known as stro-

matolites, which represent the first record of life on earth

and can be traced back to several billion years old rock

formations (Grotzinger and Knoll, 1999; Dupraz and

Visscher, 2005). In several hypersaline lakes on the

Kiritimati Atoll, Central Pacific, thick gelatinous cyanobac-

terial mats can be found which are associated with large

reticulate microbialites situated in the anoxic zone below

the mat. It is assumed that the degradation of extracellular

polymeric substances in the deep anoxic zone of these

mats plays an important role in the observed lithification

process (Arp et al., 2012). Members of the Bacteroidetes

phylum are well-known for their ability to degrade polymer-

ic compounds (Fern�andez-G�omez et al., 2013) and have

been detected in high abundance and diversity in various

hypersaline mats by using cultivation-independent meth-

ods (Far�ıas et al., 2014; Wong et al., 2016). Therefore, it is

likely that Bacteroidetes play a key role in the degradation

and cycling of mat compounds.

An analysis of the phylogenetic stratigraphy of the Kiriti-

mati hypersaline mat revealed that different clades of

Bacteroidetes prevail in distinct layers of the mat

(Schneider et al., 2013) reflecting a profound niche separa-

tion within this group of bacteria. In the upper photic-oxic

zone bacteria affiliated with the genera Salinibacter and

Salisaeta were clearly dominating. Representatives of
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these genera are extremely halophilic and probably can

use light as additional energy source for mixotrophic

growth, which explains their high abundance in association

with endoevaporitic deposits on the surface of microbial

mats (e.g., Sahl et al., 2008). Bacteria representing this

clade have traditionally been classified within the family

Rhodothermaceae of the Bacteroidetes, but according to a

recent proposal both genera should be assigned to the

family Salinibacteraceae and transferred from the Bacteroi-

detes to the novel sister phylum Rhodothermaeota (Munoz

et al., 2016). On the other hand, in the deeper layers of the

Kiritimati hypersaline mat phylotypes related to members

of the Marinilabiaceae became dominating and reached

proportions of up to 25% of the total number of retrieved

bacterial 16S rRNA gene sequences. The family Marinila-

biaceae and related phylogenetic groups were recently

transferred to the order Marinilabiliales (Wu et al., 2016),

which represents mainly facultatively aerobic or anaerobic

bacteria with a fermentative metabolism that have been

frequently isolated from marine and hypersaline anoxic

sediments (e.g., Shalley et al., 2013; Iino et al., 2015; Wu

et al., 2016).

In a previous study extracts of the cyanobacterium

Arthrospira (formerly Spirulina) platensis containing around

60% single-cell protein were used as substrate to isolate

strain L21-Spi-D4T representing phylotypes affiliated with a

novel family-level clade of the class Bacteroidia that have

been frequently detected in the suboxic zone of hypersa-

line mats (Spring et al., 2015). In this study, we present a

detailed analysis of the spatial distribution and characteris-

tics of the novel strain, which revealed specific adaptations

to the degradation of cyanobacterial biomass.

Results and discussion

Phylogenetic placement within the Bacteroidia

Phylogenetic trees based on almost complete 16S rRNA

gene sequences revealed an affiliation of strain L21-Spi-

D4T with the MgMjR-022 sequence cluster as defined by

the SILVA 123 SSU Ref NR99 data set (Fig. 1). Strain L21-

Spi-D4T represents the first cultured isolate of this clade,

which so far is comprised almost exclusively of sequences

retrieved from hypersaline cyanobacterial mats.

The diversity encountered within the MgMjR-022 clade

was determined based on a pairwise sequence analysis of

181 non-redundant high-quality 16S rRNA sequences avail-

able from the SILVA 123 SSU Ref NR99 data set. The

average sequence identity value within this group was

91.81% and the minimum sequence identity 79.23%. In a

recent study sequence identity values within established

taxa of different ranks were analyzed (Yarza et al., 2014).

Based on the analyzed data set a median sequence identity

value of 92.25% and a minimum sequence identity value of

87.65% were deduced for a family. Consequently, the

observed phylogenetic divergence within the MgMjR-022

clade matches most closely the taxonomic rank of a family.

The closest related cultured strains were found within the

Marinilabiliaceae. Based on a comparison with 16S rRNA

sequences of type strains the most closely related type spe-

cies were Marinilabilia salmonicolor NBRC 15948T (86.2%),

Anaerophaga thermohalophila Fru22T (85.8%), Alkaliflexus

imshenetskii Z-7010T (85.8%), Alkalitalea saponilacus SC/

BZ-SP2T (85.6%) and Natronoflexus pectinivorans AP1T

(85.6). These 16S rRNA sequence identity values were

below the threshold of 86.5% proposed for assigning

sequences to a family (Yarza et al., 2014), therefore con-

firming the placement of strain L21-Spi-D4T in a distinct

novel family within the order Marinilabiliales.

Phenotypic characteristics

Morphology. Cells of strain L21-Spi-D4T were Gram-

negative straight to slightly curved slender rods, often with

a hook at one end. They had an average size of 0.4–0.5

mm 3 5–8 mm, were non motile and occurred single or in

pairs. An active bending or flexing of cells as described for

most representatives of the Marinilabiliaceae was not

detected. Formation of cell aggregates was occasionally

observed in liquid media, but no visible colonies were

formed on solid agar media, so that gliding motility on sur-

faces could not be determined. In older cultures bulged

cells and spherical bodies were found (Fig. 2A and B).

Thin cuts viewed by transmission electron microscopy

revealed a cell wall structure typical of Gram-negative bac-

teria comprising an outer membrane, periplasmic space

and cytoplasmic membrane. Occasionally, protrusions of

the outer membrane could be detected (Fig. 2C and D).

Pigments were not formed and no flagella, endospores or

other intracellular inclusion bodies became apparent by

microscopy.

Chemotaxonomy. The cellular fatty acid composition of

strain L21-Spi-D4T was characterized by large amounts of

iso-branched fatty acids, especially iso-C15:0, which made

up more than half of the total amount (Table S1). A clearly

distinguishing trait to the patterns of type strains of the

most closely related type species was a very high amount

of the hydroxy fatty acid iso-C17:0 3OH (18.1%). The polar

lipid composition of this strain was complex comprising

phosphatidylethanolamine in addition to several unidenti-

fied polar lipids, including aminolipids and glycolipids

(Supporting Information Fig. S1). Cytochromes of c-type

were not detectable in redox difference spectra of solubi-

lized membrane suspensions and tests for oxidase and

catalase were negative. These phenotypic traits point to a

strictly fermentative metabolism lacking a respiratory elec-

tron transport chain. However, the respiratory lipoquinone

menaquinone 7 (MK7) could be detected in this strain,
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which is an indication for the presence of membrane-

bound electron transfer complexes.

Physiology of growth. Strain L21-Spi-D4T was moderately

halophilic and required at least 50 g l21 NaCl for growth.

