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Abstract
Background: Pancreatic beta-cells are the target of an autoimmune attack in type 1 diabetes
mellitus (T1DM). This is mediated in part by cytokines, such as interleukin (IL)-1β and interferon
(IFN)-γ. These cytokines modify the expression of hundreds of genes, leading to beta-cell
dysfunction and death by apoptosis. Several of these cytokine-induced genes are potentially
regulated by the IL-1β-activated transcription factor (TF) nuclear factor (NF)-κB, and previous
studies by our group have shown that cytokine-induced NF-κB activation is pro-apoptotic in beta-
cells. To identify NF-κB-regulated gene networks in beta-cells we presently used a discriminant
analysis-based approach to predict NF-κB responding genes on the basis of putative regulatory
elements.

Results: The performance of linear and quadratic discriminant analysis (LDA, QDA) in identifying
NF-κB-responding genes was examined on a dataset of 240 positive and negative examples of NF-
κB regulation, using stratified cross-validation with an internal leave-one-out cross-validation
(LOOCV) loop for automated feature selection and noise reduction. LDA performed slightly
better than QDA, achieving 61% sensitivity, 91% specificity and 87% positive predictive value, and
allowing the identification of 231, 251 and 580 NF-κB putative target genes in insulin-producing
INS-1E cells, primary rat beta-cells and human pancreatic islets, respectively. Predicted NF-κB
targets had a significant enrichment in genes regulated by cytokines (IL-1β or IL-1β + IFN-γ) and
double stranded RNA (dsRNA), as compared to genes not regulated by these NF-κB-dependent
stimuli. We increased the confidence of the predictions by selecting only evolutionary stable genes,
i.e. genes with homologs predicted as NF-κB targets in rat, mouse, human and chimpanzee.

Conclusion: The present in silico analysis allowed us to identify novel regulatory targets of NF-κB
using a supervised classification method based on putative binding motifs. This provides new
insights into the gene networks regulating cytokine-induced beta-cell dysfunction and death.

Background
Pancreatic insulin-producing beta-cells are selectively
destroyed by the immune system in type 1 diabetes melli-

tus (T1DM). The autoimmune assault causes beta-cell dys-
function and death via direct contact with activated
immune cells, such as macrophages and lymphocytes,
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and/or by exposure to soluble mediators secreted by these
cells, such as pro-inflammatory cytokines, oxygen free
radicals and nitric oxide (NO). The cytokines interleukin
(IL)-1β, interferon (IFN)-γ and tumor necrosis factor
(TNF)-α induce beta-cell death mainly by apoptosis in
rodent and human islets of Langerhans [1]. Beta-cell
apoptosis is a complex and highly regulated process that
depends on the expression of a large number of pro- and
anti-apoptotic genes [2].

Using microarray analyses, we have identified diverse
beta-cell gene networks regulated by IL-1β and IFN-γ [3-
7]. Cytokines induce stress response genes that are either
protective or deleterious for beta-cell survival, whereas
genes related to differentiated beta-cell functions are
down-regulated. Several of the cytokine effects in beta-
cells depend on the activation of the transcription factor
(TF) nuclear factor (NF)-κB [2,3]. NF-κB is a homo- or
hetero-dimeric complex of proteins from the Rel/NF-κB
family, which includes p65, c-rel, relB, p50/p105 and
p52/p100. In non-simulated cells NF-κB is located in the
cytoplasm as an inactive protein associated with the
inhibitor of NF-κB (IκB)α. When cells are simulated by
agonists such as cytokines, bacterial products or viruses,
IκBα is phosphorylated on serines 32 and 36 by an IκB
kinase complex and degraded in the proteasome. This
allows NF-κB to translocate to the nucleus where it binds
to a set of related DNA target sites (κB-sites) and regulates
gene expression [8].

