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ABSTRACT

The regulatory sequence analysis tools (RSAT,
http://rsat.ulb.ac.be/rsat/) is a software suite that
integrates a wide collection of modular tools for the
detection of cis-regulatory elements in genome
sequences. The suite includes programs for
sequence retrieval, pattern discovery, phylogenetic
footprint detection, pattern matching, genome scan-
ning and feature map drawing. Random controls can
be performed with random gene selections or by
generating random sequences according to a variety
of background models (Bernoulli, Markov). Beyond
the original word-based pattern-discovery tools
(oligo-analysis and dyad-analysis), we recently
added a battery of tools for matrix-based detection
of cis-acting elements, with some original features
(adaptive background models, Markov-chain esti-
mation of P-values) that do not exist in other matrix-
based scanning tools. The web server offers an
intuitive interface, where each program can be
accessed either separately or connected to the
other tools. In addition, the tools are now available
as web services, enabling their integration in pro-
grammatic workflows. Genomes are regularly
updated from various genome repositories (NCBI
and EnsEMBL) and 682 organisms are currently
supported. Since 1998, the tools have been used by
several hundreds of researchers from all over the
world. Several predictions made with RSAT were
validated experimentally and published.

INTRODUCTION

Noncoding DNA sequences play an essential role in all
biological systems, by ensuring the spatial and temporal
regulation of gene transcription. The interactions between

transcription factor (TF) proteins and their target genes
rely on the recognition of very short DNA signals, the
cis-regulatory elements.
The regulatory sequence analysis tools (RSAT) offer a

collection of specialized software applications for the
detection of cis-acting regulatory elements in genomic
sequences. The website supports various approaches to
analyze noncoding sequences, including a variety of pattern
discovery and pattern-matching programs. Pattern discov-
ery (also called ab initiomotif detection) takes as input a set
of sequences, and detects exceptional motifs that are con-
sidered as putative regulatory signals. Pattern matching
takes as input a set of sequences and a set of motifs (which
may be obtained either from prior knowledge or by running
a pattern-discovery program), and searches for instances of
the motif in the sequences. These instances are considered
as putative transcription factor-binding sites.
The web server has been running without interruption

since May 1998. At that time, it was restricted to the yeast
genome. More than 600 genomes are currently supported,
and the data is regularly updated from various genome
repositories (NCBI and EnsEMBL). In a previous
description of the tools (1), the server was centered on
the string-based pattern-discovery algorithms oligo-
analysis (2) and dyad-analysis (3). RSAT have been
recently upgraded by the inclusion of new tools for
scanning sequences with position-specific scoring matrices
(PSSMs), and for the detection of conserved elements in
promoters of orthologous genes (phylogenetic footprints).
A wide variety of genome- and taxon-specific background
models are available, which provide the essential statistical
background to assess the significance of the predicted
motifs (pattern discovery) and sites (matrix-based pattern
matching). In addition, the web interface has been recently
redesigned to improve the navigation and offer a better
accessibility to the programs.
We present hereafter a summary of the supported tools,

with some examples of results obtained with the most
recent applications.

*To whom correspondence should be addressed. Tel: +32 2 650 20 13; Fax: +32 2 650 54 25; Email: jacques.van.helden@ulb.ac.be

The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors

� 2008 The Author(s)

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/36/suppl_2/W

119/2506687 by guest on 31 January 2022



TASKS AND PROGRAMS

The procedures currently supported by RSAT are sum-
marized in Table 1. Programs can be linked to build
workflows as illustrated in Figure 1 or used separately
according to each user’s needs. We provide below a short
description of the main program functionalities, with a
specific emphasis on the tools that were not described in the
previous publications about the RSAT web server (1,4).

Genome and gene information

Genomes are imported and regularly updated from
various sources, mainly NCBI (for microbial genomes)
and EnsEMBL (for higher organisms). In January 2008,
682 genomes were supported, including 578 bacteria, 49
archaea, 36 fungi, 13 metazoa, 2 alveolata and 1 plant.
Genes can be specified according to their systematic
identifiers, usual names or synonyms (as long as those are
annotated in the source databases).
We recently added support for comparative genomics.

