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Abstract
Background: The detection of conserved motifs in promoters of orthologous genes
(phylogenetic footprints) has become a common strategy to predict cis-acting regulatory elements.
Several software tools are routinely used to raise hypotheses about regulation. However, these
tools are generally used as black boxes, with default parameters. A systematic evaluation of optimal
parameters for a footprint discovery strategy can bring a sizeable improvement to the predictions.

Results: We evaluate the performances of a footprint discovery approach based on the detection
of over-represented spaced motifs. This method is particularly suitable for (but not restricted to)
Bacteria, since such motifs are typically bound by factors containing a Helix-Turn-Helix domain. We
evaluated footprint discovery in 368 Escherichia coli K12 genes with annotated sites, under 40
different combinations of parameters (taxonomical level, background model, organism-specific
filtering, operon inference). Motifs are assessed both at the levels of correctness and significance.
We further report a detailed analysis of 181 bacterial orthologs of the LexA repressor. Distinct
motifs are detected at various taxonomical levels, including the 7 previously characterized taxon-
specific motifs. In addition, we highlight a significantly stronger conservation of half-motifs in
Actinobacteria, relative to Firmicutes, suggesting an intermediate state in specificity switching
between the two Gram-positive phyla, and thereby revealing the on-going evolution of LexA auto-
regulation.

Conclusion: The footprint discovery method proposed here shows excellent results with E. coli
and can readily be extended to predict cis-acting regulatory signals and propose testable
hypotheses in bacterial genomes for which nothing is known about regulation.

Background
A major challenge of current genomics is to decipher the
regulation of the expression for all the genes of a genome.
Transcriptional regulation is mediated by interactions
between transcription factors (TF) and specific cis-acting
elements. The identification of putative transcription fac-
tor binding sites (TFBS) is far from trivial, given their short

size (typically 6 to 25 bp), and the low level of informa-
tion in the signal (typically restricted to 5–10 informative
nucleotides). For this reason, specific algorithms have
been developed to detect cis-acting elements in non-cod-
ing sequences. Several pattern discovery algorithms were
developed to discover putative regulatory motifs in sets of
co-regulated genes from the same genome [1-11].
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The ever-increasing number of sequenced genomes opens
the possibility to apply comparative genomics in order to
analyze taxonomical conservation and divergence
between cis-acting elements. This is particularly true for
Bacteria, for which the NCBI distributes 548 complete
genomes and reports 840 on-going sequencing projects
(October 2007). The approach called phylogenetic foot-
printing relies on the hypothesis that, due to selective pres-
sure, regulatory elements tend to evolve at a slower rate
than surrounding non-coding sequences. This approach
has been applied to detect conserved elements in the reg-
ulatory regions of selected mammalian genes, such as
globins, rbc genes, TnF-alpha [12-16], and in completely
sequenced bacterial genomes [17-19] or fungal genomes
[20].

A first essential parameter is the choice of the algorithm.
Kellis and co-workers [20] used ClustalW, a multiple glo-
bal alignment algorithm [21]. PhyME [22], EMnEM [23]
and orthoMEME [24] are based on Expectation-Maximi-
zation, PhyloCon uses a greedy algorithm [25], Phylo-
Gibbs combines DiAlign for local alignment and gibbs
sampling for motif discovery [26]. Another crucial choice
is the taxonomical level at which the analysis is led. The
initial articles were restricted to the few genomes available
at that time, and encompassed various levels of taxono-
mies: 4 or 5 genomes of the genus Saccharomyces [20,26],
9 genomes in the class Gamma-proteobacteria [18], or 17
genomes distributed over the whole bacterial kingdom
[17].

With larger numbers of genomes, one can even address
the problem in a more general way by comparing motifs
discovered at various taxonomical levels, in order to
detect not only conservation but also divergence between
regulatory elements. This functionality is offered by Foot-
printer [27], which takes as input a set of upstream
sequences and a corresponding taxonomic tree, and
searches for conserved elements in each branch of the tree.

The choice of optimal background models is also a critical
issue, and exerts a strong influence on the relevance of dis-
covered motifs [7]. Background models are generally
defined in an organism-specific way, and the divergence
of promoter composition across taxa opens the question
about the definition of optimal taxon-wide background
models.

Despite the wide variety of approaches used to detect phy-
logenetic footprints, not very much has been done to eval-
uate their optimal conditions of utilization. In most
publications, the quality of the predictions is illustrated
on the basis of a few selected transcription factors
(between 3 and 10). To our knowledge, a systematic eval-
uation has been performed in a very few cases. McCue and

co-workers [18] evaluated their approach on a complete
collection of known motifs in Escherichia coli. Evolution-
ary models, generated by simulating mutations in non-
coding sequences, have been used to assess the perform-
ances of pairwise [28] or multiple [29] alignment pro-
grams. More recently, PhyloGibbs [26] was evaluated on
5 Saccharomyces species with 200 annotated TFs, and com-
pared to 6 other algorithms (EMnEM, PhyME, WGibbs
and MEME).

Several questions remain open. What is the optimal taxo-
nomical level to detect conserved elements? How to deal
with the redundancy between promoters of very close spe-
cies? How to calibrate taxon-wide background models?
Which fraction of existing motifs can we hope to detect
(sensitivity)? Which fraction of the discovered motifs can
we trust as reliable (predictive value)? How can we select
score thresholds to tune up the tradeoff between sensitiv-
ity and predictive value?

We address all these questions by evaluating the capability
of a pattern discovery algorithm (dyad-analysis) to predict
cis-acting elements in bacterial promoters. This algorithm
is based on the statistical detection of over-represented
spaced motifs [9,30], and is particularly well suited for the
detection of cis-regulatory motifs in bacterial promoters,
since most bacterial transcriptions factors belong to the
Helix-Turn-Helix (HTH) family. HTH proteins typically
form dimers that bind to spaced motifs [31]. In this con-
text, we use the term dyad to denote a pair of trinucleotides
separated by a spacing of fixed size but variable content.
Another advantage of dyad-analysis is that it is based on a
significance test, which returns an estimated E-value for
each motif, thereby permitting to control the rate of false
positives. A third important feature of dyad-analysis is that
it supports a variety of background models to estimate the
prior probability of each dyad.

We first illustrate the approach with a well-characterized
case, the auto-regulation of the transcription factor LexA
at a single taxonomical level (Gamma-proteobacteria)
[32]. We then present a systematic evaluation of our
method on 368 E. coli genes annotated in RegulonDB
[33]. Discovered motifs are evaluated at two levels: cor-
rectness and statistical significance. The correctness is esti-
mated by comparing discovered motifs to those
previously annotated. The evaluation of significance is
based on a comparison between motifs discovered in pro-
moters of orthologous genes (putative footprints), and
those discovered in random selections of promoters (spu-
rious motifs). In the last section, we further illustrate the
potential interest of our approach by performing a
detailed analysis of the auto-regulation of the transcrip-
tion factor LexA across the whole bacterial taxonomy. Sev-
eral distinct motifs are detected, each being characteristic
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of a particular taxonomic class. The correctness of the dis-
covered motifs is confirmed by previously published
experiments.

Results and discussion
Discovering the LexA auto-regulation in Gamma-
proteobacteria
We will illustrate our method by focusing on the gene
lexA, which codes for the LexA repressor, involved in the
SOS response to DNA damage (review in [34]). In E. coli,
the LexA protein regulates its own production by recog-
nizing specific binding sites in the upstream region of its
own gene (lexA) [35,36].

We identified 181 putative orthologs of LexA in 286 bac-
terial genomes, and collected upstream non-coding
sequences up to the next gene, with a maximal length of
400 bp. The choice of this limit was based on statistical
analyses of the TFBS positions in two phylogenetically dis-
tant model organisms: E. coli [37,38] and B. subtilis [39].
Table 1 shows the most significant dyads detected in the
53 promoters of the Gamma-proteobacterial orthologs of
lexA. Among the 38,615 distinct dyads found in these
sequences, 184 are significantly over-represented, among
which 122 show a perfect match with the two annotated
lexA binding sites. On the feature map (Figure 1), these
dyads appear aggregated in clumps, thereby revealing dif-
ferent fragments of a same motif. Indeed, the majority of
the significant dyads can be assembled to form a larger
motif (Table 2), whose strict consensus, ACTG-
TATATATATACAGT, corresponds to the LexA consensus
(matching nucleotides are in bold) (Figure 2). The most
significant dyad, CTGn10CAG, corresponds to the most
conserved nucleotides of this consensus [36,40,41], and
to the interface between the transcription factor and the
DNA [42]. This example illustrates the main keys for inter-
preting the result of dyad-analysis: a motif is generally
detected as a collection of mutually overlapping dyads,
which can be assembled to form an extended consensus.
The most significant dyads of the collection generally cor-
respond to nucleotides entering in direct contact with the
transcription factor.

Systematic evaluation of the approach
In order to estimate the general performances of the
approach, we performed a systematic analysis of the 368
protein-coding genes having annotated TF binding sites in
RegulonDB [43], and for which an identifier was found in
the Genbank/NCBI genome of the strain E. coli K12. This
analysis was led for all the ancestral taxonomical levels of
E. coli: Escherichia (genus), Enterobacteriales (order),
Gamma-proteobacteria (class), Proteobacteria (phylum),
Bacteria (superkingdom), by increasing order of phyloge-
netic distance.

Impact of the parametric choices: dyad filtering, background model, 
operon inference, and taxonomical level
Footprint detection involves several crucial parametric
choices. A first option, called "dyad filtering", was to con-
sider either the dyads found in all the promoters of the
orthologs of the gene of interest, or only those found in
the promoter of the reference species (E. coli K12). A sec-
ond option was to use either a gene-specific (MONAD) or
a taxon-wide (TAXFREQ) background model. A third
option was to collect promoter sequences either directly
upstream of each gene, or to infer operons and to retrieve
the promoter of their leader gene. A fourth option is the
choice of the taxonomical level at which orthologs are col-
lected. In total, there are 40 possible combinations of
these 4 parameters. In this section, we present a systematic
evaluation of their impact on the accuracy of the predic-
tions.

