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ABSTRACT

Position-specific scoring matrices (PSSMs) are rou-
tinely used to predict transcription factor (TF)-
binding sites in genome sequences. However, their
reliability to predict novel binding sites can be far
from optimum, due to the use of a small number of
training sites or the inappropriate choice of param-
eters when building the matrix or when scanning
sequences with it. Measures of matrix quality such
as E-value and information content rely on theoret-
ical models, and may fail in the context of full
genome sequences. We propose a method, imple-
mented in the program ‘matrix-quality’, that
combines theoretical and empirical score distribu-
tions to assess reliability of PSSMs for predicting
TF-binding sites. We applied ‘matrix-quality’ to
estimate the predictive capacity of matrices for bac-
terial, yeast and mouse TFs. The evaluation of
matrices from RegulonDB revealed some poorly
predictive motifs, and allowed us to quantify the im-
provements obtained by applying multi-genome
motif discovery. Interestingly, the method reveals
differences between global and specific regulators.
It also highlights the enrichment of binding sites in
sequence sets obtained from high-throughput
ChIP-chip (bacterial and yeast TFs), and ChIP–seq
and experiments (mouse TFs). The method pre-
sented here has many applications, including: se-
lecting reliable motifs before scanning sequences;
improving motif collections in TFs databases;
evaluating motifs discovered using high-throughput
data sets.

BACKGROUND

Position-specific scoring matrices (PSSM) are commonly
used to describe the binding specificity of a transcription
factor (TF) to DNA. Such matrices can be built from
collections of experimentally characterized binding sites
(1–7), or result from pattern discovery algorithms (8–12).
TF-binding motifs are generally short in length and mod-
erately informative, so searching for motif instances over a
sequence can return many false positives. In addition,
annotated binding sites and motifs are of variable
quality. It is thus essential for biologists to evaluate the
ability of a PSSM to discover functional binding sites in
genome sequences.

Several theoretical measures have been proposed to
estimate intrinsic properties of a PSSM: information
content (13,14), E-value (14) a- and b-risk distributions
(15). However, all of these rely on some theoretical
model without any guarantee of their adequacy for pre-
dicting binding sites in practice. A precise example of this
conflict was shown when comparing matrices designed to
predict sigma70 promoters, where information content
was not, surprisingly, the best indicator of predictive
capacity (16).

In order to estimate the capability of a PSSM to distin-
guish bona fide binding sites from genome background, we
propose a method that relies on the combined analysis of
theoretical and empirical score distributions in positive
and negative control sets. Importantly, positive sets are
analyzed using matrices rebuilt with a Leave-One-Out
(LOO) procedure, to reduce over-fitting biases. As an
additional negative control, we compare empirical distri-
butions of the original matrix with those of column-
permuted PSSM.

Beyond quantifying the reliability of a matrix, score
distributions reveal interesting biological properties of
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TFs, distinguishing global from specific regulators. We
illustrate the pragmatic interest of the method by
applying it to 60 motifs annotated in RegulonDB (17),
and show that multi-genome pattern discovery can signifi-
cantly improve the quality of problematic motifs.
Furthermore, we analyze the enrichment of binding sites
in sequences obtained from a ChIP-chip experiments
characterizing bacterial and yeast TFs (18), as well as
ChIP–seq experiments for 13 mouse TFs (19).

MATERIALS AND METHODS

Sequence analysis

Except for matrix building (done with MEME and con-
sensus), all the sequence retrieval and analysis tasks were
performed using the Regulatory Sequence Analysis Tools
(RSAT) (36–38).

Sequence retrieval

The tool ‘retrieve–seq’ was used to retrieve upstream se-
quences of all the protein-coding genes of Escherichia coli
K12. Sequence lengths were computed to collect all
non-coding sequence up to the first upstream gene, with
a maximal distance of 400 bp.

For multi-genome analysis, putative orthologs were col-
lected with ‘get-orthologs’ on the basis of the reciprocal
best-hit criterion, and upstream sequences were collected
for each organism using the tool ‘retrieve–seq-
multigenome’.

Computation of weight scores

The weight score (WS) of a site is computed according to
(14).

Ws ¼ ln
P SjMð Þ

P SjBð Þ

� �
ð1Þ

where S is a sequence segment of the same length as the
matrix (w), P(S|M) is the probability of S given the motif
M, and P(S|B) the probability of S given the background
model B.

PðSjMÞ ¼
YW
j¼1

f 0i,j ð2Þ

f 0i, j ¼
ni, j+pikPA
r¼1

nr, j+k

ð3Þ

where i is the residue of sequence S aligned with the
jth column of the matrix, f

0

i; j is the frequency of this
residue at the jth position of the PSSM, corrected by a
pseudo-count k (14). The background probability of the
sequence PðSjBÞ, can be estimated using either a Bernoulli
schema, or a higher order Markov chain (21).

Theoretical score distribution

The program ‘matrix-distrib’, available as part of the
RSAT suite of programs, is able to compute the

theoretical distribution of WS for a given PSSM with
either Bernoulli (39) or Markovian (21) background
models. For each possible weight score (WS), the
program computes its P-value, defined as the probability
to observe a score of at least WS under the background
model.