The tool get-orthologs takes as input one or several query
genes, and returns the list of genes with similar products in
a given taxon. Pairwise similarities between peptidic
sequences are precomputed using the gapped version of
BLAST (5) and stored in RSAT genome repository. By
default, the program returns the bidirectional best hits
(BBH), which can be considered as putative orthologs.
The BBH criterion can however be relaxed to collect
paralogs as well. Alternatively, more stringent thresholds
can be imposed on any statistics (bits, E-value, percent
identity, etc.) returned by BLAST in order to impose
restrictions on the reported similarities. The result of get-
orthologs is a multi-genome list of genes, which can further
be used as input by retrieve-seq.
For bacterial genomes, the program infer-operons per-

mits to predict operons on the basis of a simple distance-
based method (the distance can be specified by the user),
and returns the composition of those predicted operons,
together with their putative leader genes.

Sequence retrieval

The tool retrieve-seq allows retrieving noncoding
sequences located upstream or downstream of query
genes. By default, sequences are retrieved from the start
(upstream) and stop (downstream) codons. For some
organisms, the NCBI and EnsEMBL annotations include
mRNAs start and end locations, which can then be used
as references. Sequence lengths can either be specified as a
fixed value, or be determined in a gene-specific way,
depending on the distance to the neighbor gene. The
program retrieve-seq has also been adapted to accept
multi-genome queries, specified as a two-column input
(the first column indicates the gene ID, the second column
the organism name), such as the get-orthologs result file.
Sequences can be purged with the program purge-

sequence, in order to mask redundant fragments. This
program is a wrapper around the programs vmatch and
mkvtree developed by Stefan Kurtz (6,7). Sequence
purging is important for pattern discovery, since repeated
copies of sequences introduce biases in the over- or

under-representation statistics. In contrast, pattern match-
ing is generally done on nonpurged sequences, since one
wants to locate all instances of the searched motif.

Background models

The choice of the background model is a crucial parameter
for both pattern discovery and pattern matching. Back-
ground models can be estimated either from the input
sequences or from reference data sets. For each supported
organism, RSAT provides a collection of precomputed
background models for oligonucleotides (length 1–8 nt) as
well as for dyads (monad length from 1 to 3 nt, spacing
from 0 to 20 nt). These models were estimated on the basis
of complete sets of upstream sequences. We recently added
taxon-wide background models for the analysis of multi-
genome data sets (8). Background models can also be
imported from external programs, with the utility convert-
background-model (Table 2).

Pattern discovery

Since its origin, the RSAT project was centered on
specialized algorithms for the discovery of cis-regulatory
motifs from promoters of coregulated genes. Our first
pattern-discovery algorithm, oligo-analysis, is based on the
detection of overrepresented oligomers in nucleic or
protein sequences (2). This program is time and memory
efficient, and can be applied to genome-scale sequence sets
(9). The approach was later extended to the detection of
overrepresented spaced pairs, with the program dyad-
analysis, which permits to detect spaced motifs such as
those bound by fungal zinc cluster proteins (3) or bacterial
helix–turn–helix factors (8,10). Relevant biological signals
can also be detected on the basis of some positional
specificity. The program position-analysis (9) allows the
detection of biologically relevant signals based on a
nonflat positional distribution. A new program, orm,
combines positional information and analysis of over/
underrepresentation, to detect motifs showing an excep-
tional frequency in restricted positional windows. The web
server also integrates two pattern-discovery programs
developed by third parties: consensus (11) and gibbs (12).