Depending on the cell type and stimulatory cue NF-κB can
exert anti- or pro-apoptotic functions [8,9]. Inhibition of
cytokine-induced NF-κB activation protects pancreatic
beta-cells in vitro [10] and in vivo [11] against apoptosis,
suggesting that NF-κB is mostly pro-apoptotic in beta-
cells. To identify cytokine-regulated and NF-κB-depend-
ent beta-cell gene networks, we performed a microarray
analysis in cytokine-treated rat beta-cells in which NF-κB
activation was blocked by an NF-κB super-repressor
(IκB(SA)2). By this approach, 66 cytokine-modified and
NF-κB regulated genes were identified, including genes
coding for cytokines and chemokines and several TFs such
as c-Myc, C/EBPβ and C/EBPδ [4]. NF-κB was also found
to control, via induction of inducible nitric oxide synthase
(iNOS) and NO production, the expression of other TFs
such as growth arrest and DNA damage (Gadd)153 and
pancreatic duodenal homeobox (PDX)-1. This study was,
however, limited to a single time point (24 h), and was
based on an array with capacity to detect only ~8,000
probes; thus it did not allow a broad detection of the dif-
ferent genes regulated by NF-κB in beta-cells.

Detailed knowledge of the patterns of gene expression
involved in beta-cell death, together with a better under-
standing on their regulation, is crucial to understand and

prevent beta-cell loss in T1DM. Microarray technology
allows robust massive gene expression, and we have
employed this tool with success for the initial studies on
beta-cell gene networks [3-7]. Discovering gene networks,
however, requires frequent usage of microarrays at differ-
ent time points, with and without blockers of specific
transcription factors. This demands large amounts of cells,
posing a major problem when dealing with rare cells such
as primary beta-cells. Moreover, since there is cross talk
between different networks, blocking transcription factors
is seldom specific. Validation of molecular regulation of
beta-cell gene expression has been done by molecular
biology techniques such as gel shift assay, transient trans-
fection assay and chromatin immunoprecipitation. These
techniques are time consuming (1–2 years of work per
gene) and only allow the study of transcriptional regula-
tion of one gene at a time [12-15]. Clearly, novel
approaches are required to elucidate the nature of large
regulatory systems organized as networks [16].

To obtain comprehensive information on the NF-κB-reg-
ulated gene networks in beta-cells, we presently utilized a
bioinformatics approach [17] to predict potential NF-κB-
responsive genes. An increasing number of studies have
used in silico analysis of regulatory sequences to assist the
laboratory-based approaches in the search of TF targets
[18]. Some DNA sequence-based approaches used to deci-
pher regulatory networks relies on the prior knowledge of
transcription factor binding site (TFBS) preferences
(which can be modelled as a position-specific scoring
matrix (PSSM)) [19], whereas others discover new bind-
ing sites without prior consideration of the identity of the
binding factor [20].

Predicting TFBSs in gene promoter regions using PSSMs is
limited by the high number of false matches due to the
low information content of the often short and degener-
ate TFBSs [21]. Consequently, it is necessary to use addi-
tional information on gene regulation to improve the
correlation between in silico predictions and in vivo func-
tional binding sites. TFs are often part of cis-regulatory
modules (CRMs) [21], and the presence of multiple bind-
ing sites for a particular TF in the upstream region of a
gene increases the likelihood that the TF truly binds the
gene [22]. Moreover, regulatory sequences are often pre-
served through evolution by selective pressure [23]. Thus,
conserved TFBSs between different species are more likely
to be functional. Against this background, we incorpo-
rated these three biological properties of gene regulation
to increase the accuracy of our predictions using discrimi-
nant analysis.