P-value ¼ PðW � wjBÞ

Validation statistics

Sensitivity (Sn) is defined as

Sn ¼ TP=ðTP+FNÞ ð4Þ

where TP is the number true positives (i.e. annotated sites
withWS above a threshold), and FN is the number of false
negatives (i.e. annotated sites scoring below that
threshold).
The False Positive Rate (FPR) is defined as

FPR ¼ FP=ðFP+TNÞ ð5Þ

where FP is the number of false positives (i.e. non-binding
sites scoring above the threshold) and TN is the number
of true negatives (i.e. non-binding sites below the
threshold).

Matrix building

PSSMs were collected from RegulonDB in February 2008
(2,17). We only retained matrices built from TFs having at
least four binding sites reported in the literature. The
motifs stored in RegulonDB were initially built with the
program consensus (8). Motif width is set manually for
each TF depending on the sizes of the binding sites
reported in the literature.
In addition to the RegulonDB matrices, we derived new

collections of matrices using two alternative matrix-
building programs: MEME (10) and consensus (14). For
building this new collection, redundant sites were filtered
out by eliminating sites whose positions overlap by at least
8 bp. We also tested the impact of various parameters on
the resulting matrices: (1) motif width varied form 8 to 42;
(2) The background Markov was estimated either from
the complete genome of E. coli K12 or from the subset
of upstream non-coding sequences; (3) for MEME, we
tested Bernoulli and first-order Markov models (consen-
sus only accepts Bernoulli models).

ChIP-chip data

LexA ChIP-chip detected binding sequences were
obtained from the Supplementary Material of Wade
et al. (30).

RESULTS

Overview of the method

The method, implemented in the software tool
‘matrix-quality’, consists of comparing a series of score

Nucleic Acids Research, 2011, Vol. 39, No. 3 809

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/39/3/808/2409065 by guest on 23 February 2022



distributions that characterize various properties of a
PSSM:

(1) The ‘theoretical distribution’ provides an estimate of
the expected FPR at each possible weight score (WS),
based on the prior choice of a relevant background
model.

(2) The ‘empirical score distribution in all upstream
non-coding sequences’ of the organism of interest.
These sequences are essentially composed of non-
binding sites (the non-coding genomic background),
interspersed with a few functional binding sites. The
empirical distribution typically fits the theoretical dis-
tribution for small WS values (the background), but
separates at high WS values, most likely correspond-
ing to functional TF-binding sites.

(3) The ‘separation between the right tails of the empir-
ical and theoretical distributions’ indicates the cap-
ability of the matrix to identify a set of high-scoring
putative binding sites in the collection of promoters.
We capture this separation by computing normalized
weight difference (NWD) curves.

(4) An empirical estimate of the FPR is obtained by
scanning all upstream non-coding sequences with
column-permuted matrices, which supposedly do
not correspond to any TF in the organism under
consideration. If the background model has been
chosen correctly, the ‘empirical distribution of the
permuted matrices’ should fit the theoretical
distribution.

(5) The ‘empirical score distribution in the annotated
binding sites’ indicates the sensitivity of the matrix,
i.e. its capability to recover binding sites above a
given WS threshold. Matrices are rebuilt and
annotated sites are scored using a LOO procedure
to reduce over-fitting biases when estimating the
capability to detect novel sites.

(6) ‘Receiver Operating Characteristic (ROC) curves’ are
drawn to indicate the tradeoff between sensitivity
and FPR. These curves provide a direct way to
estimate the expected cost (in terms of false positives)
for achieving a desired sensitivity, or, reciprocally,
the sensitivity that can be expected for a given FPR.

(7) Optionally, empirical distributions can be measured
in any other sequence set, e.g. sequences pulled down
in ChIP-chip or ChIP–seq experiments. The compari-
son with the theoretical distribution indicates the en-
richment of these collections in putatively functional
binding sites.

Study cases

As our main study case we apply ‘matrix-quality’ to the
PSSM for the E. coli K12 tryptophan repressor (TrpR),
obtained from RegulonDB. We also discuss the quality of
six other representative TFs: CRP, FNR, LexA, CysB,
HipB and NanR. We then extend our analysis to all TFs
annotated in RegulonDB and further apply it to several
high-throughput datasets from bacteria, yeast and mouse.
The tryptophan repressor (TrpR) is a specific TF

involved in regulating tryptophan biosynthesis.

RegulonDB holds information on 10 binding sites
associated with five operons in the genome of E. coli
K12 (Figure 1A). The database also contains a PSSM
built from the aligned binding sites (Figure 1B).
Position-specific residue conservation can be summarized
either by a degenerate consensus (Figure 1C) or as a
sequence logo (Figure 1D) (20).

Theoretical score distribution provides an estimate
of the FPR

To detect putative binding sites with a PSSM, the
Regulatory Sequence Analysis Tools (RSAT) program
‘matrix-scan’ (21) computes various statistics, including
the weight score (WS) defined by Hertz and Stormo (14)
(‘Materials and Methods’ section). However, WS can be
misleading, because its range depends on the matrix width
and information content. A more interpretable score is the
P-value, i.e. the probability of observing by chance a site
scoring above a given WS, which gives an estimate of the
FPR. The theoretical distribution indicates the P-value
associated to each possible WS (Figure 2A and B), and
corresponds to the distribution that would be expected
when scoring a random sequence of infinite length
generated according to the background model.