Phylogenetic footprint discovery

The pattern-discovery methods listed above were initially
developed to predict motifs from a set of coregulated genes
in a single organism. The increasing number of sequenced
genomes now allows to apply pattern discovery in an
‘orthogonal’ way: starting from a single query gene in an
organism of interest, collect its orthologs in a taxon of
reference (e.g. all fungi), and detect overrepresented motifs
in the promoters of these orthologs. This comparative
genomic approach particularly gives good results with
microbial genomes (8), because their promoter regions
are generally short, and the number of sequenced genomes
is now sufficient to obtain a reasonable signal-to-noise
ratio. The program footprint-discovery runs a predefined
workflow performing the required steps to discover over-
represented elements in promoters of the orthologs of one
or several query genes.
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Figure 2 shows the result of footprints discovered in
promoters of the orthologs of the gene MET1 in Sacchar-
omycetales (Saccharomyces cerevisiae was used as query
organism). Among the 43 680 possible dyads, 12 are signif-
icantly overrepresented in this set of promoters
(Figure 2A). The feature map shows a strong overlap
between instances of these dyads (Figure 2C), suggesting
that they reveal alternative fragments of the same
motif (3,8).

A new feature of RSAT is that the string-based motifs
resulting from dyad-analysis (or from oligo-analysis) can
now be converted into PSSMs with the program matrix-
from-patterns. This conversion relies on a three-step
process: (i) a significance matrix is built from the assembled
dyads (or oligonucleotides), by assigning to each cell of the
matrix, the score of the most significant dyad containing
the corresponding residue (row) at the corresponding
position (column) of the aligned dyads; (ii) this significance
matrix is used to scan input sequences for putative binding
sites and (iii) putative binding sites are then aligned to form
a count matrix. RSAT supports various formats for
PSSMs (Table 2). In the tab-delimited format displayed
in Figure 2B, the count matrix is documented by several
statistical parameters (total information content, informa-
tion per column, maximal weight, minimal weight, etc.).

Pattern matching

The program dna-pattern scans sequences with string-
based patterns. This program supports various types of
string-based patterns: single oligonucleotides, partly
degenerated motifs (described with the IUPAC alphabet),
spaced motifs or regular expressions. It can return a list of
matches or a table showing the number of matches for
each pattern (column) in each sequence (row).

The new program matrix-scan scans sequences with
PSSMs, and scores each position according to the weight
score previously defined by Jerry Hertz and Garry Stormo
for their program patser (11,13,14), as well as the relative
weight defined by Gert Thijs for MotifLocator (15).
A particular strength of matrix-scan is its variety of
supported background models, based on residue frequen-
cies (Bernoulli) or higher-order dependencies between
adjacent residues (Markov chains). Model estimation
relies either on genome-wide reference sets (see ‘Back-
ground models’ section), or on the input sequence set.

RSAT matrix-based programs also support the compu-
tation of a P-value for each site, using either a Bernoulli or
a Markov-chain model. The complete theoretical distribu-
tion of scores can be computed with matrix-distrib, in
order to estimate the expected rate of false positives for
each possible weight score.

In addition, matrix-scan allows to predict cis-regulatory
modules by detecting genome segments enriched in PSSM
matches (CRER, for cis-regulatory element enriched
region). A P-value is associated to each CRER, using
the binomial distribution of probability (16).

Figure 3 shows a typical result of a pattern-matching
analysis conducted in RSAT. Upstream sequences of
methionine-responding genes from Saccharomyces cerevi-
siae were scanned by matrix-scan with PSSMs describingT
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the binding motifs of the transcription factors Met4p and
Met31p (17) (Figure 3A). The predicted sites and CRERs
(Figure 3D) were then sent to feature-map for graphical
display. Figure 3B presents both the individual sites and
CRER predictions. The random controls are shown in
Figure 3C. Predicted sites found clustered in CRERs are
likely to be putative sites for the transcription factors
Met4p and Met31p. Consistently, matrix-scan predicts a
high density of sites and CRERs upstream of the
methionine-responding genes, whereas only three sites
and no CRERs are predicted in the random controls. The
latter predictions are probably false positives.