Optimal conditions for growth were at 9% (w/v) NaCl, a pH

of around 7.0 and a temperature of 358C. Proliferation of

this strain depended strictly on oligopeptides supplied as

Trypticase, Tryptone peptone or yeast extract, which

allowed growth in the absence of additional substrates. In

contrast, the synthetic dipeptide alanyl-glutamine (Sigma

G8541) or single amino acids supplied as Casamino acids

were not utilized, whereas complex proteins (gelatine and

serum albumin) were only degraded in the presence of an

additional substrate like glucose or yeast extract. Vitamins

did not prevent the requirement for peptides and were not

necessary for growth. A dependence of growth on oligo-

peptides was previously also observed in Porphyromonas

gingivalis, an anaerobic and fastidious representative of

the Bacteroidales colonizing human gingival pockets

(Takahashi et al., 2000). A requirement for peptides could

therefore represent a wide spread characteristic of mem-

bers of this phylogenetic group, independent of the

environment from which they were isolated. In the pres-

ence of yeast extract or peptone strain L21-Spi-D4T could

use several carbohydrates and pyruvate as substrates for

growth. The minimum amount of yeast extract required for

growth on glucose was 0.5 g l21. Fermentation products

from glucose were acetate, CO2 and H2 (Supporting Infor-

mation Fig. S2). Upon growth with yeast extract or peptone

as sole substrate acetate, succinate, propionate, isovaler-

ate and isobutyrate were produced in an estimated ratio of

around 2:1:1:1:0.5 (Supporting Information Fig. S3). Iso-

valerate and isobutyrate result only from the degradation

of branched-chain amino acids (Barker, 1981), which were

therefore preferentially used during fermentation.

A summary of all determined phenotypic traits of the

novel strain is reported in the formal species description at

the end of this paper. A list of characteristics useful for the

differentiation of strain L21-Spi-D4T from type strains of

related type species belonging to the family Marinilabilia-

ceae is given in Table S2.

Fig. 1. Phylogenetic placement of
strain L21-Spi-D4T within the class
Bacteroidia based on almost complete
16S rRNA gene sequences. The tree
topology was reconstructed using the
neighbor-joining algorithm with the
correction of Jukes-Cantor and rooted
using the 16S rRNA gene sequence
of Cytophaga hutchinsonii (CP000383,
not shown). Support of a distinct
branching by bootstrap analyses is
indicated by symbols. Black dots at a
distinct node indicate that bootstrap
values of 95% or above (percentages
of 1000 resamplings) were obtained
with three different reconstruction
methods, while gray dots indicate that
values of 95% or above were obtained
with only two reconstruction methods.
White dots indicate that bootstrap
values of 75% or above were obtained
with at least one reconstruction
method. In such cases the values of
75% or above are given from left to
right for the neighbor-joining,
maximum-likelihood and maximum
parsimony method. Polygons
represent clades of several
sequences. Scale bar, 10% estimated
sequence divergence.
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Insights from the genome sequence

General features of the genome. The genome of strain

L21-Spi-D4T is represented by a circular chromosome with

a size of 4.81 Mb and a G 1 C content of 39.0 mol%. In

total 3943 genes were predicted, including 3884 protein-

coding genes of which 71.5% were assigned a putative

function by the IMG genome annotation pipeline (Hunte-

mann et al., 2015). In addition, 59 RNA genes were

detected comprising three complete operons for ribosomal

RNA (16S-tRNA-23S-5S). A high proportion of protein-

coding genes were assigned to the COG functional cate-

gory amino acid transport and metabolism (172), whereas

genes involved in the transport and metabolism of carbo-

hydrates (85) and lipids (82) were less abundant, which

points to a specialization on protein-rich substrates. In

addition, a large number of genes were found to be

involved in signal transduction mechanisms (178) thereby

indicating a high capacity of this strain to respond to envi-

ronmental stimuli. According to the IMG/ER database

around 6.9% of all genes of the L21-Spi-D4T genome

could be connected to a transporter classification. Trans-

porters of the ATP-binding cassette (ABC) superfamily

(TC:3.A.1) that usually catalyses the uptake of low molecu-

lar weight substrates were the most abundant type and

comprised 64 genes.

The stability of the genome structure in this strain may

be influenced by a high prevalence of transposase genes,

which account for around 3.0% of all protein-coding genes,

while in related representatives of the Marinilabiliaceae

this proportion is only 0.7% (average of four genomes ana-

lyzed). The high number of transposase genes could

indicate a relaxed genome structure resulting from a recent

genetic isolation that has been caused by the adaptation to

the anoxic zone of hypersaline mats. The presence of 51

pseudogenes having no function may also reflect the lack

of a stringent selective pressure to retain genome integrity.

Defence mechanisms against a modification of the

genome structure by foreign DNA include several types of

restriction-modification systems (Roberts et al., 2015) and

four genomic regions encoding clustered, regularly inter-

spaced short palindromic repeats (CRISPR) along with

several associated cas genes.

A graphic summary of the genome structure of strain

L21-Spi-D4T is presented in Supporting Information Fig. S4.

Decomposition of proteins and polysaccharides. Most

members of the Bacteroidetes are specialized on the deg-

radation of complex substrates. It was found that marine

members of this phylum have a distinct preference for the

degradation of peptides and proteins, while most non-

marine representatives are more specialized on the utiliza-

tion of carbohydrates (Fern�andez-G�omez et al., 2013).

Strain L21-Spi-D4T is able to utilize proteins and polysac-

charides for growth and its genome encodes a wide array

of peptidases and glycoside hydrolases for the depolymeri-

zation of complex substrates. A BLAST search of the L21-

Spi-D4T genome using the MEROPS database returned

180 sequences that could be assigned to peptidase

Fig. 2. Shape and ultrastructure of
cells of strain L21-Spi-D4T.

A. Phase contrast micrograph of an

aggregate of cells formed upon

cultivation in liquid medium.

B. Curved morphology of cells in

stationary phase viewed by phase

contrast microscopy after squeezing

onto an agar-coated slide. Arrows

mark hooked ends (h) and bulging of

cells (b).

C. Transmission electron micrograph of

a negatively stained longitudinal thin

section. A typical protrusion (pt) of the

outer membrane is marked by an

arrow.