The theoretical frequency of all possible WS for the
TrpR matrix is shown in Figure 2A. This is a discrete
distribution, because the weight is obtained by computing
products from two finite sets of probabilities, respectively
defined by the matrix and the background model. The
decreasing cumulative distribution function (dCDF,
Figure 2B) indicates the P-value, i.e. the probability to
obtain by chance a Ws higher than or equal to a given
value. This curve is displayed with a logarithmic axis; the
arrows show that, in this curve, a WS of 10 has a P-value
of 2.7� 10�6, which initially seems excellent. However,
even with this quite restrictive cutoff value, we would
expect about 23 false positives when scanning the whole
genome of E. coli K12 (4.2Mb) on both strands, and three
false positives if the search is restricted to the upstream
sequences of all the genes (579 kb� 2 strands).

When the same analysis is applied to other TFs
(Figure 3), each PSSM shows a specific theoretical
P-value distribution, depending on the particular fre-
quency of each residue in each column of the matrix.
Remarkably, NanR shows a step-wise shape, explained
by the fact that this motif was built from six identical
sites, and thus basically corresponds to a single word.
The steps of the theoretical distribution correspond to
the probability of observing from 0 to 7 matching
residues by chance, which fits a binomial distribution. A
similar effect is observed, to a lesser extent, with the yeast
Ste12 p motif discovered by detecting over-represented
words in ChIP-chip data (Supplementary Data). In this
case, the motif of width 11 was built from 59 sites, but
the strong conservation of the heptanucleotidic core (TGT
TTCA) imposes a step-wise shape, which is only slightly
smoothed by the contribution of the poorly informative
flanking residues.
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Background models especially affect estimation of
high-scoring sites

Figure 4 shows the impact of the background model on
the theoretical score distributions. For most factors, the
Markov order has a negligible effect on the lower weight
values (corresponding to the non-coding genomic back-
ground), but it particularly affects the right tail of
the weight distribution (the range of high WS

corresponding to true binding sites). Curiously, TrpR is
the only TF that shows a difference between low and
high order background models over the whole
distribution (Figure 4C). This is likely due to the
presence of the tetranucleotide CTAG in TrpR sites
(Figure 1A), which is heavily under-represented in the
E. coli K12 genome due to the so-called ‘very short
patch repair system’ (22).

A

D

C

B

E

Figure 1. TrpR PSSM annotated in RegulonDB and permutation examples. (A) Collection of experimentally characterized binding sites for the TF
TrpR of E. coli K12. (B) Count matrix, indicating the occurrences of each residue (row) at each position (column) of the aligned binding sites.
(C) Degenerate consensus derived from the matrix (obtained with the RSAT program ‘convert-matrix’). (D) Sequence logo obtained with the
program ‘seqlogo’ (40). (E) Three examples of column-permuted matrices used for the negative controls (logo representation).
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In general, the theoretical distribution can be con-
sidered a convenient estimate of the FPR, but relies on
the correctness of the background model. This assumption
can be verified empirically, as shown in the following
sections.

Empirical weight score distributions

An empirical score distribution is the collection of WS

measured using a PSSM at all possible positions of
a given set of sequences. For each PSSM annotated
in RegulonDB, we computed two empirical score

A B

C D

E F

Figure 2. Theoretical and empirical score distributions for the TrpR matrix. (A) Theoretical density function showing the probability (ordinate)
associated to each WS value (abscissa). In this figure, the theoretical score distribution was estimated with a Bernoulli model calibrated using the
whole set of upstream non-coding sequences of E. coli K12. (B) Decreasing cumulative distribution function (dCDF, blue curve) derived from the
density function (green curve in A). Abscissa represents the WS assigned by the matrix. Note that the Y-axis is in log-scale, in order to emphasize
small frequencies. (C) Score distributions in the annotated binding sites. Orange: biased scores assigned by the matrix to the annotated binding sites.
Green: unbiased scores obtained with a LOO procedure. Blue: theoretical distribution (P-value). (D) Empirical score distribution observed in the
whole set of upstream non-coding sequences for the TrpR matrix (pink) and 10 matrices randomized by column permutations (cyan). The loga-
rithmic Y-axis highlights the relevant range of P-values (small values). (E) The ROC curve shows the difference between the biased and LOO
validations. The ordinate indicates the sensitivity (fraction of sites detected), the abscissa shows the corresponding FPR. Note the logarithmic X-axis,
which is essential to highlight the relevant FPR range (small values). (F) NWD curves for matrices of different widths built from annotated
TrpR-binding sites. The dotted line corresponds to the RegulonDB matrix.
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Figure 3. Sequence logos and score distributions for a selection of representative TFs. Each row corresponds to one TF, indicated in the left column.
(First column) Sequence logos. (Second column) Score distributions. (Third column) ROC curves displayed with a logarithmic scale on the abscissa
(FPR). (Fourth column) Score difference curves to compare alternative matrices for the same TF. Each curve represents the score differences
(abscissa) between positive and negative sets, for different P-values (ordinate).
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distributions to assess the quality of a matrix: (i) the
complete set of upstream non-coding sequences of
E. coli K12, and (ii) the sequence set of binding sites
used to build the matrix. Although these sequence sets
are optional, we recommend using both of them to
achieve a complete analysis. Additional sequence sets
(e.g. sequence fragments pulled down by ChIP-chip or
ChIP–seq, upstream sequences of co-expressed genes,
etc.) can be added as input to ‘matrix-quality’ in order
to compute their empirical distribution and measure
their enrichment of putative binding sites.