Gene-per-gene comparison

The correctness of discovered motifs was assessed by a
gene-per-gene comparison between significant dyads and
experimentally characterized binding sites (as annotated
in RegulonDB for E. coli). A dyad is considered as true pos-
itive if it perfectly matches at least one of the annotated
sites for the considered gene. For a given pattern discovery
result, we define the sensitivity (Sn) as the fraction of anno-
tated binding sites matched by at least one discovered pat-
tern, and the positive predictive value (PPV) as the fraction
of discovered patterns matching at least one annotated
site. The tradeoff between sensitivity and PPV is measured
by the computing the geometric accuracy,

 For example, in the lexA result of the

previous section, both annotated sites are matched by at
least one dyad, the sensitivity is thus Sn = 2/2 = 100%.
Among the 184 discovered dyads, 122 match at least one
annotated site, the positive predictive power is thus PPV =
122/184 = 66.3%. The resulting geometric accuracy is

.

Figure 3 summarizes the results obtained with 20 combi-
nations of parameters, each one being depicted as an
"accuracy heat map", where rows correspond to groups of
orthologs and columns to taxonomical levels (the other
combinations are shown in Additional file 1). The dark-
ness is proportional to the accuracy (a perfect prediction
is displayed in black), and the color code represents the
tradeoff between sensitivity (green) and specificity (blue).
Note the overall prevalence of green hues, indicating that
the sensitivity is usually higher than the PPV at the default
significance threshold (sig  0). Not surprisingly, when
applying higher thresholds of significance, the heat maps
show a progressive decrease in darkness, reflecting the loss

Acc Sn PPVg = ⋅

Acc g = ⋅ =100 66 3 81 4% . % . %
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in sensitivity, together with an increased predominance of
the blue color, reflecting the increase of predictive value
(see Additional file 2). Beyond these general trends, accu-
racy heat maps show that the optimal taxonomical level
can vary from gene to gene. The rightmost column of each

parametric condition, corresponding to the genus
Escherichia, shows interspersed dark and yellow/white
bars, indicating the erratic character of these predictions.
The parameter having the strongest impact on the accu-
racy is the dyad filtering, as denoted by the fact that corre-

Feature-map of the dyads detected as significant in lexA promoters of Gamma-proteobacteriaFigure 1
Feature-map of the dyads detected as significant in lexA promoters of Gamma-proteobacteria. Each line repre-
sents one upstream sequence and discovered motifs are displayed on the feature-map as colored boxes with a height propor-
tional to the significance score. The maps displays all dyads with a significance >= 2.

Gene: lexA     Taxon: Gammaproteobacteria

-400 -350 -300 -250 -200 -150 -100 -50

YP_527259.1|Saccharophagus_degradans_2-40|Sde_1787

YP_267004.1|Colwellia_psychrerythraea_34H|lexA

YP_154654.1|Idiomarina_loihiensis_L2TR|lexA

YP_341351.1|Pseudoalteromonas_haloplanktis_TAC125|lexA

NP_720119.1|Shewanella_oneidensis|lexA

NP_756866.1|Escherichia_coli_CFT073|lexA

NP_418467.1|Escherichia_coli_K12|lexA

NP_313053.1|Escherichia_coli_O157H7|ECs5026

NP_290677.1|Escherichia_coli_O157H7_EDL933|lexA

AP_004544.1|Escherichia_coli_W3110|lexA

YP_048746.1|Erwinia_carotovora_atroseptica_SCRI1043|lexA

NP_931547.1|Photorhabdus_luminescens|lexA

YP_153112.1|Salmonella_enterica_Paratypi_ATCC_9150|lexA

YP_219103.1|Salmonella_enterica_Choleraesuis|lexA

NP_458535.1|Salmonella_typhi|lexA

NP_807747.1|Salmonella_typhi_Ty2|lexA

NP_463102.1|Salmonella_typhimurium_LT2|lexA

YP_410335.1|Shigella_boydii_Sb227|lexA

YP_405896.1|Shigella_dysenteriae|lexA

NP_709877.1|Shigella_flexneri_2a|lexA

NP_838804.1|Shigella_flexneri_2a_2457T|lexA

YP_312956.1|Shigella_sonnei_Ss046|lexA

YP_455821.1|Sodalis_glossinidius_morsitans|SG2141

NP_403965.1|Yersinia_pestis_CO92|lexA

NP_667909.1|Yersinia_pestis_KIM|lexA

NP_991863.1|Yersinia_pestis_biovar_Mediaevails|lexA1

YP_068915.1|Yersinia_pseudotuberculosis_IP32953|lexA

YP_114590.1|Methylococcus_capsulatus_Bath|lexA

YP_433324.1|Hahella_chejuensis_KCTC_2396|lexA

NP_873095.1|Haemophilus_ducreyi_35000HP|lexA

NP_438908.2|Haemophilus_influenzae|lexA

YP_248458.1|Haemophilus_influenzae_86_028NP|lexA

YP_087936.1|Mannheimia_succiniciproducens_MBEL55E|lexA

NP_246118.1|Pasteurella_multocida|lexA

NP_251697.1|Pseudomonas_aeruginosa|lexA

YP_259068.1|Pseudomonas_fluorescens_Pf-5|lexA

YP_349600.1|Pseudomonas_fluorescens_PfO-1|Pfl_3872

NP_744292.1|Pseudomonas_putida_KT2440|lexA-1

NP_793290.1|Pseudomonas_syringae|lexA-2

YP_275363.1|Pseudomonas_syringae_phaseolicola_1448A|lexA2

YP_236353.1|Pseudomonas_syringae_pv_B728a|Psyr_3283

YP_128406.1|Photobacterium_profundum_SS9|PBPRA0165

NP_229751.1|Vibrio_cholerae|VC0092

YP_205825.1|Vibrio_fischeri_ES114|VF2442

NP_799324.1|Vibrio_parahaemolyticus|VP2945

NP_760110.1|Vibrio_vulnificus_CMCP6|VV11166

NP_932916.1|Vibrio_vulnificus_YJ016|VV0123

NP_637091.1|Xanthomonas_campestris|lexA

YP_243580.1|Xanthomonas_campestris_8004|XC_2510

YP_363503.1|Xanthomonas_campestris_vesicatoria_85-10|lexA2

NP_642070.1|Xanthomonas_citri|lexA

YP_201582.1|Xanthomonas_oryzae_KACC10331|aarF

NP_297415.1|Xylella_fastidiosa|XF0122

NP_778343.1|Xylella_fastidiosa_Temecula1|lexA
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sponding heat maps systematically appear darker than
those of non-filtered dyads, all other conditions being
identical. The color maps also suggest that taxon-wide
background models (TAXFREQ) are systematically better
than gene-wise models (MONAD).

An important fraction of bacterial genes are organized in
operons, i.e. polycistronic transcription units. In such
cases, transcriptional regulation is mediated at the level of
the promoter of the operon leader gene. Intra-operon
intergenic sequences are generally much shorter than real
promoters, and this feature has been exploited to predict
operons in completely sequenced genomes [40]. We eval-
uated the impact of operon inference on the quality of the
detected footprints: instead of retrieving the sequence
directly upstream of each gene, we select the sequence
upstream of the leader gene of its predicted operon. On
the heat map, operon inference seems to improve the pre-
dictions for some genes, and weaken it for other genes,

but, based on visual impression, it is hard to evaluate the
general effect on the average darkness for all the genes.

Quantitative comparison of parameter combinations
In order to quantify the impact of the respective parame-
ters, we averaged the accuracy for all genes in each condi-
tion (Table 3), and applied the Wilcoxon paired test
(Table 4) to each parameter (dyad filtering, operon infer-
ence, background model, and all possible pairs of taxa).
The most significant parameter is the choice of the back-
ground model (P-value = 9.5E-7 in Table 4). Consistently,
Table 3 shows that taxon-wide background models (TAX-
FREQ) give systematically better results than gene-wise
models (MONAD), all other parameters being identical.
The second parameter, dyad filtering, also shows a
straightforward effect (P-value = 4.8E-5): the accuracy is
systematically improved when dyad filtering is applied. By
contrast, operon inference gives variable results, depend-
ing on the other parameter values: retrieving the promoter

LexA binding motifs experimentally characterized in different taxonomic groupsFigure 2
LexA binding motifs experimentally characterized in different taxonomic groups. Gamma-proteobacteria [36, 74, 
75]; Xanthomonadales [46]; Alpha-proteobacteria [76, 41]; Delta-proteobacteria [77]; Cyanobacteria [78]; Gram-positives [48, 
79, 80]. Sequence logos were generated with Weblogo [81] from the alignment of the annotated sites. The E. coli sequence 
logo was obtained from annotated sites in RegulonDB [82, 43].

Taxonomic level Species Consensus Weblogo

Gamma-proteobacteria E.coli CTGTNNNNNNNNACAG  

Xanthomonadales

X.oryzae
X.campestris

X.citri
Xylella fastidiosa

TTAGTArwawTACTAa  

Alpha proteobacteria

R.etli
R.meliloti

A.tumefasciens
Rhodobacter sphaeroides

Sinorhizobium meliloti

GTTCNNNNNNNGTTC

GAACNNNNNNNGAAC
 

Myxococcus xanthus CTRHAMRYBYGTTCAGS  

Geobacter sulfurreducens GGTTNNCNNNNGNNNACC  

Cyanobacteria Anabaena PCC7120 RGTACNNNDGTWCB  

Gram+ bacteria
B.subtilis

Mycobacterium tuberculosis
Mycobacterium smegmatis

CGAACRNRYGTTYC  

Delta proteobacteria
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from the operon leader gene gives better results in 5 cases,
but worse results in 13 other cases (Table 3). Indeed, the
high P-value (10.7%) indicates that this parameter is
poorly significant. The poor impact of operon prediction
might be influenced by the fact that we analysed genes
with known sites in their promoter region in E. coli K12
(these genes are thus always operon leaders, at least in the
reference organism). However, operon inference might
improve the results of the analysis of all genes of a
genome for which there would be no prior knowledge on
the motifs.