D. Electron micrograph of a negatively

stained cross-section revealing the

characteristics of a Gram-negative cell

envelope, which are an outer

membrane (om), a periplasmic space

(ps) and a cytoplasmic membrane

(cm). [Colour figure can be viewed at

wileyonlinelibrary.com]
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families (around 37 genes per Mb), which illustrates a

remarkable capacity of this strain to degrade proteins and

peptides. Serine (S) peptidases were the most abundant

type, followed by metallo (M) and cysteine (C) peptidases

(Table S3). Many genes were assigned to families known

to contain extracellular proteases like papain (C01A), ther-

mitase (S08A) or tricorn core protease (S41B). The

highest number of sequences was assigned to the S33

peptidase family, but the identified genes seem to encode

mainly enzymes related to hydrolases with a function

in the degradation of aromatic compounds (e.g., a putative

2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase,

L21SP5_03418) or the hydrolytic cleavage of amino

acid esters (e.g., a putative valacyclovir hydrolase,

L21SP5_03297). Such enzymes could play a role in the

removal of chemical modifications from proteins to make

them more accessible for the degradation by proteases,

which is probably also the function of a putative phycocya-

nobilin lyase (CpcT1, L21SP5_02599). This enzyme was

originally described in cyanobacteria and catalyses the

site-selective attachment of phycocyanobilin to the apopro-

teins phycocyanin or phycoerythrocyanin (Zhao et al.,

2007), while in heterotrophic bacteria it more likely plays a

role in the removal of the chromophore from the phycobili-

protein to enable proteolytic digestion. In addition to the

biliprotein lyase, several further genes were detected that

encode peptidases, which play a role in the specific degra-

dation of cyanobacterial proteins, including two distinct

cyanophycinases (L21SP5_00867, L21SP5_00872) and a

microcystinase (L21SP5_03670).

The genome of strain L21-Spi-D4T encodes also a multi-

tude of carbohydrate active enzymes that participate in the

degradation of polysaccharides, including 33 distinct glyco-

side hydrolases (Table S4). Numerous genes were

assigned to the glycoside hydrolase (GH) families GH13

and GH16, which comprise mainly enzymes involved in

the degradation of polysaccharides composed of a (1!4)

and b (1!3) linked glucose monomers respectively. Typi-

cal substrates of these enzymes could be bacterial

glycogen (a-1,4- and a-1,6-glucan) or chrysolaminarin (b-

1,3-glucan), which represent common reserve polymers in

cyanobacteria and algae. Interestingly, four genes were

allocated to the GH23 family, which is represented by lytic

enzymes involved in the degradation of peptidoglycan cell

walls. In addition to glycoside hydrolases, five genes with a

putative carbohydrate esterase function and two genes

encoding sulfatases were detected (L21SP5_01883,

L21SP5_02800). Both sulfatases are membrane-bound

and probably involved in the digestion of cell walls. The low

number of sulfatases in the genome of strain L21-Spi-D4T

indicates that extracellular polymeric substances (EPS)

most likely do not represent targeted substrates of this

strain. Marine and hypersaline bacteria specialized on the

degradation of exopolymers usually require a large number

of sulfatases for the specific removal of sulfate residues

from polysaccharides (e.g., Spring et al., 2016), which are

usually sulfated at various sites to make them more recal-

citrant against enzymatic degradation.

Substrate uptake. Bacteroidetes have developed specific

transport systems for the concomitant degradation and

uptake of polysaccharides, presumably to prevent the

release of monomeric sugars into the environment where

they eventually could be consumed by competing bacteria.

Genomic regions that contain genes of these membrane-

anchored uptake complexes are designated Polysaccha-

ride Utilization Loci (PUL) (Martens et al., 2009) and were

found to be widely distributed among representatives of

the Bacteroidetes (Terrapon et al., 2015). The characteris-

tic feature of PULs are the genes susC and susD, which

are always arranged in tandem and encode a TonB depen-

dent transporter and a substrate binding protein attached

to the outer membrane respectively. In strain L21-Spi-D4T

two true PULs and a PUL-like gene cluster could be

identified.

The most comprehensive locus is located at L21

SP5_02764–02776 and contains thirteen genes. This cluster

is obviously involved in the uptake and depolymerization of

a-glucans, because it contains five GH13 genes, along with

a GH65 and GH31 gene. On the opposite DNA strand, adja-

cent to the susCD genes, a transcriptional regulator of the

LacI family (L21SP5_02775) and a transporter of the major

facilitator superfamily (MFS) with a putative specificity for

maltose (L21SP5_02776) were located. According to the

Polysaccharide-Utilization Loci DataBase (Terrapon et al.,

2015) the observed combination of glycoside hydrolase

genes is so far unique among genome-sequenced members

of the Bacteroidetes. However, a similar PUL comprising

three GH13 genes, one GH65 gene and several glycolysis

genes has been recently identified in “Gramella forsetii”

KT0803, where it could be involved in the degradation of

dextrins (Kabisch et al., 2014). The second PUL is located at

L21SP5_02816–02823 and characterized by two GH16 and

one GH3 gene, which points to a participation in the degra-

dation and uptake of b-glucans. A PUL with the same

pattern of glycoside hydrolase genes was found for instance

in “Gramella forsetii” KT0803 (Fig. 3A) and was shown to be

involved in the utilization of laminarin (Kabisch et al., 2014).

In contrast to the laminarin utilization locus of “Gramella for-

setii” KT0803 the corresponding PUL of strain L21-Spi-D4T

contains additionally a gene for a MFS glucose transporter

(L21SP5_02818) and two genes for outer membrane pro-

teins containing the carbohydrate-binding modules CBM6

(L21SP5_02820) and CBM9 (L21SP5_02821) instead of the

commonly found proteins characterized by a PKD domain.

In the model proposed in Fig. 3A it is suggested that the

CBM proteins and the GH16 endoglucanases build a con-

veyor belt-like structure that degrades b-glucans and
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concomitantly supplies the resulting fragments to the TonB-

dependent transporter.

A further locus characterized by the susCD tandem is of

significant interest, because it is not linked to glycoside

hydrolase genes and therefore not involved in the decompo-

sition and uptake of polysaccharides. This genomic region

comprises a total of six genes (L21SP5_00868–00872) and

features two genes encoding extracellular cyanophycinases

(CphE1 and CphE2) and an iadA gene for the enzyme

isoaspartyl dipeptidase (Fig. 3B). Cyanophycinase is a

serine-type exopeptidase hydrolysing cyanophycin to

b-aspartyl-arginine dipeptides, which can be hydrolysed to

arginine and aspartate by isoaspartyl dipeptidase. Conse-

quently, it is likely that this gene cluster represents a

Cyanophycin Utilization Locus (CUL). Cyanophycin is a

common and abundant reserve polymer in cyanobacteria,

where it is mainly used for the storage and transport of

organically-bound nitrogen that has been assimilated by the

fixation of dinitrogen (Burnat et al., 2014). Thus, an efficient

uptake and utilization of this valuable substrate could repre-

sent an important ecological advantage for bacteria feeding

on cyanobacteria.