Empirical WS distribution in all upstream sequences

The WS distribution was measured in the complete set of
upstream non-coding sequences of E. coliK12 (Figure 2D,
pink). This empirical distribution reasonably follows the
theoretical distribution in the lower range (WS� 7). At
higher weights the curves separate, revealing a small
number of sites with a much higher score than expected
by chance (WS� 9). These high-scoring sites supposedly
correspond to experimentally reported TrpR-binding sites.
The abrupt separation between the two curves results in a
plateau-like shape, suggesting that, in the high score
range, the TrpR matrix efficiently distinguishes functional
binding sites from the background.

Permuted matrices as negative control

An ideal negative control would be a set of sequences to
which the TF of interest does not bind. Unfortunately,
experimental evidence of this type is generally not avail-
able. An alternative would be to select a random set of
promoters, but this could accidentally include some real
binding sites. Another possibility is to generate random
sequences using some background model (e.g. Markov
chain). However, nothing guarantees that Markov
chains provide realistic models of biological sequences.

To circumvent these problems, ‘matrix-quality’ auto-
matically performs a negative control by scanning input
sequences with randomized matrices, obtained by
permuting the columns of the original PSSM, as recom-
mended in other studies (23,24). Column-permuted
matrices (e.g. Figure 1E) have the advantage of preserving
important characteristics of the PSSM such as residue
composition (sum of each row), number of sites (sum of
any column), total information content (14), and complete
theoretical score distribution (for Bernoulli models).

All upstream regions of E. coli K12 (579 kb) were
scanned on both strands using ten randomized versions
of the TrpR PSSM. The distribution of permuted
matrices is thus estimated from a total of >107 weight
scores (579 kb� 2 strands� 10 matrices). The score distri-
bution of all permuted matrices (Figure 2D, cyan curve)

A B

C D

Figure 4. Impact of the background model on the theoretical score distribution for four matrices annotated in RegulonDB. For each factor, the
theoretical weight distribution was computed using Markov models of various orders (from 0 to 4) estimated from k-mer frequencies measured in all
upstream regions of E. coli K12. (A) FNR. (B) CRP. (C) TrpR. (D) LexA.
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closely follows the theoretical distribution (blue curve) on
its whole range, without showing any separation at high
scores. This confirms that the plateau observed for the
original TrpR PSSM (Figure 2D, pink curve) corresponds
to sites specifically detected by this matrix in the genome.

The column-permuted distribution can be considered an
‘empirical estimate of the FPR’. This distribution is
estimated from scanning a few megabases of sequence
and hence its precision is limited. For example, the
highest score observed for the negative control of TrpR
had a frequency of �1� 10�6. This empirical distribution
would not allow us to estimate lower P-values, which are
the most relevant for binding site evaluation. To combine
the advantages of theoretical and empirical FPR curves,
we propose the following strategy: (i) scan a representative
set of biological sequences with column-permuted
matrices; and (ii) if the results fit the theoretical distribu-
tion, use the latter to estimate the P-value of predicted
sites.

Note that the column-permutation test fails for TFs
showing low-complexity motifs (e.g. GGGCGG, TATA
TA). In such cases, the consensus residues of the
permuted matrix will frequently match those of the
original matrix, resulting in similar empirical
distributions.

Estimation of sensitivity

The sensitivity of a PSSM is the fraction of correct sites
detected above a score threshold, which is usually
estimated by scoring the sites originally used to build the
matrix (‘Materials and Methods’ section). As an example,
scores for annotated TrpR sites range from 14.90 to 19.42
(Figure 2C, orange curve). However, this PSSM is
probably over-fitted to these particular sites, since each
of them is used in the alignment from which the matrix
is derived (Figure 1). For an unbiased estimate of sensi-
tivity, we would ideally need two separate collections of
sites: one for building the PSSM, another for testing it.
Unfortunately, for most TFs, very few binding sites are
known. In order to ensure an independent assessment
while minimizing the loss of information, the program
‘matrix-quality’ performs a LOO validation, iteratively
discarding one annotated site, re-building the matrix,
and scoring the left-out site with the new matrix. The
program also discards multiple copies of identical sites,
if those are not from independent sources, which would
otherwise induce the same kind of bias. RegulonDB
contains 10 TrpR sites (Figure 1A), with only five remain-
ing after redundancy filtering. Not surprisingly, when
applying the redundancy filter and the LOO procedure
these sites have lower scores ranging from 9.62 to 15.78
(Figure 2C, green). The LOO score distribution thus
corrects obvious biases in the estimation of the matrix
sensitivity, and the difference with the matrix sites distri-
bution (Figure 2C, orange curve) indicates the level of
over-fitting to the training sites.

Strong differences between uncorrected and LOO
curves reveal problematic matrices. For instance, the
CysB matrix from RegulonDB covers 43 columns, which
is unusually large for a TF-binding motif. Initially, the

score distribution in all promoters follows the theoretical
distribution for low score values (weight< 5), and shows a
clear plateau for high scores (weight> 10), with a few sites
scoring above 20, thus suggesting that the motif has good
specificity. However, the LOO test (Figure 3, green curve)
returns much lower scores than the uncorrected site dis-
tribution (Figure 3, orange curve), thereby revealing a
strong effect of over-fitting. The CysB matrix is able to
recognize the eight genomic sites used to build it, but fails
to predict additional sites.
In contrast, matrices built from many sites (CRP, FNR)

show almost no difference between LOO and uncorrected
site distributions (Figure 3). For factors like LexA,
over-fitting seems reasonably low, thanks to the sufficient
number of annotated sites (23 sites).