Discriminant analysis is a powerful statistical pattern rec-
ognition method widely applied for data analysis in bio-
medical research [24,25]. It has been successfully utilized
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to identify yeast genes involved in methionine and phos-
phate metabolism on the basis of upstream regulatory
motifs [17]. Discriminant analysis uses a training set to
learn how to recognize targets for a given TF based on
putative regulatory elements present in their promoter
regions. We presently utilized this classification method
for the first time in a mammalian system to identify new
genes potentially regulated by NF-κB in pancreatic beta-
cells. For this purpose, the initial analysis searched a set of
120 known NF-κB target genes (positive examples) for
TFBSs over-representation using TFM-Explorer tool [26].
The top matching scores of the most significant over-rep-
resented PSSMs in this positive control set were then used
to describe the 1 kb upstream sequences from the tran-
scription start site (TSS) of both positive and negative
examples of NF-κB regulation (120 genes each). This data-
set was then used to train and test two alternative methods
for discrimination of NF-κB target genes, namely linear
and quadratic discriminant analysis (LDA and QDA). Fol-
lowing these preliminary steps, a large group of human
and rat beta-cell genes, detected in our previous array
analysis [3-7] was then searched for potential NF-κB target
genes. To further increase the reliability of the predictions,
we performed a conservation-based filter taking into
account the number of homologous upstream regions
that are predicted as NF-κB targets in other genomes,
namely rat, mouse, human and chimpanzee. Validation
of the in silico analysis was achieved by comparison with
our previous microarray gene expression data obtained
from beta-cells exposed to different NF-κB-dependent
stimuli.

Results
Over-represented TFBSs in the upstream sequences of NF-
κB regulated genes
PSSMs are commonly used to model and then to search
putative TFBSs in new sequences [21,27,28]. The TFM-
Explorer program [26] detects locally over-represented
TFBSs, modeled by PSSMs, in a set of coexpressed or
coregulated genes. The program first localizes all potential
TFBSs for a database of PSSMs, identifies regions where a
given PSSM is over-represented and then assesses their sta-
tistical significance. We used TFM-Explorer with all avail-

able vertebrate PSSMs of the TRANSFAC database [29]
(243 matrices) to search for PSSMs with a local over-rep-
resentation in a set of 120 upstream sequences of known
NF-κB target genes, as compared to two sets of 5000 genes
randomly picked from the human or mouse genomes
(Table 1). As expected, five of the most significant matri-
ces (M00052, M00053, M00054, M00119, M00248) cor-
respond to the main members of the Rel/NF-κB family,
whereas the last one (M00117) corresponds to C/EBP-β,
which is one of the isoforms of the C/EBP transcription
factor.

These over-represented matrices were used to scan and
characterise the upstream sequences of beta-cell expressed
genes by the patser program (see Methods). Since the pres-
ence of multiple high matrix-scores for a given TF in the
upstream region of a gene increases probability of bind-
ing, each TFBS was represented by its five top matching
scores. Subsequently, each gene upstream sequence was
characterized by a 30-element matrix matching score vec-
tor. Note that the matrices used for scanning the
sequences are partly redundant, since several of them rep-
resent the binding specificity of NF-κB. This type of redun-
dancy is however efficiently treated by discriminant
analysis.

Performance of discriminant analysis
A stratified five-fold cross-validation procedure was per-
formed to estimate the predictive performance of both
LDA and QDA. For this purpose, the calibration dataset
was first divided into five subsets of equal size (50% each
for the positive and negative examples of NF-κB regula-
tion). Each subset was used once for testing the accuracy
of the discriminant analysis trained on the four other sub-
sets. LDA and QDA were then applied to each training set
using the iterative procedure described in Methods. At
each round of the iterative procedure the performance
metrics, namely sensitivity, specificity and positive predic-
tive value (PPV) of the classifier on the calibration dataset,
were represented in Figure 1 as the average of their
observed values in each test set. For both methods the spe-
cificity and PPV showed a trend for increase after each
round of the iterative procedure while there was a minor

Table 1: Locally over-represented PSSMs in the upstream sequences of 120 known NF-κB-regulated genes

Factor Matrix ID P-value (human) P-value (mouse)

NF-κB M00052 3.16e-08 2.75e-09
c-Rel M00053 3.01e-07 2.64e-07
NF-κB M00054 1.77e-04 1.55e-05
NF-κB M00208 2.59e-04 1.07e-04
NF-κB M00194 4.66e-04 3.13e-04
C/EBPβ M00117 1.43e-02 2.44e-02