To exclude the possibility of a coincidental colocation of

cyanophycinase and susCD genes in the L21-Spi-D4T

genome, we tried to detect similar gene clusters in

genomes of other bacteria by performing a BLAST search

using the SusC protein of L21-Spi-D4T (L21SP5_00869) as

query and the IMG collection of genomes as database. In

total twelve distinct gene clusters could be detected, which

were present in phylogenetically diverse species of Bacter-

oidetes (Table S5), so that an incidental linkage of cphE

and susCD genes can be excluded. All retrieved TonB-

dependent transporters (SusC/RagA-like proteins) that

colocated with cyanophycinase genes were closely related

and had sequence identities above 45% to the query pro-

tein of strain L21-Spi-D4T. Accordingly, in phylogenetic

trees of SusC/RagA proteins of diverse Bacteroidetes spe-

cies TonB-dependent transporters of CULs formed a

monophyletic lineage, which was only distantly related to

groups of SusC proteins involved in the utilization of b-

glucans or a-glucans (Supporting Information Fig. S5).

Interestingly, a TonB-dependent transporter involved pre-

sumably in the uptake of large protein fragments was

previously identified in P. gingivalis (Nagano et al., 2007),

thereby indicating a wide-spread occurrence of peptide

uptake complexes characterized by the SusCD tandem.

Except one case all putative CULs contained two cyano-

phycinase genes. One gene designated as cpheE1 was

always present and encodes a canonical single domain

cyanophycinase. The other gene (cphE2), which was

Fig. 3. PUL-like genomic regions for the utilization of b-glucans and cyanophycin. Colors of genes and proteins correspond with their
proposed functions: lilac, SusC-like transporters; gray, PKD-domain containing proteins; blue, proteins involved in substrate binding; green,
hydrolytic enzymes; red, proteins involved in transportation of substrates to the cytoplasm.

A. Comparison of the b-glucan utilization locus of strain L21-Spi-D4T with the laminarin-utilization locus of “G. forsetii” (Flavobacteriia) and

proposed model of the uptake complex in strain L21-Spi-D4T.

B. Gene arrangement of the cyanophycin utilization locus in strain L21-Spi-D4T compared with a similar region detected in F. pacifica

(Cytophagia) and proposed model of the uptake complex in strain L21-Spi-D4T.
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missing in the genome of Paludibacter propionicigenes

DSM 17365T (Gronow et al., 2011), contains an additional

C-terminal region that seems to have a function in the

transport and anchoring of the protein to the outer mem-

brane (in most cases a Por secretion system domain).

Interestingly, in several cases the cyanophycinase domain

of the cphE2 gene was highly divergent to typical cyano-

phycinases, which could indicate a relaxed selection

pressure on the enzymatic function of the CphE2 protein.

In the hypothetical model presented in Fig. 3B, we therefore

suggest that the main function of CphE2 is the binding of

cyanophycin, which is then supplied to the functional cyano-

phycinase and the TonB-dependent transporter. Based on

this hypothesis it is possible that in P. propionicigenes the

CphE2 protein was replaced by a lipoprotein containing an

N-terminal dipeptidylpeptidase IV domain (Palpr_0472),

which is encoded adjacently to the susD gene.

The most comprehensive putative CUL comprising nine

genes was detected in the genome of Flammeovirga pacif-

ica WPAGA1T (Chan et al., 2015). In addition to three

cyanophycinases genes the gene cluster shown in Fig. 3B

comprises an isoaspartyl-peptidase (iaaA), an arginine/

ornithine antiporter (arcD) and an ornithine aminotransfer-

ase (rocD). Based on the genome annotation it can be

assumed that in this species L-arginine is degraded via the

deiminase pathway, which essentially results in L-ornithine,

ATP and NH3. Therefore, the arginine/ornithine antiporter

has an important function in preventing the inhibition of the

initial enzyme of the pathway (arginine deiminase) by an

accumulation of ornithine.

For the uptake of peptides other than cyanophycin, several

transporter systems were identified. Genes of two putative

ABC-type peptide transporters were detected, which were

not arranged in operons, but dispersed across the genome.

Genes for the peptide-binding proteins were located at

L21SP5_01631 and L21SP5_02194, while the correspond-

ing permease genes were found at L21SP5_00031 and

L21SP5_01704. Interestingly, the ATP binding proteins of

both putative oligopeptide ABC transporters were not

encoded separately but fused to a single gene

(L21SP5_02394). In addition, a proton-dependent transport-

er of the major facilitator superfamily (L21SP5_02533) and

the membrane protein CstA (L21SP5_00639) could be

involved in the uptake of peptides. Several proteins were

identified that could catalyse the transport of amino acids. A

putative sodium:alanine symporter is encoded at

L21SP5_03896, while the arginine/ornithine antiporter ArcD

is located at L21SP5_03773. Two other genes

(L21SP5_02519 and L21SP5_03922), which contain amino

acid permease domains could be involved in the unspecific

uptake of amino acids.

Fermentative pathways and energy metabolism. Based

on the combined analyses of fermentation products and

genome sequence the major catabolic pathways in strain

L21-Spi-D4T could be reconstructed. It is proposed that

glucose is degraded to pyruvate via the Embden–Meyer-

hof–Parnas (EMP) pathway (Supporting Information Fig.

S6). Remarkably, in the presence of intracellular polyphos-

phates (synthesized by polyphosphate kinase) and

pyrophosphate (formed as byproduct of macromolecule

synthesis or by adenylate kinase) ATP independent glycol-

ysis reactions involving the enzymes polyphosphate

glucokinase, pyrophosphate–fructose 6-phosphate 1-

phosphotransferase and pyruvate, phosphate dikinase

could enable the production of 6 mol ATP from 1 mol glu-

cose compared with 2 mol ATP in the canonical EMP

pathway. Due to the requirement for complex substrates it

could not be determined which particular amino acids were

actually used for growth, but the production of acetate, suc-

cinate, propionate, isovalerate and isobutyrate may

indicate that alanine, asparagine, arginine, histidine, threo-

nine, proline, glutamate, aspartate, leucine and valine

could be preferably degraded using pathways involving an

oxidative decarboxylation step at 2-oxoacid:ferredoxin oxi-

doreductases (Supporting Information Fig. S7).

Oxygen had no stimulatory effect on the growth of strain

L21-Spi-D4T and no significant expression of terminal cyto-

chrome c oxidases could be detected in laboratory

experiments. Therefore, it was unexpected that the

genome encodes a complete set of enzymes for the oxida-

tive citrate cycle, a respiratory complex I and several genes

encoding subunits of a terminal cytochrome d quinol oxi-

dase (L21SP5_01809–01810) and a putative caa3-type

cytochrome c oxidase (L21SP5_03574–03578). However,

it turned out that genes for a respiratory complex III (cyto-

chrome bc1 or alternative complex III) were missing or

fragmentary, thereby indicating that this complex maybe

non-functional. This could indicate a recent degeneration

of an aerobic respiratory electron transport chain, perhaps

as a result of the dependence on decaying cyanobacteria,

which are mainly found in the permanently anoxic niches of

microbial mats (Arp et al., 2012; Schneider et al., 2013).