ROC curves indicate the trade-off between sensitivity
and FPR

The ROC curve (25) is a standard representation of the
trade-off between FPR and sensitivity. However, the risk
of false positives applies to every position of the scanned
sequences. Even with an apparently low FPR, the actual
number of FP can be very high when scanning a genome.
For example, E. coli K12 upstream regions scanned on
both strands represent more than 1 million scored pos-
itions, so that an FPR of 0.001 would return 1159 FPs.
Consequently, regular ROC curves are of no use for
estimating the discriminatory power of a matrix. For the
same reason, the Area Under the Curve (AUC), classically
used to assess the quality of ROC curves, is ineffective.
Indeed, the AUC is obtained by integrating sensitivity
over the full range of FPR from 0 to 1, yet genome-wide
predictions performed with an FPR of 90%, 50%, 10% or
even 1% are not useful at all. To emphasize the lower,
more relevant, range of FPR, ROC curves are drawn
with a logarithmic abscissa, and we use alternative statis-
tics instead of the AUC.
For the TrpR PSSM, the LOO curve (Figure 2E, green

curve) shows that 60% sensitivity can be attained with a
FPR of 6.8� 10�7, or a cost of 1 FP every
1/(6.8 10�7)bp=1.47Mb. This estimation of sensitivity
with LOO procedure is unbiased, but it is based only on
five non-redundant sites, thus being of questionable robust-
ness (this could change if new TrpR sites become available).
For the LexA matrix, built from 23 binding sites, the ROC
curve shows a gradual increase (Figure 3); at 50% sensitiv-
ity the expected FPR remains reasonably low
(FPR50%=1.3� 10�5), whereas 90% sensitivity includes
almost 1FP per 100 bp (FPR90%=8.3� 10�3). HipB is a
typical case of TF with a very small number of
characterized sites (four sites, all involved in the regulation
of the hipBA operon). Since each site contributed 25% of
the matrix frequencies, the matrix is over-fitted, as denoted
by a 10 000-fold difference in FPR between the uncorrected
(orange) and the LOO (green) site score distributions
(Figure 3). It is thus essential to estimate the FPR on
the LOO curves rather than on the simple distribution
of scores in the annotated sites. We systematically
analyzed the FPR50%, FPR90% and FPR100% for all the
PSSM annotated in RegulonDB (Table 1). The ratio
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between the FPR computed with the LOO approach and
from thematrix sites (biased) shows wide variations (from 2
to 1010). High ratio values indicate an over-fitting of the
matrix to the training sites, and can be used to detect poorly
predictive matrices in a TF database.

Normalized weight difference curves

Comparison between the theoretical score distribution
(Figure 2C, blue curve) and the observed score distribu-
tion in upstream non-coding regions (Figure 2D, pink
curve) indicates the discriminative power of a matrix.
Differences between theoretical and empirical distribu-
tions indicate the presence of a higher number of sites
with a P-value smaller than expected, suggesting that the
PSSM is capable of recovering significant putative binding
sites.

At each frequency value (y-axis of Figure 2D) we
calculated the weight score difference (WD), defined as
the difference between the observed WS in all upstream
non-coding regions and the expected WS in the theoretical
distribution of the PSSM for a given P-value. The WD can
be visualized as the horizontal distance between the distri-
bution curves (Figure 2D, blue and pink curves). As larger
matrices allow higher scores, we divided the difference by
the matrix width to obtain the normalized weight differ-
ence (NWD). The NWD curve (Figure 2F) indicates the
capability of a PSSM to distinguish putative sites from the
non-coding genomic background.

Superimposition of NWD curves facilitates comparison
between different PSSM for a given TF. In Figure 2F, the
NWD curve of the TrpR matrix, annotated in RegulonDB
(dotted line), is shown super-imposed with alternative
TrpR matrices built from the same sites, but varying
the widths from 10 to 42. Clearly the smaller matrix
(width=10) fails to distinguish known sites from the
background, as revealed by its negative NWD. In
contrast, matrices of width 18 to 30 show a sharp
increase in NWD above P-values of �1� 10�5, indicating
enrichment in putative binding sites.

In some cases, the Maximal NWD (MNWD) score
gives good results for PSSM selection as can be seen for
LexA matrices. The most conserved residues were a pair of
trinucleotides separated by 10 less conserved positions
(CTGn10CAG). This core is encompassed by a matrix of
width 16, yet the annotated matrix extends over 21 nt in
order to include information about the conservation of the
flanking residues. The PSSM with the highest MNWD
had 18 columns (Figure 3, cyan NWD curve for LexA),
followed by one of 22 (turquoise). However, NWD curves
can be misleading in case of over-fitted matrices, as for
HipB: this factor has target genes with multiple binding
sites arranged in tandem. Consequently, large matrices
encompass multiple sites, so that increasing the PSSM
width leads to ever increasing score separations
(Figure 3). However, these matrices are only getting
better at predicting the sites from which they were con-
structed, while getting worse at predicting novel sites, as
denoted by the LOO analysis of site score distributions.