For the choice of the optimal taxonomic level, we per-
formed pairwise comparisons between each possible pair
of taxa considered in this study. The class Gamma-proteo-
bacteria appears as the optimal taxonomical level, since it
systematically appears in the left column, indicating that
it gives better results than any other taxon. On the con-
trary, analyses restricted to the various strains of the same
genus (Escherichia) give systematically worse results that
the other taxa.

In summary, Tables 3 and 4 clearly show that the best
results are obtained when phylogenetic footprints are dis-
covered at the level of Gamma-proteobacteria, with taxon-
wide background model, and with species-specific dyad
filtering, and that operon inference has no obvious impact
on the general accuracy.

Correctness of the discovered patterns
The correctness of predictions was estimated by compar-
ing discovered motifs with annotated binding sites. Figure
4 displays the inverse cumulative distribution of sensitiv-
ity, PPV and Accuracy as a function of the significance
threshold. As expected, the PPV increases with the signifi-
cance score (Figure 4B), at the expense of sensitivity (Fig-
ure 4A). There is also a clear impact of the taxonomical
level on the matching statistics: the sensitivity is higher at
the level of the class (Gamma-proteobacteria) or above
(Proteobacteria, and Bacteria) than at the level of the
order (Enterobacteriales) or below (Escherichia). At the
closest level (genus Escherichia), the PPV curve is very
erratic, because a very few motifs are detected, due to the
small number of species included in the analysis and the
low level of divergence between those genomes. The
tradeoff between sensitivity and PPV is measured by the
geometric accuracy (Figure 4C). The optimal geometric
accuracy is obtained around the default significance
threshold (sig  0) for all taxonomical levels (not shown).
The accuracy curves are lower for narrow taxonomical lev-
els (Enterobacteriales and Escherichia) than for wider
groups (Gamma-proteobacteria to Bacteria). The maximal
geometric accuracy is reached for Gamma-proteobacteria
(64.8%) with a sensitivity of 86.4% and a PPV of 48.7%
at the default threshold. The choice of the threshold
should however not be based on the sole criterion of opti-
mal accuracy, but can depend on the purpose of the anal-
ysis. For example, selecting the motifs with a very high
significance (e.g. sig  10) will result in a drastic loss of

Table 1: Most significant dyads detected in promoters of the 53 Gamma-proteobacterial orthologs of lexA.

Dyad sequence Dyad identifier obs_occ expected_freq exp_occ occ_P occ_E occ_sig rank

ctgn{10}cag ctgn{10}cag|ctgn{10}cag 45 0.0002971522775 1.88 6.2e-45 2.4e-40 39.62 1
ctgn{9}aca ctgn{9}aca|tgtn{9}cag 47 0.0005035119746 3.19 2.1e-37 8.2e-33 32.08 2
ctgn{8}tac ctgn{8}tac|gtan{8}cag 36 0.0003516501339 2.26 2.7e-30 1.1e-25 24.98 3
actn{11}cag actn{11}cag|ctgn{11}agt 38 0.0004247904187 2.66 4.5e-30 1.7e-25 24.76 4
ctgn{1}ata ctgn{1}ata|tatn{1}cag 43 0.0005681739096 3.83 6.8e-30 2.6e-25 24.58 5
actn{10}aca actn{10}aca|tgtn{10}agt 39 0.0004770216061 3.02 2.6e-29 9.8e-25 24.01 6
atan{0}cag atan{0}cag|ctgn{0}tat 39 0.0004971628517 3.38 1e-27 3.9e-23 22.41 7
tgtn{8}aca tgtn{8}aca|tgtn{8}aca 31 0.0002748483967 1.76 1.6e-27 6.0e-23 22.22 8
atan{6}cag atan{6}cag|ctgn{6}tat 40 0.0005662014535 3.68 2.5e-27 9.7e-23 22.01 9
tatn{0}aca tatn{0}aca|tgtn{0}ata 37 0.0005149051727 3.50 4.2e-25 1.6e-20 19.79 10
ctgn{7}ata ctgn{7}ata|tatn{7}cag 33 0.0005399616828 3.48 5e-21 1.9e-16 15.71 11
gtan{7}aca gtan{7}aca|tgtn{7}tac 29 0.0003877441875 2.50 5.6e-21 2.2e-16 15.66 12
atan{1}aca atan{1}aca|tgtn{1}tat 38 0.0007529946923 5.07 1.2e-20 4.7e-16 15.32 13
atan{2}cag atan{2}cag|ctgn{2}tat 34 0.0006478755931 4.32 3.2e-19 1.2e-14 13.90 14
ctgn{3}ata ctgn{3}ata|tatn{3}cag 32 0.0006173317980 4.10 4.2e-18 1.6e-13 12.79 15
atan{0}tac atan{0}tac|gtan{0}tat 30 0.0005247295752 3.57 5.5e-18 2.1e-13 12.67 16
actn{0}gta actn{0}gta|tacn{0}agt 26 0.0003805581878 2.59 1.4e-17 5.2e-13 12.28 17
tatn{2}aca tatn{2}aca|tgtn{2}ata 34 0.0008118555000 5.42 2.4e-16 9.2e-12 11.04 18
tatn{6}aca tatn{6}aca|tgtn{6}ata 32 0.0007321348527 4.75 2.8e-16 1.1e-11 10.97 19
gtan{2}tac gtan{2}tac|gtan{2}tac 17 0.0001436260620 0.96 7.1e-16 2.7e-11 10.56 20

The table only displays the 20 dyads having a sig  10 using the TAXFREQ background model. Column content: (1) dyad; (2) dyad identifier (the 
dyad + its reverse complement); (3) observed number of occurrences (obs_occ); (4) expected frequency (exp_freq); (5) expected number of 
occurrences (exp_occ); (6) P-values (occ_P), (7) E-value (occ_E), significance (occ_sig), rank.
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sensitivity (10%), but is likely to return the most promis-
ing motifs (PPV = 80%) as candidates for experimental
validation.

Figure 4D displays the transcription factor-wise sensitiv-
ity, defined as the fraction of transcription factors for
which the correct motif has been found in at least one tar-
get gene. This figure shows the same trends as the gene-
wise sensitivity (Figure 4A), and indicates that, with the
default significance threshold, the correct motif can gener-
ally be detected in at least one of the target genes for each
transcription factor, and this at any taxonomical level.

For 14 genes among 368, our approach failed to return
any true positive. We identified two reasons for these fail-
ures. The first reason is the absence of the motif from the
promoter sequences analyzed. This absence is in some
cases due to errors in the annotated position of the start
codon (as discussed below for some Xanthomonadales).
In some other cases, a cis-acting element is actually

located downstream of the start codon, in the beginning
of the coding sequence of the regulated gene. Intragenic
regulatory are generally involved in transcriptional repres-
sion, and a few such cases are reported in RegulonDB, and
thus included in our testing set (see Supplementary mate-
rial). It has previously been reported that 71% of the pro-
moters contain at least one repressing site downstream of
the transcription start site, whereas there is not a single
annotated example of downstream activating site [38]. In
some cases, binding sites are even found in the coding
sequence, downstream of the start codon. As example,
Yang et al [44] characterized three binding sites for the
repressor GalR in the coding region of the gene glpT which
codes for a transporter of the glycerol-3-P.

Another reason for not detecting the correct motifs comes
from genes having only a small number of orthologs,
when the analysis is restricted to a very narrow taxon (e.g.
the genus Escherichia). In such cases, the promoters are
largely redundant, and functional sites are masked during
the purging procedure.

Reliability of the significance score
In the previous chapter, we evaluated the accuracy of pat-
tern discovery by comparing discovered motifs with those
annotated in the reference database, RegulonDB. How-
ever, the concept of false positive is not trivial, since the
reference set cannot be considered as exhaustive, for two
reasons: (1) the annotation effort requires time, so that
the regulatory elements stored in the database onlyrepre-
sent a subset of the published ones; (2) despite de fact that
E. coli has been, since several decades, among the most
popular model organisms for hundreds geneticists and
molecular biologists, it is clear that a good fraction of its
regulation has still not been characterized.

In this section, we present a simple strategy for assessing
the reliability of the significance without depending on
any prior annotation about cis-regulatory elements. This
strategy relies on a comparison of scores distributions
obtained in a positive and a negative sequence set, respec-
tively.

As discussed elsewhere [7,9] the significance score
returned by oligo-analysis and dyad-analysis is the minus-
log of the binomial E-value, and can directly be inter-
preted in terms of risks of false positive: for a given value
sig = s, the expected number of false positives is 10-s. For
example, a threshold sig  -2 corresponds to an E-value of
100, meaning that, in a random data set, one would
expect an average of 100 dyads to be selected by chance
with such a score (and thus 100 false positives). Similarly,
one would expect an average of 1 dyad per random set
with a threshold sig  0, and 0.01 dyad per random set
with a threshold sig  2. The E-value provides thus a very

Table 2: Assembly of the patterns discovered in Gamma-
proteobacteria.