The strictly fermentative metabolism of strain L21-Spi-D4T

allows the generation of energy in the form of ATP by

substrate-level phosphorylation involving several carboxylate

kinases. Alternatively, a chemiosmotic potential could be uti-

lized for the synthesis of ATP. The methylmalonyl-CoA

decarboxylase (L21SP5_03928–03931) and a RNF-type

NAD:ferredoxin oxidoreductase complex (L21SP5_03909–

03914) may generate a sodium gradient, while the quinol:fu-

marate oxidoreductase (L21SP5_01812–01814) is assumed

to translocate protons (Cecchini et al., 2003). In addition to

these complexes, which are typically found in fermentative

Gram-negative bacteria, genes of a putative energy-

conserving group 4 [NiFe]-hydrogenase could be identified,

which were embedded in a large tentative operon

(L21SP5_01248–01263) adjacently to a Mrp antiporter and
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a NADPH input module. This membrane-bound complex

closely resembled modular hydrogenases of the Mrp-Mbh-

type, which are mainly present in hyperthermophilic fermen-

tative Archaea and rarely encountered in bacteria (Spring

et al., 2010; Schut et al., 2013). The gene cluster detected in

strain L21-Spi-D4T was almost identical to the locus encod-

ing the Mrp-Mbh-NAD(P)H complex of the thermophilic

bacterium Kosmotoga olearia (Kole_0561–0574), which was

proposed to use an electrochemical gradient to drive the

endergonic hydrogen production from NAD(P)H (Schut

et al., 2013). In combination with a RNF-type electron trans-

port complex the reducing equivalents generated by

carbohydrate oxidation could be disposed of as hydrogen

without the requirement of a bifurcating cytosolic hydroge-

nase, which is lacking in strain L21-Spi-D4T and Kosmotoga

species. The presence of a sodium translocating NADH:qui-

none oxidoreductase (L21SP5_03813–03818) representing

a tentative respiratory complex I (Verkhovsky and Bogachev,

2010) could indicate that sodium ions are preferred against

protons for the generation of an electrochemical potential in

strain L21-Spi-D4T. We propose that the sodium motive force

generated during fermentation is utilized by a canonical FoF1

ATP synthase (L21SP5_02006–02007/02011–02016), while

an alternative V-type ATPase (L21SP5_02781–02787) and a

membrane-bound pyrophosphatase (L21SP5_02602) could

provide pH homeostasis during fermentation by outward

pumping of protons. In turn, a separate Mrp cation-proton

antiporter (L21SP5_02298–02304) could use the proton gra-

dient to maintain sodium resistance. In addition, a Mrp-Mbx-

NAD(P)H complex (L21Sp5_02700–02711) with unclear

function was identified, which is very similar to the corre-

sponding complex in K. olearia (Kole_2051–2063). Based on

the determined modular structure this complex could repre-

sent a reversible membrane-bound transhydrogenase that is

coupled to an ion gradient.

A summary of the potential roles of the various identified

membrane-bound enzyme complexes in the generation of

metabolically useful energy during fermentative growth of

strain L21-Spi-D4T is shown in the hypothetical model pre-

sented in Fig. 4.

Distribution profiles and co-occurrence patterns in

hypersaline mats

The environmental distribution of members of the MgMjR-

022 clade was deduced from the sequence associated

information provided by the SILVA 123 SSU Ref data set.

It turned out that from a total of 1230 16S rRNA gene

sequences assigned to this clade only thirteen sequences

were not retrieved from hypersaline mats, which indicates

a pronounced adaptation of members of this clade to pho-

tosynthetically active microbial mats typically found in

hypersaline environments.

The vertical distribution patterns of strain L21-Spi-D4T

and related bacteria of the MgMjR-022 clade in the Kiriti-

mati hypersaline mat could be revealed using data of a

previous study, which used large-scale sequencing of 16S

rRNA genes to determine the phylogenetic stratigraphy of

this laminated microbial mat (Schneider et al., 2013).

Although, in general it is not feasible to correlate rRNA

gene frequency directly with cellular abundance, the

counts of 16S rRNA sequences in distinct mat layers

allowed some conclusions about the relative abundance

and vertical distribution of distinct phylotypes in this eco-

system. In Fig. 5A, the distribution patterns of prevalent

Bacteroidetes clades in the Kiritimati Lake 21 mat were

compared with the vertical profile of the most abundant

clade of cyanobacteria, which represent the principle pri-

mary producers in hypersaline mats. As expected the

highest abundance of cyanobacteria affiliated with the Hal-

othece cluster (Garcia-Pichel et al., 1998) was found in the

photic-oxic zone, which corresponds to the upper three

layers of the mat (Schneider et al., 2013; Ionescu et al.,

2015). Below the photic-oxic zone in around 2.5 cm depth

the MgMjR-022 clade reaches a first maximum in layer 4,

followed by a slight decrease in layer 5 and a second maxi-

mum in layer 6. Sequences belonging to the L21-Spi-D4T

species-level clade showed the same distribution pattern

as the MgMjR-022 clade and dominated this family-level

group by representing around 75% of all assigned phylo-

types. It is assumed that layer 5 of the studied Lake 21

microbial mat represents the surface layer of a former

cyanobacterial mat, which has been overgrown by the cur-

rent photosynthetically active mat (Schneider et al., 2013;

Spring et al., 2015). Although 16S rRNA genes of cyano-

bacteria were not retrieved in significant numbers from

layers below the photic-oxic zone, the remains of cyano-

bacterial cells could be identified by microscopy in the

deep layers of this mat (Schneider et al., 2013). This dis-

crepancy can be explained by an ongoing degradation of

DNA, which seems to be more sensitive to decomposition

than other structural compounds of dead cyanobacterial

cells. Therefore, it is likely that the distribution pattern of

the MgMjR-022 clade reflects the presence of decaying

cyanobacterial biomass in the mat layers 4–6. The co-

occurrence with inactive or decaying cyanobacterial cells

appears to be a hallmark trait of the MgMjR-022 group,

because the distribution patterns of other prevalent clades

of the Bacteroidetes were clearly different and hence likely

caused by other environmental factors. For instance, mem-

bers of the Salinibacteraceae are known to express

rhodopsins and are probably able to use light energy for

aerobic mixotrophic growth (Boichenko et al., 2006), which

could explain their restricted distribution in the photic-oxic

zone of the mat. On the other hand, representatives of the

Saprospiraceae are frequent commensals of algae. They

either actively attack and lyse proliferating cells or use
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algae-derived metabolites as substrates for aerobic che-

moheterotrophic growth (Shi et al., 2006; McIlroy and

Nielsen, 2014), which is illustrated by their co-occurrence

with photosynthetically active cyanobacteria in the upper

layers of the mat. In contrast, Marinilabiliaceae were found

mainly in the deep anoxic zones of the mat, where proba-

bly most of the cellular material of cyanobacteria has

already been degraded and recalcitrant compounds of the

mat matrix represent the main substrates for growth.