NWD curves give a feeling about the enrichment in
high-scoring binding sites observed in a reference

sequence set (e.g. all upstream regions of the organism
of interest) by comparison to the theoretical expectation.
In Bacteria, an abrupt slope in the NWD curve reveals the
presence of a handful of high-scoring binding sites for
highly specific TFs (e.g. TrpR, LexA), whereas a progres-
sive increase of the NWD slope is indicative of global
factors, such as CRP, FNR (Figure 3), Fur, FruR, IHF
and FIS (Supplementary Data). NWD curves can estimate
matrix quality when individual binding sites can be distin-
guished from their background (the whole set of
non-coding upstream sequences).
In metazoan genomes (drosophila, mammals), the

NWD curves are generally flat for specific factors (unpub-
lished data, JvH), because the number of high-scoring sites
does not significantly exceed the theoretical expectation,
due to the increase of gene number and upstream region
sizes. In such genomes, transcriptional regulation is
ensured by cis-regulatory modules, which combine
multiple binding sites for one or several TFs. Also, indi-
vidual binding sites generally show a wider range of vari-
ation, so that PSSMs are less discriminative than in
microbial genomes.

Empirical score distributions distinguish global from
specific TFs

The global TFs CRP and FNR have several hundred
annotated functional binding sites. Their score distribu-
tions in all promoters do not show a plateau: rather,
their empirical curves (Figure 3, pink curve) progressively
separate from the theoretical distribution, starting from
relatively low WS (�5), associated to high P-values
(>1� 10�3). This suggests that the high number of
target genes of global TFs results from a spectrum of
sites bound with a wide range of affinities. The progressive
separation observed for global factors opens the question
of whether their numerous binding sites result mostly from
non-specific binding (reflected by a motif of low informa-
tion content), which has been suggested previously (26), or
from the presence of numerous specific binding sites in
upstream regions of a large number of target genes. In
the first scenario (poorly informative motifs) we would
expect similar curves for the permuted and non-permuted
matrices, since column permutations preserve the informa-
tion content. This is however not the case. For all the
global TFs (CRP, FNR, FIS and FUR), permuted
matrices showed a tight fit to the theoretical distributions
(see cyan curves on Figure 3 for CRP, FNR, and
Supplementary Data for other factors). This suggests
that there is room within the whole set of possible se-
quences, to have a large number of binding sites of
lower affinity for TF binding enabling regulation of
many target genes, and nonetheless different from those
generated by permuted matrices.
However, the slow separation observed for global

factors may be an artifact resulting from the fact that
their matrices were built from a larger number of sites
than specific TFs. In order to test this possibility, we
built matrices by sampling random subsets of binding
sites for CRP and FNR. We tested matrices built from 7
or 14 sites, respectively, and repeated the experiment three
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times (Supplementary Data). All the sub-sampled matri-
ces showed the same characteristic distribution of
global TFs: their empirical distribution slowly separates
from the theoretical one above relatively low weight
scores (w� 5).
The distinction between global and specific factors can

also be observed in yeast promoters: the Saccharomyces
cerevisiae TF Abf1 p, described in SGD as a ‘multifunc-
tional global regulator’, shows a progressive separation
from the theoretical distribution above scores of 5
(Figure 7). The same behavior is observed for two other
yeast global TFs, CBF1 and RAP1 (Supplementary Data).
In contrast, for the GAL4 factor, which activates a
handful of genes involved in galactose utilization, the em-
pirical score distribution suddenly separates from the the-
oretical distribution at high scores (w� 10), similar to
specific TFs in E. coli.
We further investigated the capability of ‘matrix-

quality’ to distinguish global from specific TFs by
evaluating the score distribution of the Bacillus subtilis
FNR-binding motif. The B. subtilis FNR motif (TGTG
A-N6-TCACA) is highly similar to that of CRP in E. coli
K12. However, in B. subtilis, the factor has been recruited
for a specific function (adaptation to low oxygen tension)
and regulates a much smaller regulon than CRP in E. coli.
Consistently, the score distribution of B. subtilis FNR
shows the typical shape of a specific TF: the empirical
distribution follows the theoretical for low weight scores,
and shows a neat separation above 10 (Supplementary
Data). The distinction between the B. subtilis FNR and
E. coli K12 CRP distributions nicely shows that the same
motif (TGTGA-N6-TCACA) can be bound by a generic
factor in one genome, and a specific factor in another
genome.

Multi-genome pattern discovery can compensate for a
small number of annotated binding sites

In some cases, the collection of annotated binding sites is
insufficient to build a consistent matrix. The HipB PSSM
in RegulonDB was built from four binding sites found in
tandem in the hipB promoter (hipB is auto-regulated).
Consequently, the collection of extended binding sites
provided by RegulonDB shows redundancy, since each
aligned site is flanked by one or two neighboring sites,
and the motif has a poor predictive power, as discussed
above. The paucity of annotated binding sites can
however be compensated by a multi-genome approach.
We ran the program ‘footprint-discovery’ (27) to
discover conserved motifs in the promoters of 14 hipB
orthologs found in Enterobacteriales. The resulting
motif (Figure 5A) shows the same core as the annotated
one, but the error bars are considerably smaller, because
the matrix was built from a much larger collection of
binding sites. The score distributions and the ROC curve
(Figure 5B and C) show a neat improvement over the
original annotated matrix (Figure 3): the difference
between uncorrected matrix sites and LOO distribution
becomes negligible, and the estimated FPR_70%
improves from 1� 10�5 to 1� 10�8.