Alignment Reverse complement Sig

act...........cag. .ctg...........agt 24.76
act..........aca.. ..tgt..........agt 24.01
actgta............ ............tacagt 12.28
.ctg..........cag. .ctg..........cag. 39.62
.ctg.........aca.. ..tgt.........cag. 32.08
.ctg........tac... ...gta........cag. 24.98
.ctg...........agt act...........cag. 24.76
.ctg.ata.......... ..........tat.cag. 24.58
.ctgtat........... ...........atacag. 22.41
.ctg......tat..... .....ata......cag. 22.01
.ctg.......ata.... ....tat.......cag. 15.71
.ctg..tat......... .........ata..cag. 13.90
.ctg...ata........ ........tat...cag. 12.79
..tgt.........cag. .ctg.........aca.. 32.08
..tgt..........agt act..........aca.. 24.01
..tgt........aca.. ..tgt........aca.. 22.22
..tgtata.......... ..........tataca.. 19.79
..tgt.......tac... ...gta.......aca.. 15.66
..tgt.tat......... .........ata.aca.. 15.32
..tgt..ata........ ........tat..aca.. 11.04
..tgt......ata.... ....tat......aca.. 10.97
...gta........cag. .ctg........tac... 24.98
...gta.......aca.. ..tgt.......tac... 15.66
...gtatat......... .........atatac... 12.67
....tat.......cag. .ctg.......ata.... 15.71
....tat......aca.. ..tgt......ata.... 10.97

actgtatatatatacagt actgtatatatatacagt best 
consensus

The selected dyads (sig  10) can be aligned on the most significant 
one (CTGn10CAG). The "best" consensus of the alignment, obtained 
by retaining the highest scoring letter at each position, is 
ACTGTATATATATACAGT.



BMC Bioinformatics 2008, 9:37 http://www.biomedcentral.com/1471-2105/9/37

Page 8 of 26
(page number not for citation purposes)

Correctness of dyads predicted by group of genes and taxonomical levelFigure 3
Correctness of dyads predicted by group of genes and taxonomical level. Rows represent genes with annotations in 
RegulonDB (368 genes), and are ordered by sum of geometric accuracy then by maximal geometric accuracy. Different condi-
tions are represented: choice of upstream sequences (orthologs or predicted leader genes), background model (MONAD or 
TAXFREQ) and the use of dyads filtering or not. For each condition, the first five columns correspond to decreasing taxonom-
ical levels: Bacteria (Ba.), Proteobacteria (Pr.), Gamma-proteobacteria (Ga.), Enterobacteriales (En.) and Escherichia (Es.). The 
background color reflects the tradeoff between the PPV (blue channel) and the sensitivity (green channel) as shown on the ref-
erence colour scale. A perfect prediction is displayed with a black background. When the predictions do not match any anno-
tated sites, the accuracy is zero with a white background. Yellow background corresponds to NA which means there is not a 
single discovered dyad or that the analysis could not be performed (not enough sequences to analyze or too redundant 
sequences).

Orthologs Leaders

Taxfreq

filtering

Monad
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intuitive indication of the reliability of the discovered
motifs (the lower the E-value, the more reliable are the
motifs).

A first question is whether this theoretical significance
score corresponds to the rate of false positives observed in
a random data set. Indeed, the theoretical model underly-
ing the estimation of E-value is based on some assump-
tions about sequences (in short, the working hypothesis is
that sequences can be modelled as homogeneous Markov
chains). A second question is whether the significance
score makes an efficient distinction between biologically
relevant and spurious motifs.

Figure 5 shows the inverse cumulative distribution of sig-
nificance scores obtained in promoters of orthologous
genes (positive sets, plain lines) and in random selection
of promoters (negative control, dotted lines), respectively.

The left panel (Figure 5A) shows the expected and
observed number of significant patterns per gene (ordi-
nate) above each significance value (abscissa). The black
curve represents the expected number of false positives
per data set, on the basis of the theoretical model. This
corresponds to the E-value, which, by definition,
decreases exponentially with increasing significance val-
ues (E-value = 10-sig), and thus appears as a straight line on
the graph with a logarithmic ordinate.

Table 3: Impact of the parametric choices on the correctness of the discovered motifs

Rank promoter bg filtering Taxon Accg Sn PPV

1 ortho taxfreq filtered Gammaproteobacteria 0.658 0.844 0.513
2 leader taxfreq filtered Gammaproteobacteria 0.657 0.844 0.512
3 ortho taxfreq filtered Proteobacteria 0.647 0.840 0.499
4 leader taxfreq filtered Proteobacteria 0.642 0.844 0.488
5 ortho taxfreq filtered Enterobacteriales 0.637 0.857 0.473
6 ortho taxfreq filtered Bacteria 0.634 0.799 0.503
7 leader taxfreq filtered Enterobacteriales 0.631 0.860 0.463
8 leader monad filtered Proteobacteria 0.622 0.798 0.484
9 leader taxfreq filtered Bacteria 0.621 0.796 0.485
10 leader monad filtered Gammaproteobacteria 0.607 0.757 0.487
11 ortho monad filtered Proteobacteria 0.605 0.76 0.482
12 ortho monad filtered Gammaproteobacteria 0.598 0.742 0.481
13 ortho monad filtered Bacteria 0.596 0.778 0.457
14 leader monad filtered Bacteria 0.593 0.810 0.433
15 leader monad filtered Enterobacteriales 0.548 0.714 0.420
16 ortho monad filtered Enterobacteriales 0.544 0.706 0.419
17 ortho taxfreq filtered Escherichia 0.533 0.626 0.453
18 leader taxfreq filtered Escherichia 0.528 0.626 0.445
19 ortho taxfreq no Escherichia 0.525 0.582 0.473
20 leader taxfreq no Escherichia 0.518 0.591 0.453
21 leader taxfreq no Gammaproteobacteria 0.500 0.694 0.360
22 leader taxfreq no Enterobacteriales 0.497 0.736 0.335
23 ortho taxfreq no Enterobacteriales 0.495 0.735 0.333
24 ortho taxfreq no Gammaproteobacteria 0.488 0.706 0.338
25 leader monad no Enterobacteriales 0.480 0.574 0.402
26 ortho monad no Enterobacteriales 0.480 0.573 0.402
27 ortho taxfreq no Proteobacteria 0.463 0.738 0.291
28 leader taxfreq no Proteobacteria 0.461 0.719 0.295
29 ortho monad no Gammaproteobacteria 0.453 0.545 0.376
30 leader monad no Gammaproteobacteria 0.451 0.551 0.370
31 ortho taxfreq no Bacteria 0.435 0.644 0.294
32 leader monad no Proteobacteria 0.428 0.605 0.303
33 ortho monad no Proteobacteria 0.428 0.564 0.324
34 leader taxfreq no Bacteria 0.418 0.634 0.276
35 ortho monad filtered Escherichia 0.397 0.391 0.403
36 leader monad filtered Escherichia 0.396 0.402 0.390
37 ortho monad no Escherichia 0.384 0.366 0.403
38 leader monad no Escherichia 0.383 0.373 0.395
39 ortho monad no Bacteria 0.367 0.607 0.222
40 leader monad no Bacteria 0.341 0.631 0.184
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The negative control consists in running the footprint
detection in sequences where there are supposedly no
conserved motifs. For this, we perform random selections
in the complete collection of bacterial promoters at the
considered taxonomical level. If the background model is
correct, the empirical rate of false positives should fit with
the theoretical curve. This is clearly the case for the three
lowest taxonomical levels (Escherichia, Enterobacteriales
and Gamma-proteobacteria), whereas the rate of false
positives is higher for larger taxa (Proteobacteria and Bac-
teria). This increase in the rate of false positives indicates
that the background model is not perfectly appropriate for
large taxonomical level, probably due to the fact that these
promoters contain mixtures of G+C-rich and G+C-poor
genomes (the mixture of sequences thus correspond to an
heterogeneous Markov model).

The positive test consists in measuring dyad significance
in sequences supposed to contain conserved motifs, i.e.
promoters of orthologous genes (plain lines on Figure 5).
There is a clear effect of the taxonomical level, and the
general trend is that the number of significant patterns
increases with broader taxonomical levels.

The difference between the negative and positive curves
indicates the reliability of the significance score to distin-
guish relevant (orthologous) from irrelevant (random)
gene sets. At the narrowest taxonomical level
(Escherichia), the two curves are very close from each
other, and from the theoretical curve. This weak signifi-
cance reflects the insufficient signal-to-noise ratio, due to
the small number of available sequences (5 genomes),
and to the fact that they are too similar with each other (5
strains of the same species). The number of detected pat-
terns already increases at the level of the order (Enterobac-

teriales), but the highest sensitivity is clearly obtained at
the level of the class (Gamma-proteobacteria) and above
(Proteobacteria and Bacteria). The best signal-to-noise
ratio is obtained at the level of the class (Gamma-proteo-
bacteria), where the random curve is very close to the the-
oretical expectation, whereas the number of patterns
found in orthologous groups is almost as high as at the
highest taxonomical levels.

Figure 5B displays the fraction of genes for which at least
one pattern has been returned. This curve is obtained by
selecting, for each data set, the top scoring dyad only. The
theoretical curve (black curve) is estimated from a Poisson
distribution, and reflects the Family-Wise Error Rate
(FWER), i.e. the probability to have at least one false pos-
itive dyad in a random set. The negative (dotted lines) and
positive (plain lines) show the same trends as in Figure
5A.

In summary, our analysis shows that the E-value returned
by dyad-analysis gives a reliable estimate of the expected
number of false positives, and that it clearly distinguishes
phylogenetic footprints from spurious motifs.