The postulated dependence of members of the MgMjr-

022 clade on decaying biomass of cyanobacteria was eval-

uated by the analysis of sequence data obtained previously

from the mat of a solar saltern evaporation pond located in

Guerrero Negro, Mexico (Harris et al., 2013). This non-

lithifying hypersaline mat is characterized by numerous

dense layers resulting in a compact mat structure (Fig. 5B),

which is clearly different to the gelatinous, partly fluffy,

structure typical of the mineralizing mats in Lake 21. The

divergent textures of both mat systems are probably

caused by geochemically differences between both loca-

tions and also reflected in distinguishable microbial

community compositions (Schneider et al., 2013). For

instance, the dominating clade of cyanobacteria in the

Guerrero Negro mat is represented by Coleofasciculus (for-

merly Microculeus) species (Siegesmund et al., 2008),

which are less halotolerant than members of the Halothece

cluster found in Kiritimati Lake 21. Despite the observed dif-

ferences, the distribution pattern of the MgMjR-022 clade in

the Guerrero Negro mat displays a similar dependence on

inactive cyanobacterial biomass as in the Lake 21 mat. As

shown in Fig. 5B sequences representing the MgMjR-022

clade are most frequently found below the layer of active

cyanobacterial growth, which seems to be restricted to a

narrow oxic zone at the mat surface (0–2 mm depth) (Ley

et al., 2006). Above all, the correlation of the vertical distri-

bution of MgMjR-022 clade sequences with the relative

abundance of Coleofasciculus spp. was not only restricted

to the oxic-anoxic transition zone, but also detected in

deeper anoxic layers of the mat. However, the low portion

of sequences affiliated with the L21-Spi-D4T phylotype

(around 22%) on the total number of sequences assigned

to the MgMjR-022 clade represented an interesting devia-

tion to the observed community structure of the Lake 21

mat. One possible reason could be that diversification in

the MgMjR-022 clade is mainly driven by an adaptation to

the dominating mat-forming cyanobacterial species. Thus,

Fig. 4. Proposed participation
of membrane-bound enzyme
complexes of strain L21-Spi-
D4T in the regeneration of
reducing equivalents and the
utilization of a sodium motive
force for the synthesis of ATP
during fermentative growth.
Abbreviations: MCE/MMCD,
methylmalonyl-CoA epimerase/
decarboxylase; RNF,
NAD:ferredoxin oxidoreductase
complex; NAD(P)H-Mbh-Mrp,
membrane-bound energy-
conserving hydrogenase with
NAD(P)H input module; Na1-
NQR, sodium-translocating
NADH:quinone oxidoreductase;
QFR, quinol:fumarate
oxidoreductase; Fd, oxidized
ferredoxin; FdH, reduced
ferredoxin; MK, oxidized
menaquinone; MKH2, reduced
menaquinone.
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in the Guerrero Negro mat strains related to L21-Spi-D4T

may have been superseded by a phylotype that is better

adapted to the degradation of Coleofasciculus cells.

Conclusions and classification

We propose a specialization of strain L21-Spi-D4T and

related bacteria on the utilization of decaying cyanobacte-

rial biomass based on an environmental distribution that is

mainly restricted to the anoxic zone of photosynthetically

active microbial mats, distinct co-occurrence patterns of

members of the MgMjR-022 clade and cyanobacteria as

well as several characteristics of the genome sequence of

strain L21-Spi-D4T. The observed strictly anaerobic fer-

mentative metabolism of this strain may have evolved from

a facultative aerobic ancestor to avoid competition with

highly abundant aerobic commensals of active cyanobac-

teria (e.g., members of the Saprospiraceae) in the upper

layers of microbial mats. A differentiation of the novel strain

from cultured members of the closely related family Marini-

labiliaceae is possible due to chemotaxonomic traits and

the absence of cellular flexibility and pigmentation. Further-

more, carbohydrate fermentation in strain L21-Spi-D4T

resulted only in the formation of acetate, H2 and CO2,

whereas members of the Marinilabiliaceae perform a

mixed-acid fermentation. Consequently, we propose to

establish a novel family within the order Marinilabiliales

comprising mainly cloned 16S rRNA gene sequences of

the MgMjR-022 clade and Salinivirga cyanobacteriivorans

gen. nov., sp. nov., as type species represented by the

type strain L21-Spi-D4T. Despite a low bootstrap support in

reconstructed phylogenetic trees placement of the novel

family Salinivirgaceae within the order Marinilabiliales

seems to be justified based on the close relationship to

members of the Marinilabiliaceae, presence of MK-7 as

major respiratory quinone and a prevalence in marine to

Fig. 5. Spatial distribution of prevalent Bacteroidetes clades, Salinibacteraceae and the principal mat-forming cyanobacteria in hypersaline
microbial mats. Family-level clades are represented by continuous lines, genus-level clades are represented by dashed lines and dotted lines
represent a species-level clade comprising strain L21-Spi-D4T. The transition to anoxic conditions within the mat samples is indicated by a gray
line and located during daylight at a depth of around 2.5 cm (within layer 4) in the Kiritimati Lake 21 mat and at 2 mm depth in the Guerrero
Negro mat.

A. Distribution patterns based on the proportion of partial 16S rRNA gene sequences in distinct layers of the Kiritimati Lake 21 lithifying

microbial mat. On the left, highly abundant Bacteroidetes clades (representing at least 5% of the total number of sequences in a distinct layer)

and the dominating cyanobacterial clade comprising Halothece (“Euhalothece”) spp. are shown. On the right, the distribution patterns of

moderately abundant Bacteroidetes clades (representing at least 1% of the total number of sequences in a distinct layer) are shown. Between

both graphs a representative section of the Lake 21 microbial mat is depicted. Numbers indicate distinct mat layers used for the generation of

the corresponding 16S rRNA gene sequence libraries by high-throughput sequencing. Modified from Schneider et al. (2013).

B. Distribution patterns in a microbial mat of a saltern evaporation pond (Exportadora de Sal, Guerrero Negro, Mexico). Frequencies of cloned

16S rRNA gene sequences affiliated with the MgMjR-022 cluster and the L21-Spi-D4T clade are compared with the dominating cyanobacterial

clade comprising Coleofasciculus spp. On the left a representative section of the Guerrero Negro microbial mat is shown. The photograph has

been taken from Harris et al. (2013), with permission.
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hypersaline sediments or mats, which distinguishes this

family clearly from representatives of the order Bacteroi-

dales as defined by Wu et al. (2016). Formal descriptions

of the suggested novel taxa follow below.

Description of Salinivirga gen. nov. (Sa.li.ni.vir�ga. L.

neut. n. salinum salt-cellar; L. fem. n. virga rod; N.L. fem.

n. salinivirga a saline rod).

Unpigmented, Gram-staining negative, straight to slight-

ly undulated rod-shaped cells, occurring single or in pairs.