Enrichment of binding sites in promoters and peak regions
selected by ChIP-chip and ChIP–seq experiments

Until recently, matrices stored in TF databases were built
by assembling a restricted number of sites obtained from
case-by-case experiments. ChIP-chip (18) and ChIP–seq
(28) technologies now permit a genome-wise localization
of the regions bound by a TF. However, these regions are
not precisely defined, due to several technical difficulties:
(i) during Chromatin Immuno-Precipitation (ChIP),
the ultrasonication step cuts DNA into fragments of
variable sizes; (ii) the DNA probes hybridized on
ChIP-chip microarrays may contain regions of several
tens, or even hundreds base pairs (this problem has been
minimized with recent tiling arrays); and (iii) for ChIP–
seq, the primary reads from the next generation
sequencing machines correspond to the 50 and 30

extremities of the DNA fragments, which can be separated
from the actual site by several tens of base pairs. The
primary results (hybridized probes or genome-mapped
sequence reads) are generally post-processed to detect
the ‘peaks’, i.e. genomic regions most likely to contain
one or more binding sites (29). Motifs can then be
obtained by running pattern discovery algorithms in
sequence sets resulting from those high-throughput
methods.

In the next sections, we show that ‘matrix-quality’ can
be used for two purposes during analysis of ChIP-chip and
ChIP–seq results: (i) to evaluate the high-throughput
sequence sets (e.g. a collection of peak regions) for enrich-
ment of putative binding sites of a TF for which we
already have a matrix; and (ii) to evaluate the quality of
new motifs built from high-throughput data sets.

Enrichment of promoters selected by ChIP-chip in
LexA-binding sites

Wade and co-workers (30) used high-density microarrays
representing the entire E. coli genome to identify 49
high-confidence in vivo targets of the LexA repressor. Of
these, 15 were already included in the 23 target genes
annotated in RegulonDB.

We first analyzed the enrichment in putative LexA-
binding sites within the promoters of the high-scoring
target genes identified by Wade and co-workers. Score
distribution curves (Figure 6A) showed a significant en-
richment of high-scoring sites in ChIP-selected promoters
(purple curve) in comparison with the distribution in
all promoters (salmon curve). This illustrates the use
of ‘matrix-quality’ to compare collections of sequences
obtained from various sources, and to estimate their
respective enrichment in binding sites for a given
TF-binding motif by comparing the entire WS

distributions.

Enrichment of ChIP–seq peaks shows interactions
between mouse factors

We used ‘matrix-quality’ to measure the enrichment of
peak regions selected by ChIP–seq for 13 mouse TFs
(19). Whenever available, we compared the motifs
annotated in TRANSFAC with those built from the
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ChIP–seq peaks, taken either from JASPAR (31) or from
a recent study by Bailey, et al. (32). Empirical score dis-
tributions show a clear enrichment of peak regions for
some, but not all matrices (Supplementary Data).
Beyond comparing the respective quality of alternative
matrices, the distribution plots can in some cases highlight
the interactions between two factors. For example, the
mouse factors Sox2 and Oct4 can form a dimer that
binds a spaced motif (the so-called ‘SOCT’ motif).
Interestingly, Sox2 peak sequences are enriched not only
for Sox2 (Figure 8A), but also for Oct4 (Figure 8B)-
binding sites. However, the strongest enrichment is
obtained with the Sox2-Oct4 hybrid motif (Figure 8C),
thereby confirming the capability of the two factors to
bind DNA in the dimeric form.

Improving matrix qualities by running motif discovery in
promoters pulled down by ChIP–chip

We used the pattern discovery program ‘dyad-analysis’ (33)
to build a new matrix from the LexA-binding regions
reported by Wade and co-workers, and analyzed its
quality as described above. This matrix shows a plateau

of high-scoring binding sites within the complete collection
of E. coli K12 promoters (salmon curve), and a strong en-
richment of such sites in the promoters of the target genes
selected by ChIP-chip (Figure 6C). Interestingly, the ROC
curve shows better performance for the new LexA motif
than for the motif annotated in RegulonDB: the FPR_50%
drops from 10�5 for the annotated motif (green curve on
Figure 6B) to 10�7 for the new one (Figure 6D). The newly
discovered motif also shows a good capability to recover
the 23 binding sites annotated in RegulonDB, although
only some of those sites were used to build it.
A similar improvement can be obtained by discovering

motifs in yeast promoters selected by ChIP-chip experi-
ments: for the yeast global factor Abf1 p, we analyzed
three matrices annotated in TRANSFAC (34), one from
SCPD (35), and a matrix built with ‘dyad-analysis’ (33) in
Abf1p target promoters selected by ChIP-chip (18). The
matrix obtained with ‘dyad-analysis’ (Figure 7C and D)
shows a 100-fold lower FPR than the matrix annotated in
SCPD (Figure 7A and B). We obtained similar improve-
ments for several yeast TFs for which ChIP-chip data were
available (Supplementary Data).