Factor: name of the TF; Matrix ID: the TRANSFAC database identifier of the PSSM; P-value: statistical significance of the over-representation of the 
factor when compared to a background distribution of predicted binding sites in arbitrary human or mouse promoters (Chi square test).
Page 3 of 16
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:55 http://www.biomedcentral.com/1471-2105/8/55
decrease in sensitivity, but the LDA performed slightly
better than QDA. The best results, in terms of specificity
and PPV, were obtained at the 6th round of the iterative
procedure for LDA (61% average Sensitivity, 91% average
Specificity and 87% average PPV) with an average rate of
instances removed from the calibration dataset at around
24.5% (Fig. 1A). For QDA (Fig. 1B) three rounds of the
iterative procedure (dataset average reduction of 23.5%)
were sufficient to reach the best performance statistics
(67% average Sensitivity, 89% average Specificity and
84% average PPV). Since the objective of this study was to
predict an experimentally verifiable set of putative NF-κB
regulated genes, we selected specificity and PPV as the
main criterions of classification. Against this background,
the performance level obtained with LDA was considered
acceptable, and this method was selected for prediction of
regulatory targets of NF-κB in all beta-cell-expressed genes
(see below).

Prediction of NF-κB target genes in beta-cells
The whole calibration dataset (120 positive and 120 neg-
ative examples) was used to construct a linear classifier for
the prediction of NF-κB target genes in beta-cells. An iter-
ative LDA procedure was performed using the original
dataset. At the 6th round the resulting pre-processed data-
set and the selected variables by the stepwise procedure
(see Methods) were retrieved to construct the final LDA
classifier. The iterative procedure reduced the number of
elements in the original dataset by removing the noisy
patterns and returned a pre-processed dataset of 81 NF-κB
target genes (dataset reduction of 32.5%) and 99 NF-κB
non-target genes (dataset reduction of 17.5%). In Figure
2, the top matching scores obtained from the upstream
sequences of this pre-processed dataset were plotted for
both three different matrices (Fig. 2A) and an individual
matrix (Fig. 2B), allowing visualisation in a three-dimen-
sional space. NF-κB-regulated genes had generally higher
scores than the non-regulated ones. The matrix scores-
based separation between the two sets of genes was con-
sidered acceptable, but there was still a small overlap
between the two groups of genes (Figs. 2A and 2B). The
LDA classifier trained on this filtered dataset was then
used to analyze the genes expressed either in rat primary
beta-cells (3575 genes) [3-5], insulin producing INS-1E
cells (3068 genes) [6] or in human islets (9443 genes) [7],
where we predicted respectively 251, 231 and 580 NF-κB
candidate target genes (See Additional files 1 (Table S1), 2
(Table S2) and 3 (Table S3)).

Phylogeny-based filtering of predicted NF-κB target genes
Groups of genes subject to a specific regulation are
assumed to be evolutionary stable. We thus increased con-
fidence in our predictions by filtering putative NF-κB tar-
get genes with phylogenetic conservation between two
organisms, namely a rodent and a primate. For this pur-

pose the LDA classifier was used to analyse simultane-
ously the rat, mouse, human and chimpanzee
homologous upstream regions of beta-cell-expressed
genes. The NF-κB target genes predicted among the genes
expressed in primary rat beta-cells and in human pancre-
atic islets were then compared with those predicted
among their respective homologous from other species.
The overlaps between the sets of predicted NF-κB target
genes in different species were highly significant in all
paired comparisons (Table 2). As expected, the signifi-
cance of these overlaps were more pronounced between
closely related species (i.e., p < 1e-300 for the overlap
between human and chimpanzee; evolutionary distance
of 4–6 million years [30]). The genes which were pre-
dicted as NF-κB targets in at least a rodent and a primate
species, for which the evolutionary distances are moderate
(82–87 million years; [31]), represent 29% (74 genes),
31% (72 genes) and 19% (107 genes) of the total number
of predicted NF-κB target genes in primary rat beta-cells,
INS-1E cells and human pancreatic islets, respectively (see
Additional files 4 (Table S4), 5 (Table S5) and 6 (Table
S6)).