An active bending or flexing of cells was not observed. No

flagella or spores are formed. Major cellular fatty acids are

iso-C15:0 and iso-C17:0 3OH. The polar lipid composition is

complex comprising phosphatidylethanolamine and sever-

al distinct unidentified polar lipids, including aminolipids

and glycolipids. The main respiratory lipoquinone is mena-

quinone 7 (MK7). Tests for oxidase and catalase are

negative. Obligately anaerobic. Strictly fermentative

metabolism. Moderately halophilic, mesophilic and neutro-

philic. Complex nutrient requirements. The type species is

S. cyanobacteriivorans.

Description of S. cyanobacteriivorans sp. nov. (cy.a.no.

bac.te.ri.i.vo�rans. N.L. neut. n. pl. cyanobacteria Cyanobac-

teria; L. pres. part. vorans eating, devouring; N.L. part. adj.

cyanobacteriivorans devouring cyanobacteria).

Shows the following characteristics in addition to those

given for the genus. Most cells have a width of 0.4–0.5 mm

and a length of 5–8 mm. No colonies are formed on agar

plates. Optimal conditions for growth are 358C, pH 6.9–7.0

and a salinity of 9% (w/v) NaCl; temperatures from 20 to

458C, pH values from 5.8 to 8.2 and salinities from 50 to

180 g l21 NaCl are tolerated. Growth depends on the pres-

ence of oligopeptides, but not vitamins or amino acids. The

degradation and utilization of complete proteins requires

additional substrates like yeast extract or glucose. The

complex compounds Trypticase peptone, Tryptone and

yeast extract are suitable substrates for growth. In the

presence of yeast extract the following carbon sources are

utilized: albumin, galactose, gelatine, glucose, maltose,

pyruvate, sucrose and starch. The following compounds

are not utilized: acetate, agar, Casamino acids, cellobiose,

cellulose, chitin, ethanol, fructose, lactate, lactose, raffi-

nose, trehalose and xylose. The end-products resulting

from glucose fermentation are acetate, CO2 and H2. Fer-

mentation products formed upon growth with yeast extract

or peptone are acetate, succinate, propionate, isobutyrate

and isovalerate. Sodium sulfate, sodium thiosulfate, sodi-

um sulfite, elemental sulfur, sodium nitrate and sodium

nitrite are not used as terminal electron acceptors. Suscep-

tible to chloramphenicol A, rifampicin and tetracycline

(each at 10 mg l21). Ampicillin, carbenicillin, D-cycloserine

and penicillin G are tolerated at least in concentrations up

to 100 mg l21, while gentamicin and kanamycin A is toler-

ated up to 1000 mg l21. In addition to the major fatty acids

listed in the description of the genus significant amounts of

iso-C15:0 ALDE, anteiso-C15:0, anteiso-C17:0 3OH, iso-C16:0

3OH, iso-C13:0 and iso-C15:0 3OH are present. The DNA

G 1 C content of the type strain is 39.0 mol%.

The type strain is L21-Spi-D4T (5DSM 27204T 5 KCTC

15528T5 JCM 31231T) and was isolated from the suboxic

zone of a hypersaline microbial mat at the littoral zone of

Lake 21, Kiritimati, Republic of Kiribati.

Description of Salinivirgaceae fam. nov. (Sa.li.ni.vir.ga.-

ce�ae. N.L. fem. n. Salinivirga type genus of the family; L.

suff. -aceae ending to denote a family; N.L. fem. n. pl. Sali-

nivirgaceae family of the genus Salinivirga).

Rod-shaped, Gram-negative bacteria. Mesophilic, mod-

erately halophilic and anaerobic bacteria mainly found in

hypersaline sediments or microbial mats that are charac-

terized by the presence of cyanobacteria. The affiliation of

novel species to this family depends on the phylogenetic

position, which should be determined based on compara-

tive sequence analyses of 16S rRNA genes. In addition,

the 16S rRNA gene sequence identity values of newly

described strains affiliated with this family should be above

86.5% to the type strain of the type species S. cyanobac-

teriivorans, which represents the threshold recommended

for the definition of families (Yarza et al., 2014).

The type genus of the family is Salinivirga.

Experimental procedures

Culturing

Strain L21-Spi-D4T was isolated from an anaerobic enrich-

ment culture inoculated with slurries of a cyanobacterial mat

sample retrieved from the hypersaline Lake 21 on the Kiritimati

Atoll (Northern Line Islands, Republic of Kiribati). The location

of the sampling site and details of the isolation method were

described elsewhere (Spring et al., 2015). For the preparation

of media and incubation under anoxic conditions, the anaer-

obe cultivation technique of Hungate (Hungate, 1950) with the

modifications introduced by Bryant (Bryant, 1972) was used.

For the characterization of strain L21-Spi-D4T a complex basal

medium was used, which has been described previously

(Ben Hania et al., 2015). For routine cultivation 20 mM D-glu-

cose was added as substrate to the complex basal medium.

For the determination of nutrient requirements an alternative

defined medium was used that contained per litre: 60.0 g

NaCl, 6.0 g MgCl2 3 6 H2O, 1.5 g KCl, 1.0 g Na2SO4, 1.0 g

NH4Cl, 0.4 g CaCl2 3 2 H2O, 0.4 g K2HPO4, 10.0 ml trace ele-

ments solution of DSMZ medium 141 (http://www.dsmz.de/

microorganisms/medium/pdf/DSMZ_Medium141.pdf), 0.5 mg

resazurin, 10.0 ml vitamins solution of DSMZ medium 141,

2.5 g Na2CO3, 0.3 g Na2S 3 9 H2O and 0.3 g L-cysteine-HCl

3 H2O. The medium was prepared under 80% N2 and 20%

CO2 gas mixture without the vitamins, carbonate, sulfide and

cysteine, which were added to the medium after autoclaving

from sterile anoxic stock solutions.

All chemicals were obtained from Sigma-Aldrich Chemie

(Munich, Germany) and complex nutrients from BD Biosci-

ences (Heidelberg, Germany).
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Analyses of phylogeny and environmental distribution

The 16S rRNA gene sequence of strain L21-Spi-D4T was

determined previously (Spring et al., 2015) and deposited in

the GenBank/EMBL/DDBJ databases under the accession

number KC665951. The 16S rRNA sequence of L21-Spi-D4T

was added to the alignment of the SILVA database (Quast

et al., 2013; SSU Ref NR 99 release 123) using the integrated

aligner of the ARB software package (Ludwig et al., 2004).

Based on the curated guide tree included in the SSU Ref NR

99 database reference sequences representing major clades

of the Bacteroidetes phylum were selected resulting in a com-

prehensive data set for phylogenetic analyses. Thereafter,

remaining alignment errors revealed by visual inspection were

corrected manually. SusC/RagA-like protein sequences were

obtained from GenBank or Uniprot and aligned using the Clus-

talW algorithm implemented in the ARB package.

Phylogenetic trees based on aligned data sets of 16S rRNA

gene or SusC/RagA protein sequences were reconstructed

using programs implemented in the ARB software package.