Deciphering the evolution of LexA auto-regulation
The analyses above show that cis-acting elements can be
detected by their conservation across the promoters of a
set of related species. A complementary question is
whether a separate analysis of distant taxonomic groups
would allow us to detect divergences between regulatory
motifs. To address this question, we focused our attention
on the LexA regulator, whose peptidic sequence is highly
conserved across bacteria, and for which distinct DNA-
binding motifs have been characterized for various bacte-
rial taxa (Figure 2), suggesting a co-evolution of the tran-

Table 4: Significance of the impact of individual parameters on the accuracy of discovered motifs

Parameter Better Worse N Sup Inf Equal P-value

Background model taxfreq monad 20 20 0 0 9.54E-07
Dyad filtering filtered not filtered 20 20 0 0 4.78E-05

Taxon Gammaproteobacteria Bacteria 8 8 0 0 0.004
Taxon Proteobacteria Bacteria 8 8 0 0 0.004
Taxon Enterobacteriales Escherichia 8 6 2 0 0.020
Taxon Gammaproteobacteria Escherichia 8 6 2 0 0.020
Taxon Gammaproteobacteria Proteobacteria 8 6 2 0 0.034
Taxon Proteobacteria Escherichia 8 6 2 0 0.070
Taxon Enterobacteriales Bacteria 8 6 2 0 0.074

Promoter orthologs operon leader 20 13 5 2 0.107
Taxon Bacteria Escherichia 8 4 4 0 0.191
Taxon Gammaproteobacteria Enterobacteriales 8 5 3 0 0.273
Taxon Enterobacteriales Proteobacteria 8 4 4 0 0.528

Parameters are sorted according to the significance of their impact on the geometric accuracy. The best parameter value of each pair is in the left 
column. N: number of parametric combinations. Sup, inf, equal: number of pairs where the left value gives better, wose or identical results than the 
right value, respectively. The P-value is estimated with a Wilcoxon paired test.
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scription factor with its DNA binding motif [45]. The
question addressed in this section is whether footprint
discovery would allow us to rediscover the evolution of
LexA auto-regulation.

Figure 6 shows a synthetic view of the most significant
dyads discovered at each taxonomical level. This figure is
displayed in Additional file 3 with the tree corresponding
to the dyads clustering. For the sake of clarity, we selected

dyads with a high significance level (sig >= 7). This view
illustrates the taxon specificity of the detected motifs: dis-
tinct clusters of dyads are detected at the different taxo-
nomical levels, with a strong consistency: a group of 35
dyads is found, with various levels of significance, at all
taxonomical levels from Enterobacteriaceae to Bacteria
(Gamma-proteobacterial motif). A subset of these is also
found in Beta-proteobacteria. However, completely dis-
tinct motifs are found in Alpha-proteobacteria and Xan-

Systematic evaluation of the performances obtained with the TAXFREQ background model using the upstream sequences of the predicted leader genes and the dyads filteringFigure 4
Systematic evaluation of the performances obtained with the TAXFREQ background model using the 
upstream sequences of the predicted leader genes and the dyads filtering. Gene-wise sensitivity (A), PPV (B), geo-
metric accuracy (C), and transcription factor-wise sensitivity (D).
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thomonadales, respectively. Interestingly, the hierarchical
clustering of motifs by sequence similarity clearly corre-
sponds to taxonomical divergences: the motifs found in
the left part of Figure 6 are those discovered in Proteobac-
teria (Alpha-, Beta- and Gamma-proteobacteria) whereas
the right side regroups motifs detected in Gram-positive
bacteria (Firmicutes and Actinobacteria). The only excep-
tions are the motifs found in Xanthomonadales, which
are grouped with Gram-positive bacteria, whereas this
order belongs to Gamma-proteobacteria (detailed analy-
sis below).

Figure 7 shows the localization of the motifs discovered at
the level of the Reign (all Bacteria together, left panel) and
in each separated class (right panel). This comparison
shows that the motifs discovered in the most represented
classes (Gamma/Beta-proteobacteria, Firmicutes, Actino-
bacteria) are also discovered when all the bacterial
sequences are analyzed as a single group. This illustrates
the robustness of the method to noise, since it can detect
motifs presents in a subset of the sequences only. How-
ever, some other motifs are significant at the level of the
class (e.g. Cyanobacteria, Alpha-proteobacteria) but are
not detected when all bacterial promoters are analyzed as
a single set. In order to analyze the divergence between

regulatory elements, it is thus worth applying pattern dis-
covery at all levels of the taxonomical tree.

Comparison of significant dyads with the annotated LexA binding 
motifs for different taxa
As discussed above, the most significant dyads detected in
Gamma-proteobacterial promoters (Figure 1) correspond
to the LexA binding element characterized in several spe-
cies of this class (Figure 2). An informative characteristic
about discovered motifs is their gene coverage, i.e. frac-
tion of genes whose upstream sequence contains at least
one occurrence of the motif. Figure 1 shows that the
Gamma-proteobacterial motif is found in 47 among the
54 promoters. Interestingly, the 7 promoters where the
motif is absent belong to the order Xanthomonadales
(which includes the two genus Xanthomonas and Xylella).
This suggests that LexA auto-regulation might have
diverged in this subgroup. Consistently, when pattern dis-
covery is restricted to Xanthomonadales sequences,
another motif, TTAGTA is detected in 5 of the 7 promot-
ers. This hexamer is found in two occurrences per
sequence, forming an inverted repeat (Figure 8). The
assembly of the Xanthomonadales-specific dyads (Table
5) corresponds to the experimentally validated motif [46].

Distribution of significance score values returned by dyad-analysis in promoters of orthologous clusters (solid lines) or in ran-dom selections of genes (dotted lines)Figure 5
Distribution of significance score values returned by dyad-analysis in promoters of orthologous clusters (solid 
lines) or in random selections of genes (dotted lines). Each curve represents the results of the analysis at one taxonom-
ical level. A. Number of dyads per sequence set. B. Number of sequence sets with at least one significant motif. Black lines rep-
resent the theoretic curves. We run dyad-analysis with the TAXFREQ background model and the E. coli-specific dyads filtering.

A B
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When the analysis is restricted to a very narrow taxonom-
ical level, the pattern discovery approach fails to detect
motifs, because the species are too close from each other
to have allowed divergence between promoter sequences
(Mycobacterium tuberculosis complex, Brucellaceae,
pseudo mallei group and Bacillus cereus group). In all
those cases, the sensitivity of the method is expected to
increase with the number of orthologs, so that the missing
motifs will hopefully be detected in the future, when addi-
tional genomes will be available for these taxonomic
groups.

In addition to the 7 taxa where discovered motifs match
the annotated one, a highly significant motif is detected in
Beta-proteobacteria (Table 5). This motif is the same as for
Gamma-proteobacteria, and corresponds to a LexA bind-
ing site suggested for Beta-proteobacteria after in silico
analysis in Ralstonia solanacearum [47]. It is detected in 9
of the 14 promoters analyzed (Figure 7F), but, as dis-
cussed above for Xanthomonadales, the five remaining
genes have one or two occurrences in the beginning of
their coding sequences.

Significance heat map of the dyads discovered at different taxonomical levels in upstream sequences of lexA orthologsFigure 6
Significance heat map of the dyads discovered at different taxonomical levels in upstream sequences of lexA 
orthologs. Each column represents one pattern, each row one taxon. The grey level indicates the significance score returned 
by dyad-analysis: black corresponds to the maximal score (sig = 41.01) obtained in the whole taxonomy, and non-significant pat-
terns appear with a white color. Patterns are clustered by sequence similarity (Ward linkage hierarchical clustering). Taxa are 
ordered by depth-first-search traversal of the taxonomic tree. In order to simplify this heat map, we used a stringent threshold, 
by only selecting taxa having at least one predicted pattern with a significance score 7. We manually boxed groups of patterns 
corresponding to taxon-specific motifs.
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Feature-maps of the dyads detected in promoters of lexA orthologs at different taxonomical levelsFigure 7
Feature-maps of the dyads detected in promoters of lexA orthologs at different taxonomical levels. In the left 
hand column, motifs were discovered on the whole collection of bacterial promoters of lexA orthologs (A). The right hand col-
umn shows motifs detected in subsets corresponding to narrower taxa: Actinobacteria (B), Cyanobacteria (C), Firmicutes (D), 
Alpha-Proteobacteria (E), Beta-Proteobacteria (F), Delta-Proteobacteria (G), Gamma-Proteobacteria (H). The maps displays all 
dyads with a significance >= 2.
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In summary, the phylogenetic footprint detection reveals
all the taxon-specific LexA binding motifs that had previ-
ously been characterized experimentally (Table 5).

Divergence of the LexA binding motif in Gram-positive bacteria
The relationships between the motifs discovered at differ-
ent levels of the taxonomic tree can give us insight into
evolutionary events, such as conservation, appearance,
loss and divergence of regulatory signals. This is well illus-
trated by the comparison of motifs discovered in Gram-
positive bacteria (Figure 9), which are comprised of two
phyla: Firmicutes and Actinobacteria. The dyads selected
in these two phyla show a partial overlap (Figure 9A,C),
but also some interesting differences. The most significant
dyads discovered in Firmicutes are AACn4GTT and
AACn5TTC which correspond to the core of the Cheo box
GAACn4GTTC [48] and to the LexA consensus
(CGAACRNRYGTTYC) proposed for Gram-positive bacte-
ria altogether [49]. In Firmicutes promoters, the most sig-
nificant dyads are spaced motifs, which can be combined
to form a palindromic consensus TACGAACATATGT-
TCGTA. This motif is found in 1 to 3 occurrences per pro-
moter, at more or less conserved positions (Figure 7D). In
contrast, the most significant dyads discovered in Actino-
bacteria are hexanucleotides that can be aligned to form
the heptanucleotide TCGAACA (Figure 9A). A compari-
son of the sequence logos (Figure 9B) shows that this hep-
tanucleotide matches one half of the spaced palindrome
found in all the Gram-positive bacteria, but that the half-
motif is more specific for Actinobacteria than Firmicutes.