Comparison of in silico analysis against microarray data
To further assess the validity of the in silico target predic-
tions, the results described above were compared with
those of previous microarray studies from our group (Fig.
3). The microarray datasets describe the transcriptional
response of beta-cells to putative NF-κB-dependent stim-
uli such as cytokines [3], cytokines in the presence of an
NF-κB blocker [4] or an iNOS blocker [6] and double
stranded RNA (dsRNA) [5].

When comparing the present in silico findings against
mRNAs that are up- or down-regulated by 6 or 24 h expo-
sure of primary purified rat beta-cells to IL-1β and/or IFN-
γ [3], we found that 27 of 190 cytokine (IL-1β + IFN-γ)-
simulated genes (14.2%) and 15 of 99 IL-1β-regulated
genes (15.2%) were predicted as NF-κB target genes in rat
beta-cells (see Additional file 7: Table S7). In both cases
there was a nearly 2-fold enrichment for putative NF-κB
target genes as compared to non-cytokine regulated genes
(p < 0.005; Fisher's exact test). We also checked the enrich-
ment of predicted NF-κB target genes in a list of 84
dsRNA-simulated genes [5]. 19 of the genes in this list
(21%) (see Additional file 7: Table S7) and only 234 of
3488 non-dsRNA-induced genes (6.7%) were predicted as
NF-κB target genes, with a 3-fold enrichment (p < 10-5;
Fisher's exact test).

A combination of NF-κB blocking with microarray analy-
sis [4], has identified 66 cytokine-induced and NF-κB-reg-
ulated (direct or indirect targets) genes in primary rat beta-
cells. Of note, this study used only one late time point,
namely 24 h. 53 of the 66 genes were present in the set of
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Average performance of different iterative predictive discriminant analysis approachesFigure 1
Average performance of different iterative predictive discriminant analysis approaches. (a) Linear Discriminant 
Analysis. (b) Quadratic Discriminant Analysis. Sensitivity (Sn), Specificity (Sp) and Positive Predictive Value (PPV) are reported 
for each cycle of the iterative predictive discriminant analysis.
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beta-cell-expressed genes. To render the comparison more
reliable, NO-regulated genes were removed from this list.
It has been shown by a time course microarray analysis [6]
that cytokines induce a late NO production which indi-
rectly modifies the expression of nearly 50% of the
cytokine-affected mRNAs after 12 h. Among the 53 NF-
κB-regulated genes, 17 are NO-independent (putative
direct targets) [6] and 6 of these cytokine induced, NF-κB-
regulated and NO-independent genes (see Additional file
7: Table S7) were predicted as putative NF-κB target genes
by the LDA classifier (35.3%, p < 0.0007; Fisher's exact
test).

Functional classes and temporal gene expression clusters 
enriched in predicted NF-κB target genes
TFs often regulate groups of genes with similar expression
profiles and/or related function [32]. To test if this was the
case in putative NF-κB-dependent genes, 225 NO-inde-
pendent genes were retrieved from nearly 500 cytokine-
regulated genes. These genes were previously classified
into 14 different groups according to their putative func-
tion and 15 clusters according to their temporal expres-
sion profile [6]. These datasets were tested for significant
differences in the distribution of the functional classes
between predicted NF-κB target and non-target genes

Table 2: Comparison of predicted NF-κB-regulated genes in different species

Species 1 Species 2 Targets in 1 Targets in 2 Overlap Total # of genes P-value

Rat mouse 217 230 82 2688 3.7e-37
Rat chimpanzee 205 281 63 2540 6.2e-16
Rat human 218 310 64 2666 6.9e-14
Human rat 504 296 66 7545 3.7e-19
Human mouse 541 355 81 7915 2.1e-23
Human chimpanzee 536 470 353 8196 <1e-300

Targets in 1: number of NF-κB targets in species 1; Targets in 2: number of NF-κB targets in species 2; Overlap: number of NF-κB targets in 
common between species 1 and 2; Total # of genes: number of analyzed pairs of homologous genes; P-value: probability to observe at least the 
obtained common number of NF-κB targets (calculated on the basis of the hypergeometric distribution).