When the ARB neighbor-joining program was used, phyloge-

netic distances were calculated with the corrections of Jukes-

Cantor for nucleic acids and PAM for proteins. Maximum likeli-

hood trees were reconstructed using RAxML (version 7.7.2)

with the GTRGAMMA model for DNA and PROTGAMMALG

for proteins under the rapid bootstrap analysis algorithm. The

maximum parsimony program of ARB was used with default

settings for nucleotide or amino acid sequences. The robust-

ness of the tree topologies was evaluated by performing 1000

rounds of bootstrap replicates. The phylogenetic diversity with-

in the MgMjR-022 clade was deduced with the similarity

option of the ARB distance matrix program. Sequences of low

quality (labelled in red in the SILVA 123 SSU Ref NR99 guide

tree) were excluded from the calculation.

The relative abundances of various clades in distinct layers

of the Lake 21 microbial mat were determined based on a pre-

viously published 16S rRNA gene data set deposited under the

NCBI Sequence Read Archive project accession number

SRA058120 (Schneider et al., 2013). The proportion of

sequences affiliated with family-level clades were taken from a

taxonomic analysis provided by Dominik Schneider (pers. com-

munication), which was basically obtained by similarity

searches using BLAST against the SILVA 111 SSU NR99 ref-

erence database. Note that sequences that had been retrieved

from the Kiritimati hypersaline mat and were affiliated with the

Rhodothermaceae should now be assigned to the family Salini-

bacteraceae within the phylum Rhodothermaeota according to

a recent taxonomic proposal (Munoz et al., 2016). The propor-

tion of sequences affiliated with a species-level clade

represented by strain L21-Spi-D4T was determined by using a

minimum sequence identity of 97% with the deposited 16S

rRNA gene sequence of this isolate (KC665951). The analysis

of the distribution of 16S rRNA gene sequences in the Guerre-

ro Negro mat was based on previously published data (Harris

et al., 2013) included in the SILVA 123 SSU Ref data set.

Genome sequencing, assembly and comparative
genomics

Genomic DNA was isolated form a stationary culture of L21-

Spi-D4T using the Jetflex Genomic DNA Purification Kit

(GENOMED Cat. no. 600100; L€ohne, Germany) according to

the protocol provided by the manufacturer with the modifica-

tions described previously (Ben Hania et al., 2015). The

complete genome sequence was determined using a combi-

nation of two genomic libraries of which one was prepared for

sequencing with the PacBio RSII (Pacific Biosciences, Menlo

Park, CA, USA) and the other for the Illumina HiSeq platform

(Illumina, San Diego, CA, USA). The SMRTbellTM template

library was prepared and sequenced according to the instruc-

tions from Pacific Biosciences following the Procedure &

Checklist “Greater than 10 kb Template Preparation and

Sequencing” applying C2 chemistry. In total seven SMRT cells

were run, taking 120 minutes movies except one that was 180

minutes. Illumina sequencing was performed on a HiSeq 2500

platform with 2x100 cycles. The paired-end library contained

inserts of an average size of 500 bp and delivered 4 million

reads.

A draft long read genome assembly named L21-FB-Spi-V4-

SP5_HGAP_7SC_std2 was created using the

“RS_HGAP_Assembly.2” protocol included in SMRTPortal

version 2.2.0 including all seven SMRT cells applying parame-

ters described previously (Ben Hania et al., 2015), but not

allowing partial alignments. Finally, one chromosomal contig

could be obtained, which was trimmed, circularized and

adjusted to dnaA as first gene. A total coverage of 281x has

been calculated within the long read assembly process.

DNA base modifications analysis was performed by

“RS_Modification_ and_Motif_Analysis.1” protocol with default

settings. Quality check of the final consensus sequences

regarding overall coverage as well as SNPs was performed

using IGV (Thorvaldsd�ottir et al., 2013) after mapping of Illu-

mina short read data onto the draft genome using BWA (Li

and Durbin, 2009).

Genome annotation was primarily done using PROKKA ver-

sion 1.8 (Seemann, 2014). The annotated genome was then

compared with results provided by the RAST server (Over-

beek et al., 2014). In cases where automatic annotation by

RAST and PROKKA led to aberrant results, the function pre-

diction of PROKKA was checked and eventually corrected

manually by using BLASTP to search for similar proteins in

the UniProtKB database (http://www.uniprot.org/blast/). Addi-

tional gene prediction analyses and functional annotation was

performed within the Integrated Microbial Genomes – Expert

Review (IMG-ER) platform (Markowitz et al., 2009).

Determination of phenotypic traits

The Gram reaction was determined with heat fixed liquid cul-

tures stained with BD Difco kit reagents. For electron

microscopy, whole cells and thin-sections were prepared as

described previously (Ben Hania et al., 2015). The presence

of spores was analyzed by phase contrast microscopic obser-

vations of young and old cultures and pasteurization tests,

performed at 80, 90 and 1008C for 10 and 20 min.

The pH and temperature ranges for growth were deter-

mined using basal medium supplemented with 20 mM

glucose. Different pH values (5–9) of the medium were adjust-

ed by injecting aliquots of anoxic stock solutions of 0.1 M HCl

(acidic pH), 10% NaHCO3 or Na2CO3 (basic pH) in Hungate-

type tubes. Water baths were used for incubating bacterial
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cultures from 15 to 558C. The salinity range for growth was
determined by directly weighing NaCl in Hungate-type tubes

before dispensing medium.

Substrates were tested at a final concentration of 20 mM or
2.0 g l21 (complex compounds or polymers) in glucose-free
medium. To test for electron acceptors, sodium thiosulfate

(20 mM), sodium sulfate (20 mM), sodium sulfite (2 mM), ele-
mental sulfur (10.0 g l21), sodium nitrate (20 mM) or sodium
nitrite (2 mM) were added to the medium. Cultures were sub-

cultured at least twice under the same experimental
conditions before determination of growth rates. Sulfide pro-
duction was determined photometrically as colloidal CuS

according to the method of Cord-Ruwisch (1985). End-
products of fermentation were either measured by high pres-

sure liquid chromatography (HPLC) using the method of
Fardeau et al. (1997) or by gas chromatography according to
published protocols (Holdemann et al., 1977; Steer et al.,

2001). Susceptibility to antibiotics was tested as previously
described (Ben Hania et al., 2015).

The cellular fatty acid pattern of strain L21-Spi-D4T was
determined from cells grown for three days at 358C in basal

complex medium containing 1.0 g l21
D-glucose as carbon

source. The preparation and extraction of fatty acid methyl
esters from biomass and their subsequent separation and

identification by gas chromatography was done as reported
elsewhere (Kaksonen et al., 2006). Extraction and analyses of

respiratory lipoquinones and polar lipids were carried out
according to previously published protocols (Tindall, 1990;
Tindall et al., 2007).

Nucleotide sequence accession number

The annotated complete genome sequence of strain L21-Spi-

D4T was deposited in GenBank with the accession number
CP013118. The version described in this paper is the first ver-
sion, CP013118.1.
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