Consistently, the feature map obtained by merging all the
gram-positive bacteria (Figure 9C) shows that in Firmi-
cutes, instances of the heptanucleotide generally overlap
with the larger Cheo boxes. The situation however differs
in Actinobacteria: although some promoters contain one
occurrence of the Cheo box, many additional instances of

the short motifs are found more distally, without being
part of a large motif (Figure 7A). This feature is particu-
larly marked in Corynebacterium (11 first sequences in
Figure 9C), where the large motif has apparently been
lost, and is somehow "compensated" by a more occur-
rences of the short motif. This observation raises the
intriguing hypothesis that LexA binding specificity is on
its way to diverge between Firmicutes and Actinobacteria.
The reverse complementary symmetry of a binding motif
generally reflects the binding of the transcription factor as
a homodimer. This is the case for the Gamma-proteobac-
terial LexA protein. The symmetry of the large motif has
previously been shown in B. subtilis [48] and suggests that,
in Firmicutes as well, LexA may act as homodimer, and
this hypothesis is compatible with the structural model
[50]. In Actinobacteria, the imperfect palindromic nature
of the SOS box has been previously observed in recA pro-
moter of Streptomyces lividans [51]. The presence of half-
instances of the motif in Actinobacteria opens the ques-
tion of the structure of the protein/DNA interface. Is it
possible for the Actinobacterial LexA to bind DNA as a
monomer? Does it form heterodimers with another pro-
tein? A structural characterization of the LexA/DNA com-
plex would be required elucidate this mechanism.

Beyond the particular case of LexA auto-regulation, this
example shows that the comparative analysis of taxon-
specific footprints is a powerful method to trace the evo-
lution of DNA recognition by transcription factors.

Comparison between dyad-analysis and other pattern 
discovery algorithms
Several previous studies have addressed similar issues as
we do in this paper. In particular, the detection of phylo-
genetic footprints in bacterial promoters has been treated
by several other groups, using various implementations of
a gibbs sampler [17,18,52,19].

Feature-map of the dyads detected as significant in promoters of XanthomonadalesFigure 8
Feature-map of the dyads detected as significant in promoters of Xanthomonadales. The symmetrical motif corre-
sponds to the Xanthomonadales-specific LexA binding site regulatory element (see text). Note that, although the motif seems 
to be missing in two promoters, in both cases it can be found downstream of the annotated start codon (see Supplementary 
Material), and their absence on the feature map probably reflects errors in the annotation of the start codon, or the presence 
of a repression site inside the coding sequence (not shown).
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Table 5: Evolution of LexA binding motif: comparison between annotated and predicted motifs.

Taxon Annotated motif Predicted motif Most significant dyads Genes Dyads

pattern sig nb match coverage tested significant

Alpha proteobacteria GAACnnnnnnnGAAC ttggAACacatagagAACaga AACn8AAC 18.64 26 24 92% 33800 125

Beta proteobacteria - cacTGTATAattATACAGtg ATACAG 11.12 14 9 64% 21649 14

Gammaproteobacteria CTGTnnnnnnnnACAG aCTGtatatatataCAGtt CTGn10CAG 38.67 54 44 81% 39229 142

Xanthomonadales TTAGTArwawTACTAa gTTAGTAatacTACTAAc TACTAA 7.5 7 5 71% 15535 76

Delta proteobacteria GGTTnnCnnnnGnnnACC CTRHAMRYBYGTTCAGS GTAAGT GTAAGT 3.98 6 3 50% 17622 3

Cyanobacteria RGTACnnnDGTWCB aggtACAtaTGTacct ACAn2TGT 6.06 11 7 64% 13696 50

Firmicutes CGAACRnRYGTTYC tacgAACatatGTTcgta AACn4GTT 38.79 40 39 98% 31695 140

Actinobacteria CGAACRnRYGTTYC aaTCGAACacatgtTCGAACat TCGAAC 30.95 17 17 100% 34155 139

For each analysis at a given taxonomical level (column 1), the annotated motif (column 2) is compared with the predicted motif (column 3) with matching letters in bold. Capital letters in the 
predicted motif correspond to the most significant dyad (column 4, with significance score in column 5). The gene coverage is the fraction of genes whose upstream sequence contains at least one 
occurrence of the most significant dyad. The last columns indicate the number of tested dyads and the number of dyads detected as significant (sig > 0), respectively.
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Partial divergence between the motifs discovered in lexA promoters of Gram-positive bacteria (Firmicutes and Actinobacteria)Figure 9
Partial divergence between the motifs discovered in lexA promoters of Gram-positive bacteria (Firmicutes 
and Actinobacteria). (A) Comparison between the significance scores of all discovered patterns in Actinobacteria and Firmi-
cutes. The significance is arbitrarily set to -1 for non significant patterns (sig < 0), in order to highlight dyads detected in only 
one of the subgroups. (B) Sequence logo of motifs obtained by aligning all the sites annotated for Gram-positive bacteria (top), 
Firmicutes (middle) and Actinobacteria (bottom), respectively. For each taxon, all sites matching the discovered patterns were 
extracted with their flanking region and were aligned using MEME [3] with a motif width of 24 nucleotides. Sequence logos 
were generated with Weblogo [81]. (C) Feature-map of the dyads discovered in Gram-positive bacteria. The 17 first top 
sequences are promoters of sequences from Actinobacteria, while others are from Firmicutes. In Actinobacteria, the 11 first 
sequences are promoters of orthologous sequences from Corynebacterineae.
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Pattern discovery algorithms can be broadly subdivided
into two main categories: (1) enumerative approaches
based on the detection of over-represented words (oligo-
nucleotides or spaced pairs) [7,9,53]; (2) matrix-based
approaches, based on various optimization strategies:
expectation-maximization [3], greedy algorithm [1], gibbs
sampling [2,4,54,11].

Reliability of matrix scores
The comparison of score distributions between orthologs
and random gene selections presented above can easily be
applied to other programs, and used as a criterion to esti-
mate the reliability of the motifs discovered under various
conditions.

For obvious reasons, a comparative assessment should in
principle not be led by the team who developed one of the
programs: a fair comparison should either be done by a
naïve user who did not contribute to any of the tools
assessed [55], or by letting developers run their own tool
on some benchmark data set [56]. However, as a condi-
tion for publishing this paper, the referees and editors
asked us to compare our own program with other pattern
discovery programs. We performed this comparison as
honestly as possible, and we tried to select, for each pro-
gram, the most appropriate parameters. However, it is
clear that, even with the best will, there is one bias that
cannot be avoided: each developer better knows how to
use his/her own tools. It is thus likely that the other pro-
grams would return better results in the hands of their
respective developers than in ours.

One further remark: as shown in Table 3, dyad filtering
has a massive effect on the accuracy of footprint detection.
However, the other matrix-based pattern discovery tools
do not support the concept of filtering (i.e. the fact to
select motifs found in the promoter of a given reference
organism, Escherichia coli in our case). Thus, for the sake
of fairness, we decided to avoid dyad filtering for this
comparison, so that all programs are fed with exactly the
same sequences, without any prior information on the ref-
erence organism. It should be stressed that these condi-
tions are far from our optimum, since they correspond to
an accuracy of 48.8%, whereas our best parametric condi-
tions (with filtering) reach an accuracy of 65.8% (Table
3). As shown below, even under these sub-optimal condi-
tions, dyad-analysis outperforms the other programs.

The results of our comparative assessment are summa-
rized on Figure 10, in the form of "ROC-like" curves. Each
curve shows the performances of a given program and a
given scoring scheme. For each score value, the curve indi-
cates the fraction of sequence sets with at least one signif-
icant motif in promoters of random groups of genes
(abscissa) and orthologous genes (ordinate), respectively.

For example, Figure 10A indicates that, with a significance
threshold of 1.5, motifs are found in 10% of the random
selections versus 65% of the orthologous groups. There is
thus a "cost" of 10% of false positives for obtaining 65%
of sensitivity. With score of 3.1, the rate of false positives
drops to 1.4%, but the sensitivity is reduced to 40%.

A classical statistics for estimating the general perform-
ances is to compute the Area Under the Curve (AUC). A
perfect program would give an AUC of 1.0 (the curve
would actually follow the left axis from bottom to top,
and then the top axis from left to right), whereas a random
predictor would follow the diagonal from bottom left to
top right, since it would return as many patterns in ran-
dom selections as in orthologous groups (the AUC would
be 0.5). The sig score of dyad-analysis (Figure 10A) gives an
AUC of 0.87. By comparison, the word-based pattern dis-
covery program oligo-analysis [7] gives an AUC of 0.79
(Figure 10B). Since these two programs use exactly the
same binomial statistics for scoring motif significance, the
difference comes from the motif structure (dyads versus
words) thereby confirming the importance of using
spaced motifs to decipher bacterial regulation, as dis-
cussed in the introduction.

We also tested four popular matrix-based pattern discov-
ery programs (Figure 10C–F; the supplementary material
provides the parameters used for each program). Each of
these programs returns several scores per matrix, shown as
separate curves on the same plot. In addition to the matrix
scores returned by the programs, we computed the total
information content (TIC) of each matrix, following to
Hertz and Stormo's definition [8], as well as an informa-
tion per column, in order to discard the effects of matrix
width. Interestingly, the total information content (TIC)
performs generally better than the original statistics of
those programs. This is particularly obvious for AlignACE
(Figure 10C), for which the TIC gives an AUC of 0.78,
whereas the MAP per site only gives 0.64, and the MAP per
matrix gives an AUC smaller than 0.5. Surprisingly, the
original gibbs motif sampler [4] shows the opposite
trends (Figure 10F): the MAP (AUC = 0.62) gives better
results than the TIC (AUC = 0.57). An interesting property
of MEME (Figure 10D) [57] is that it returns a negative
answer (no matrix) for 50% of the random selections,
thanks to the threshold on E-value < 1. However, with this
threshold, a negative answer is also returned for 30% of
the groups of orthologs. The TIC obtained with MEME
matrices gives a total AUC of 0.72, but, if one only consid-
ers the subset of sequences giving at least one matrix, the
curve shows a pretty good shape.