Random controls

Random controls provide a powerful way to test the
validity of the statistical models, by allowing to assess
the rate of false predictions (false positives) returned by the
program. One type of negative control consists in ana-
lyzing artificial sequences, generated at random according
to some probabilistic model. The program random-seq
generates random sequences according to any of the
background models supported on RSAT.
Such random sequences with controllable properties are

convenient to check the theoretical rate of false positives
returned by a program (P-value, E-value), but they might

Figure 1. Flow chart of the regulatory sequence analysis tools. Rounded boxes represent programs, rectangles data and results and trapezoid user
input. Bold arrows highlight the succession of tools used by the tool footprint-discovery.

Table 2. Supported inter-conversions between formats

Data type Program name Supported input formats Supported output formats

Sequences convert-seq EMBL, fasta, multi, raw, tab, wconsensus fasta, ig, multi, raw, tab, wconsensus
Features convert-features dna-pattern, feature-map, gff, gff3 dna-pattern, feature-map, gff, gff3, fasta
PSSM convert-matrix AlignAce, pattern-assembly, cluster-buster, clustal,

consensus, feature-map, gibbs, meme, MotifSampler,
tab, TRANSFAC

consensus, patser, tab, TRANSFAC, SeqLogo

Background
models

convert-background-model oligo-analysis, MotifSampler, meme, dyad-analysis transition table, oligo-analysis, patser,
MotifSampler
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fail to reflect the behavior of the same program on real
biological sequences. Indeed, some biological sequences are
too complex to be modeled by a simple Markov chain. A
more realistic control can be achieved with random-genes.

This program selects at random one or several gene sets,
whose sequences can then be submitted to the same analysis
workflows as those applied to clusters of coexpressed genes.
In principle, a good predictive program should return

Figure 2. Example of result from footprint-discovery. (A) overrepresented dyads detected in promoters of orthologs of the yeast gene MET1.
(B) PSSM obtained by assembling the most significant dyads and using them as seeds to scan the input sequences. (C) Feature map of the significant
dyads. The clumps of overlapping boxes are indicative of good predictions for binding sites.
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significant results with coexpressed genes, and no result
with randomly selected genes.

Drawing facilities

The web server includes two drawing tools: (i) feature-map
generates graphical representations of features on
sequences (e.g. predicted and/or annotated TF binding
sites on promoter sequences) (e.g. Figures 2C, 3B and C);
(ii) XYgraph generates XY plots from an input tab-
delimited file.

Compatibility with other programs

A series of file converters ensures compatibility between
RSAT and various formats produced by external

programs: sequence files, feature files, background
models, PSSMs (see Table 2 for currently supported
input/output formats).

PROGRAMMATIC ACCESS TO RSAT
THROUGH A WEB SERVICES INTERFACE

RSAT is also available as web services implemented using
the standards SOAP (http://www.w3.org/TR/soap) and
WSDL (http://www.w3.org/TR/wsdl). This type of access
combines the advantages of the web server (no need for a
local installation of programs and genomes) with those of
stand-alone applications (possibility to automate the
analytic flows and to iterate on multiple data sets).

Figure 3. Example of matrix-scan result obtained by scanning yeast upstream sequences with matrices representing binding motifs for the
transcription factors Met4p and Met31p. (A) Sequence logos representing binding motifs of the Met4p and Met31p transcription factors. (B) Feature
map of the predicted sites and CRERs in upstream sequences of 26 yeast genes involved in methionine metabolism. (C) Random control: feature map
of the predicted sites and CRERs detected in upstream sequences of 26 yeast genes selected at random. (D) Fragment of a matrix-scan
result table reporting putative sites.
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Users with basic skills in programming (notions of Perl,
Python or Java) can easily write custom workflows that
combine several tools exposed as web services. Such client
programs can be written in any SOAP-supported lan-
guage. In addition, workflows can be designed without
any programming, using the graphical user interface of the
program Taverna (18,19).
A typical web services session runs as follows: the client

program starts by opening a connection to the remote
RSAT server, then uploads user-specified data sets and
sends a request to run a series of analyses with user-
specified parameters. After completion of the analysis, the
server sends the results back to the client. Furthermore, a
client program can combine in a single workflow the tools
available in RSAT and other bioinformatics resources
exposed as web services.
A detailed documentation of the methods and param-

eters is provided on the web server (http://rsat.scmbb.
ulb.ac.be/rsat/web_services/RSATWS_documentation.xml).
Sample clients are available (http://rsat.scmbb.ulb.ac.be/
rsat/web_services/RSATWS_clients.tar.gz) and the RSAT
main tutorial includes a section explaining how to write
client programs for web services (http://rsat.scmbb.ulb.
ac.be/rsat/distrib/tutorial_shell_rsat.pdf).