A

B

C

D

Figure 5. Motif discovered by ‘footprint-discovery’ in the promoters of 14 hipB orthologs (Enterobacteriales). (A) Sequence logos from different
matrices representing the binding motif for the TF HipB. (B) P-value distribution for the multi-genome matrix. (C) ROC curves for the multi-genome
matrix. (D) Quality comparison of different matrices based on NWD distributions. Dotted curve: RegulonDB matrix. Light mauve: multi-genome
matrix. Other curves: matrices of various widths built from the 4 HipB sites annotated in RegulonDB. Note the abrupt step in the light mauve curve,
indicating the discriminant power of the multigenome matrix.
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DISCUSSION

We described a method to characterize the ability of a
PSSM to detect TF-binding sites in genome sequences.
The method combines theoretical and empirical score
distributions and is implemented in a program called
‘matrix-quality’, which is part of the RSAT (36).
We applied the method to a collection of 60 PSSMs

from the RegulonDB database (2,17). We analyzed
seven representative E. coli K12 PSSMs, and showed
that matrices can be significantly improved by enlarging
the set of sites using either data from high-throughput
experiments (yeast ChIP–chip, mouse ChIP–seq) or from
comparative genomics (‘footprint discovery’).
Our study shows that any single-criterion selection will

fail to capture the multiple aspects required to assess the
predictive power of a matrix. Consequently, our general
strategy was to select matrices presenting a good trade-off
between the multiple parameters discussed in the previous
sections: (i) the discriminative power of the PSSM is first
estimated by examining the separation between the theor-
etical and empirical distribution in all upstream sequences
(MNWD); (ii) the fitting between the theoretical distribu-
tion and the empirical distribution of permuted matrices
indicates the correctness of the background model;
(iii) over-fitted matrices are revealed by a large distance

between the biased and unbiased (LOO) distributions of
WS in annotated binding sites; and (iv) the ROC curves
indicate the tradeoff between sensitivity and risk of false
positives.

The distributions of scores and the ROC curves can
give relevant information for researchers who are
using matrices to predict putative binding sites in
genome sequences. It is important to remark that this
evaluation is context-specific: rather than evaluating
intrinsic properties of the matrix (e.g. information
content, E-value), we monitor its practical behavior in
the context of a given genome. The method can thus
provide realistic estimates of the expected sensitivity
and FPR when scanning real genome sequences to
predict TF-binding sites. In addition, we saw that the
shape of the distribution observed in complete sets of pro-
moters provides clues about the global versus specific
nature of a TF. Since this interpretation does not
require any prior knowledge of proven binding sites, it
can also be used for evaluating matrices resulting from
pattern discovery in various data types: promoters of
co-expressed genes, promoters of orthologous genes,
whole-genome analyses and collections of peak regions
obtained from ChIP–seq or ChIP-chip experiments,
among others.

A B

C D

Figure 6. Analysis of LexA target genes detected by a ChIP-chip experiment. (A) Score distributions showing the enrichment of putative
LexA-binding sites in the target promoters detected by ChIP–chip. Sites were predicted with the LexA matrix from RegulonDB. (B) ROC curve
of the LexA matrix available in RegulonDB. (C) Score distributions of a LexA PSSM resulting from pattern discovery (‘dyad-analysis’) in the LexA
target genes detected by ChIP–chip. (D) ROC curve of the matrix discovered with ‘dyad-analysis’.
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Our method is also of pragmatic value for annotators of
TF databases. The analysis of score distributions allowed
us to detect problems related to the annotated binding
sites (e.g. five redundant sites out of 10 for TrpR, six iden-
tical sites for NanR, over-fitted matrix for HipB), or to the
matrices built from those sites (e.g. excessively large
matrix for CysB).

The method can also help to guide annotators in
the choice of optimal parameters to build matrices
from collections of binding sites (e.g. matrix width, back-
ground model, exclusion of poorly scoring sites, etc.). As
a systematic test, for each one of the seven study case
factors (Figures 2 and 3), we collected their binding
sites from RegulonDB and generated a series of PSSM

using two alternative algorithms (MEME and consensus),
two alternative background models (Bernoulli or Markov
order 1) and motif length ranging from 8 to 42. By
comparing all the ‘matrix-quality’ results, we selected,
for each factor, the matrix providing the best tradeoff
between sensitivity and FPR robustness (based on
the LOO analysis). The parameters of the selected
matrices are shown in Table 2, and are compared
to those of the original RegulonDB matrices
(Table 1). In addition, we are generating a collection
of matrices enriched by multi-genome pattern discovery.
This study is currently being extended to the whole
RegulonDB collection, in preparation for the next
database release.

Figure 7. Matrices obtained from motif discovery in yeast promoters selected by ChIP-chip experiments. Score distribution and ROC curves for the
ABF1 matrix annotated in SCPD (A and B), an ABF1 matrix discovered in promoters selected by ChIP-chip (C and D) and a GAL4 matrix
discovered in promoters selected by ChIP-chip (E and F).
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Figure 8. Enrichment of putative binding sites for mouse TFs in peak
sequences detected by ChIP–seq experiments. Score distributions in
peak regions detected by a Sox2 ChIP–seq experiment, analyzing
motifs for Sox2 (A), Oct4 (B) and Sox2-Oct4 (C).
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