It should be noted that the AUC, despite its popularity as
measure of global performances, can be very misleading
since it is integrated over the whole curve, whereas in real-
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istic conditions, a user would not even consider the motifs
returned in the right part of the curve, which are expected
to return more than 50% of false positives. Beyond the
AUC, a more relevant criterion for estimating the rele-
vance of a program is the sensitivity obtained for a given
rate of false positives (e.g. 10%). Figure 10 shows that,
with a 10% rate of false discovery (random gene selec-
tions) dyad-analysis discovers motifs in 65% or the orthol-
ogous groups, which outperforms MEME TIC (58%),
AlignACE TIC (52%), oligo-analysis significance (51%),
MotifSampler information content (41%), and gibbs MAP
per site (36%). The program ranking is similar with a rate
of false positive of 5%.

In summary, in our hands at least, dyad-analysis outper-
forms the other pattern discovery programs in its capabil-
ity to discovery higher scoring motifs in promoters of
orthologous genes than in randomly selected promoters.
We would however like to make clear that we consider
this analysis as biased by our better experience for using
our own program. Since all the data used for our analyses
are available on the supplementary web site, anyone inter-

ested is able to perform his/her own tests in order to esti-
mate the most appropriate program.

Comparison with previous studies
We further discuss hereafter our methodological choices
and compare them with previous studies.

Prior versus posterior probability of motif occurrences
Many previous studies about footprint discovery in Bacte-
rial promoters were based on various implementations of
the Gibbs sampling [17,18,52,19,26]. This algorithm is
based on the optimization of "relative entropy" score [2].
This score is however not efficient to discriminate
between informative and non-informative motifs. For this
reason, motifs are generally filtered a posteriori on the basis
of the MAP (Maximum A Posteriori Probability) score
[54,58].

An advantage of the enumerative approach used here is
that the probability of each motif is estimated a priori
rather than a posteriori, on the basis of its occurrences in a
reference data set (the complete set of promoters for the

Comparison between programs and between scoring statisticsFigure 10
Comparison between programs and between scoring statistics. The "ROC-like" curves are displayed for each pro-
gram: (A) dyad-analysis, (B) oligo-analysis, (C) AlignACE, (D) MEME, (E) MotifSampler and (F) Gibbs sampler.
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considered taxon). Our analysis of the score distributions
(Figure 10) clearly shows that this prior estimation pro-
vides an efficient discrimination between promoters of
orthologs and random selections. In addition, our com-
parison between programs suggests that the MAP is gener-
ally not the best score, since the total information content
(which is also based on prior probabilities) shows better
performances on the ROC curves (Figure 10C,F).

Choice of the motif width
An important advantage of dyad-analysis is that it does not
require prior assumptions about motif width. Indeed, dif-
ferent widths are automatically detected since the pro-
gram scans all spacing values between user-specified
limits (from 0 to 20 in our case). By contrast, matrix-based
approaches generally require for the user to specify a
matrix width. An exception is the programs MEME, which
permits to specify a range of matrix widths, and returns
the motifs with the lowest E-value.

Expected number of sites
Another important parameter required by most matrix-
based pattern discovery programs is an estimate of the
expected number of sites (instances of the motif in the
input sequence set). This parameter is very hard to esti-
mate, since it depends on the transcription factor itself:
some factors have 2 or 3 binding sites per promoter,
whereas others have a single binding site. With enumera-
tive algorithms like oligo-analysis and dyad-analysis, there is
no need to provide prior estimates of the number of tran-
scription-factor binding sites. Rather, the number of sites
can be deduced a posteriori, by inspecting the feature maps
of discovered words/dyads.

Negative control
An essential quality of a pattern discovery program is its
capability to return a negative answer when, for some rea-
son, the input sequences do not share any regulatory
motif. In many articles, this aspect is simply neglected,
and the evaluation is restricted to an analysis of promoters
of co-regulated genes. In other cases, the negative control
is performed, but it is based on a set of artificial sequences
is generated by shuffling the original sequences [52]. Such
artificial sequences already provide some level of control,
but a more stringent test is to submit a random selection
of real bacterial promoters [54]. Each of these promoters
is likely to contain some binding sites for some transcrip-
tion factors, but in principle no specific motif should be
over-represented in random selections. Beyond its strin-
gency, this negative control is also more realistic, because
it mimics the situation where a biologists tries to detect
motifs in bad clusters of genes. We thus chose to base our
negative control on random selections of bacterial pro-
moters.

Treatment of redundancy
The first implementation of the gibbs sampler [2] was
accompanied by a program called purge, designed to dis-
card redundant sequences. Indeed, the inclusion of multi-
ple closely related sequences provokes a systematic
repetition of all their fragments, which prevent the sam-
pler from identifying the correct motifs. The effect of
redundant sequences is very strong for footprint detec-
tion, because some small taxonomic groups are over-rep-
resented in genome databases. For example, the current
NCBI collection (July 2007) contains 38 species for the
family of Enterobacteriaceae, among which 8 strains of
Escherichia coli. An approach to circumvent this problem
has been to manually select a set of non-redundant
genomes [52,19]. We address the problem in a more auto-
mated way, by applying a gene-wise sequence purging: for
each set of orthologs, redundant sequences are masked
before the pattern discovery step, but in a second time pat-
tern matching is applied on the full set of non-purged
sequences, in order to visualize motif conservation across
all available species.

Site positions
Previous analysis of the upstream distribution of cis-regu-
latory elements in conserved groups of genes shows that
positions of TFBS are conserved across species [59]. Con-
sistently, the feature maps show a high conservation of the
positions of putative LexA binding sites in Cyanobacteria
(Figure 7C), Firmicutes (Figure 7D), Beta-proteobacteria
(Figure 7F), Gamma-proteobacteria (Figure 7H) and Xan-
thomonadales (Figure 8), respectively. By contrast, posi-
tion of the predicted sites are less conserved for two other
taxonomical classes (Actinobacteria and Alpha-proteo-
bacteria). This might either reflect a more heterogeneous
collection of available genomes in this taxon, or that a
more rapid turn-over of TF binding sites. A more detailed
gene-per-gene study of motif locations within this group
would be required to clarify this question.

Conclusion
As pointed out by McCue and co-workers, many parame-
ters can influence the results of phylogenetic footprinting,
such as the number of sequences and the selected organ-
isms [52]. We extended this question by assessing the
impact of various parameters on the significance and cor-
rectness of discovered motifs in 368 genes. We tested all
possible combinations between the following parameters:
2 background models, 5 taxonomical levels, operon infer-
ence, organism-specific dyad filtering, significance thresh-
old. This quantitative evaluation suggests that the global
optimum is generally found at intermediate taxonomical
levels, and the class (Gamma-proteobacteria) seems to
ensure the best tradeoff between sensitivity and specifi-
city. However, beyond this general trend, the optimal
level varies from gene to gene. For the detection of motifs
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in genes for which no regulation is known, we thus rec-
ommend to apply pattern discovery at all the taxonomical
levels, and to inspect the feature maps in order to analyze
the distribution of the predicted sites across the promoters
of each taxon.

Furthermore, our evaluation shows that phylogenetic
footprint detection is significantly improved by choosing
a taxon-wide background model and by applying organ-
ism-specific dyad filtering.

In the second part of the article, we showed how a cross-
taxonomical exploration of phylogenetic footprints can
reveal the conservation and divergence of cis-regulation.
This strategy was illustrated with the example of LexA
auto-regulation, for which our predictions are remarkably
consistent with the binding sites characterized in different
taxonomical groups. Our method also detects a significant
motif in Beta-proteobacteria, which has not yet been
experimentally characterized. The predicted Beta-proteo-
bacterial motif is similar to the one known in Gamma-
proteobacteria, suggesting that cis-regulation has been
conserved across these two groups. In addition, we high-
light a partial divergence between the motifs detected in
two subclasses of Gram-positive bacteria (Actinobacteria
and Firmicutes), suggesting a progressive evolution of
LexA binding specificity. These features illustrate the pre-
dictive power of the method, and its capability to track the
evolutionary divergence of cis-regulatory motifs.

In summary, this assessment can be considered as a cali-
bration, which should help biologists to estimate the rel-
evance of each predicted motif, and guide their
experimental work by producing testable hypothesis
about the regulation of genes with no annotated function.

In the future, this approach opens the way to identify
groups of co-regulated genes (regulons), by regrouping
genes with similar motifs, in order to address the challeng-
ing domain of the evolution of transcriptional regulatory
networks.

Methods
Prokaryotes genomes and orthologs selection
Fully sequenced prokaryote genomes were downloaded
from NCBI [60] and installed in the Regulatory Sequence
Analysis Tools [61]. Pairwise gene similarities were
detected using BLAST [62] between the translated
sequence of all the genes from E. coli K12 and 286 other
bacterial genomes (12 September 2005) (see supplemen-
tary material). Orthologs were defined as bi-directional
best hits (BBH) [63] with an E-value smaller than 10-5.
The program get-orthologs, has been developed in order to
select hits according to user-specified criteria [64].

Pattern discovery in the taxonomic tree
We used Regulatory Sequence Analysis Tools [61,65,30]
for sequence retrieval (retrieve-seq), pattern discovery
(dyad-analysis), pattern matching (dna-pattern), feature
map drawing (feature-map) and pattern comparison (com-
pare-patterns).