DOCUMENTATION

When using bioinformatics programs, biologists are
sometimes facing some difficulties to understand the
meaning and impact of the parameters of a program or
to interpret its results. Since the earliest versions of RSAT,
we placed a particular effort on documenting the pro-
grams at different levels: demos, manuals, online tutorials
and protocols. Each form of the web server includes one
or several DEMO buttons, which automatically fill the
form with typical data sets and parameters. The manual
pages provide a comprehensive description of the options.
Online tutorials guide new users through a step-by-step
exploration of the tool functionalities, providing clues on
the interpretation of the results, and warning them about
critical issues and classical traps. We also published two
protocols describing the utilization of the main tools
(20,21).

SUMMARY AND PERSPECTIVES

As far as we know, RSAT is the most comprehensive
existing resource for the analysis of regulatory sequences,
at both levels of the diversity of tools and genome
coverage.
Alternative web servers offering related facilities are

usually restricted to a single pattern-discovery algorithm
combined with some postprocessing companion utilities
(pattern matching and pattern comparisons). For exam-
ple, the BioProspector server (http://seqmotifs.stanford.
edu/) combines a Gibbs-sampling pattern-discovery tool
(22), with further adaptations to analyze phylogenetic
footprints (CompareProspector) or chip-on-chip data
(MDscan), respectively. The MEME server (23) combines
an expectation–maximization pattern-discovery algorithm

(24) with a matrix-based pattern-matching tool. Many
web servers are also focused on a narrow range of species.
For example, oPOSSUM supports human, worm and
yeast (25,26). The eCis-analyst is specialized in the
prediction of cis-regulatory modules in Drosophila mela-
nogaster and D. pseudoobscura (27,28). A wider collection
of tools is offered on the Zlab Gene Regulation Tools
(http://zlab.bu.edu/zlab/gene.shtml), including cis-regula-
tory module detection with Cluster-Buster (29) and search
for overrepresentation of PSSM hits with clover (30),
rover and MotifViz (31).

The TOUCAN workbench (32,33) is a stand-alone
application that combines sequence retrieval (from
EnsEMBL), repeat masking, pattern discovery with
MotifSampler (15), pattern matching, cis-regulatory
module prediction and feature map drawing. TOUCAN
can also be queried through a web services interface, and is
able to access other remote resources. Actually, TOUCAN
and RSAT can easily be interfaced via their respective web
services interfaces. The last version of TOUCAN includes a
remote utilization of oligo-analysis. Reciprocally, the demo
workflows on the RSAT web server include some example
of multi-program pattern discovery combining oligo-
analysis (RSAT), dyad-analysis (RSAT) andMotifSampler
(TOUCAN).

In the near future, our efforts will focus on increasing
the inter-operability with other databases and web tools,
by developing programmatic workflows using web services
interfaces. The biggest challenge will undoubtedly be to
cope with the ever-increasing pace of sequenced genomes,
and to take advantage of these new resources to develop
powerful methods for the analysis of regulatory sequences
in higher organisms.

AVAILABILITY

The main server is located in Belgium (http://rsat.scmbb.
ulb.ac.be/rsat/). Mirror servers are available in Mexico
(http://embnet.ccg.unam.mx/rsa-tools/), Sweden (http://
liv.bmc.uu.se/rsa-tools/), France (http://crfb.univ-mrs.fr/
rsaTools/), Canada (http://rsat.ccb.sickkids.ca/) and
South Africa (http://www.bi.up.ac.za/rsa-tools/). The
RSAT web server is free and open to all users and there
is no login requirement.
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