In order to manage these tasks at each level of a taxonomic
tree, we implemented in Perl a program called footprint-
analysis. The program takes as input a taxonomic tree and
a set of input sequences. We extracted the prokaryotic tree
from the NCBI taxonomy database [66,67]. Starting from
a set of input genes and their orthologous clusters, foot-
print-analysis retrieves the corresponding upstream
sequences up to the upstream neighbor gene, with a max-
imal length of 400 bp, purges the sequences to discard
large redundant fragments (>= 30 bp identical), and runs
dyad-analysis at each taxonomical level, with the following
options: no self-overlap between word occurrences (-
noov), lower threshold of significance of 0 (-lth occ_sig 0),
spacing comprised between 0 and 20 nucleotides (-sp
0–20). The analysis is restricted to groups containing at
least three sequences.

Prediction of operons
We predicted operons on the basis of a simple distance-
based method inspired from Salgado and co-workers [40].
Rather than calculating a training-based log-likelihood,
we classify an intergenic region as within-operon (WO) if it
has a length smaller than 55 bp, and as transcription unit
border (TUB) otherwise. We evaluated this method on 407
annotated operons from E. coli K12 [43] and 351 operons
from Bacillus subtilis [68,69], and observed that, despite its
simplicity, this distance-based threshold strategy gives a
comparable accuracy (~80%) to that obtained with more
elaborated methods.

Sequence purging
An essential precaution for pattern discovery is to avoid
statistical biases due to sequence redundancy. This prob-
lem is classically addressed by purging sequences, i.e. dis-
carding repeated fragments. Sequence purging is even
more important for promoters of orthologous genes,
because the collection of sequenced genomes contains
several closely related strains (for example, there are cur-
rently 5 strains of the species E. coli). If the selected species
are too close from each other, the whole promoter
sequence will be conserved, which will lead to an over-
estimation of the significance for all the dyads found in
these regions. We used the programs mkvtree and vmatch
[70,71] to mask redundant fragments larger than 30 bp.

Background models
The program dyad-analysis lets the user specify a back-
ground model to estimate prior dyad frequencies for the
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calculation of the significance score [9]. Two alternative
background models have been tested in this study. A first
possibility is to estimate the prior probability of each dyad
as the product of the frequencies observed in the input
sequences for its two spaced words (monads).

P(W1nxW2) = F(W1)*F(W2).

where W1 and W2 are the two monads (in our case, trinu-
cleotides) forming the dyad, nx represents the spacing of
length x between these trinucleotides, and F(Wi) is the fre-
quency of the word Wi in the input sequence set. This
model is referred to as MONAD in the rest of the text.

In the second background model (TAXFREQ), the prior
probability of each dyad is estimated by computing the
frequency of the same dyad in a taxon-specific reference
set (sequences upstream of all genes of all organisms
belonging to the considered taxon).

Organism-specific dyads filtering
The search of phylogenetic footprints is generally moti-
vated by the interest in one particular "reference" organ-
ism (e.g. E. coli). However, when patterns are discovered
in promoters of a set of orthologous genes, some motifs
can be significant due to their presence in other orthologs,
whilst being absent from the promoter of the reference
organism. Such motifs can indeed be involved in the reg-
ulation of some subgroups of the considered taxon, but
not for the reference organism. In order to filter out such
motifs, we apply an organism-specific filter, by discarding
all the dyads that are not found in the promoter of the ref-
erence organism (E. coli in our case). Since the number of
tested dyads is drastically lowered, the multi-testing cor-
rection is lower than with the full analysis. Consequently,
for the same P-value, one generally has a lower E-value,
and thus a higher significance. This organism-specific
dyad filtering has thus a double effect of lowering the rate
of false positives (by filtering our irrelevant dyads) and
increasing the sensitivity (by increasing the significance of
the relevant dyads).

Heat map
The significance heat map (patterns versus taxa) was
drawn with the statistical freeware R[72], using the func-
tion heatmap.2() from the package gplots. Similarities Sij
were calculated between each pair i, j of significant pat-
terns with the program compare-patterns (RSAT). The simi-
larity matrix S was then converted to a distance matrix (Dij
= max(S)-Sij), used to cluster patterns using a hierarchical
clustering algorithm hclust() with the single linkage
method. In order to simplify the visualization, we selected
only patterns having a score at least equal to 8 in at least
one taxon. Heat maps with other thresholds are available
in the Additional file 1.

Annotated motifs
In order to validate our analysis, the discovered motifs
(significant dyads) were compared to annotated sites. For
the analysis of LexA auto-regulation in all taxa, taxon-spe-
cific motifs were collected from the biological literature
(Figure 2). For our systemic validation, we used annotated
sites for 368 genes (coding sequences) from E. coli K12
annotated in RegulonDB [33] (updated in 11/2005).
From 402 genes having annotated sites in the original set,
we discarded 31 genes corresponding to non translated
RNA (tRNA, sRNA, rRNA) and 3 genes without identified
orthologs (2 leader peptides: trpL and ilvL; and asr, an heat
shock polypeptide). The exact position of binding sites is
not always perfectly identified, due to experimental
imprecision. For this reason, we preferred to maintain the
site-flanking sequences for this evaluation (10 bp on each
side).

Comparison between discovered motifs and annotated 
sites
The program compare-patterns, takes as input two collec-
tions of patterns (in this case, a set of discovered dyads
and a set of annotated binding sites), and calculates the
number of matching bases between each pair of patterns,
as well as the statistical significance of the matches. We
consider only perfect matches.

We define the following statistics:

- Matching dyad (MD): discovered dyad matching at least
one annotated site for the considered gene.

- Non-matching dyad (ND): discovered dyads without any
match with the annotated sites for the considered gene.

- Matched site (MS): annotated site matched by at least one
discovered dyad.

- Non-matched site (NS): annotated site without any match
with the discovered dyads.

- Matched factor (MF): transcription factor for which at
least one of the binding sites has been matched by at least
one of the discovered dyads in at least one of the target
genes.

- Non-matched factor (NF): transcription factors for which
none of the binding sites has been matched by any of the
discovered dyads in any of the target genes.

Matching statistics
From the pattern comparison results, we derive the fol-
lowing evaluation parameters:
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(1) The positive predictive value (PPV) is the fraction of dis-
covered patterns matching at least one annotated site. PPV
= MD/(MD+ND)

(2) The sensitivity (Sn) is the fraction of annotated binding
sites matched by at least one discovered pattern. Sn = MS/
(MS+NS)

(3) The tradeoff between sensitivity (Sn) and selectivity
(as estimated by the PPV) can be captured by the geomet-
ric accuracy (Acc.g), defined as the geometric average of

the sensitivity and PPV. . The geometric

accuracy is more severe than the frequently used arithme-
tic mean, because it puts a higher penalty on unbalanced
predictions (e.g. low Sn with high PPV, or low PPV with
high Sn).

(4) The transcription factor-wise sensitivity (tf.Sn) is the frac-
tion of transcription factors for which at least one of the
binding sites has been matched by at least one of the dis-
covered dyads in one of the target genes. tf.Sn = MF/
(MF+NF)

Random promoter selections
We used the program random-seq-select (RSAT) to select, at
each taxonomical level, 100 random sets of promoters.
For each taxonomical level, the number of sequences per
random set was defined as the average number of
sequences obtained by group of orthologous genes (80
sequences per set for Bacteria, 49 for Proteobacteria, 32
for Gamma-proteobacteria, 16 for Enterobacteriales and 4
for Escherichia).

Matrix-based pattern discovery
We used the following programs for matrix-based pattern
discovery: MEME [57], gibbs [4], AlignACE [54], Motif-
Sampler [11]. MEME relies on an expectation-maximiza-
tion algorithm, whereas gibbs, AlignACE and
MotifSampler rely on a Gibbs sampling algorithm, each
implementation presenting some interesting characteris-
tics.

Matrix width
the motif width (number of columns of the matrices) was
set to 16 for all programs, except for MEME, which
includes an option for testing all matrix width within a
given range (we tested from 6 to 25).

Number of motifs
MEME, gibbs and MotifSampler support the detection of
multiple motifs. We set the number of motifs per
sequences to 5, and selected the top-ranking motif for
each program. AlignACE detects a single motif per analy-
sis.

The other program-specific options are detailed on the
supporting web site.

The program convert-matrix of RSAT was used to convert
the output files of these matrix-based programs into a
homogeneous format. The conversion also includes the
computation of total information content (TIC) and
information per column (IPC), following Hertz and
Stormo's formula for information content [8]:

where fi,j is the frequency of ith residue (matrix row) in the
jth position of the motif (column of the matrix); A is the
size of the alphabet (A = 4 for DNA), w is the matrix
width, pi is the prior residue of the ith residue, and k is a
pseudo-weight (set to 1 by default).

Availability and requirements
Project name: Regulatory Sequence Analysis Tools (RSAT)

Project home page: http://rsat.scmbb.ulb.ac.be/rsat/

Operating system(s): The main access to Regulatory
Sequence Analysis Tools is via the web interface [61],
which is platform independent. The Regulatory Sequence
Analysis Tools can be used as stand-alone application on
Unix-based systems (tested on Linux, Mac OSX, SPARC
Solaris, Alpha Dec);

Programming language: Perl.

Licence: The web site is freely available to all users. The
stand-alone version is freely available for academic users.
Commercial companies are allowed to use the site during
a reasonable testing period.

Any restrictions to use: non-commercial, non-military
and non-redistribution.

Supplementary methods, scripts and predictions are avail-
able on the RSAT supplementary material [73].
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Sig: Significance score; MD: Matching dyads; ND: Non-
matching dyad; MS: Matched site; NS: Non-matched site;
MF: Matched factor; NF: Non-matched factor: FP: False
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scription Factor-wise Sensitivity; TIC: total information
content; MAP: maximum a posteriori probability; TF:
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transcription factor; TFBS: transcription factor binding
site.
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