Separation between NF-κB-regulated (black circles) and non-regulated (gray circles) genes in the pre-processed calibration sampleFigure 2
Separation between NF-κB-regulated (black circles) and non-regulated (gray circles) genes in the pre-proc-
essed calibration sample. (a) The axis of the 3D plot represents the first top scores of the matrices M00054 (F1), M00194 
(F2), and M00228 (F3) corresponding to the upstream sequences of the calibration sample after an iterative LDA. (b) The 
three top matching scores of the matrix M00054 are represented for each gene. F1: first score; F2: second score; F3: third 
score.

a b
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(Table 3). There were 32 NF-κB target genes and 193 NF-
κB independent genes among the 225 NO-independent
and cytokine-regulated genes. The NF-κB-dependent
genes are listed in Table 4. The most significantly over-rep-
resented functional classes in the set of predicted NF-κB
target genes were cytokines and chemokines, major histo-
compatibility complex (MHC)-related genes and adhe-
sion molecules. Concerning the temporal clusters, "cluster
1" (see [6]) was the only one with a significant over-repre-
sentation in the group of NF-κB target genes. This cluster
is characterized by an early peak of gene expression at 2 h,
followed by a decrease to below control levels at 6 h, and
then a return to basal expression at 24 h. 38% of the genes
in this cluster are related to signal transduction, 17.4% are
transcriptions factors and only 26% are NO-dependent.

The NF-κB candidate target genes were also searched for
statistical associations with the annotations from Gene
Ontology (GO). Relevant GO biological processes were
extracted from the three sets of NF-κB candidate target
genes in rat primary beta-cells (251 genes), insulin pro-
ducing INS-1E cells (231 genes) or in human pancreatic
islets (580 genes). The GO analysis (Figure 4; for statistical

details see Additional files 8 (Table S8), 9 (Table S9) and
10 (Table S10)) indicated significant over-representation
of biological processes such as "immune response", "anti-
gen presentation and processing", "response to biotic
stimulus" and "defense response".

Discussion
Identification of TF target genes by computational
approaches poses more difficulties in higher eukaryotes
than in organisms with smaller genomes such as yeast.
Scanning of large mammalian genomes for PSSMs
matches is done in an enormous sequence space, as com-
pared to the short size of DNA motifs recognized by TFs
[33]. This leads to a poor accuracy in TF target prediction,
since only a small fraction of the predicted binding sites
will have a functional role [21]. To reduce false predic-
tions, the present study was restricted to the 1 kb upstream
of the TSS for each gene. In line with other studies [34,35],
we have previously observed that most PSSM-predicted
NF-κB binding sites are located within 1 kb upstream the
TSS [36]. This restriction, however, may decrease sensitiv-
ity and contribute for the fact that some known target
genes escaped detection.

Enrichment of predicted NF-κB target genes in genes regulated by putative NF-κB-dependent stimuliFigure 3
Enrichment of predicted NF-κB target genes in genes regulated by putative NF-κB-dependent stimuli. The sta-
tistical significance of the abundance of predicted NF-κB target genes is assessed in sets of genes regulated by cytokines (IL-1β 
alone or IL-1β +IFN-γ) or double stranded RNA (tested in the form of polyinosinic-polycytidylic acid, PIC) against sets of genes 
which do no respond to these stimuli. The set labeled as "NO-independent" indicates that NO-dependent genes were 
removed, since they may be indirectly regulated by NO production. *P < 0.005; **P < 0.0005; ***P < 0.0001 vs. non-regulated 
gene set (Fisher's exact test). Microarray data was obtained from [3-6].
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PSSM-based approaches for TFBSs prediction often relay
on broad and sometimes inaccurate assumptions, and do
not take in consideration putative combinatorial interac-
tions between TFs that recognize multiple sites [21]. To
incorporate such biological annotation to the prediction
of NF-κB target genes, we first searched for common regu-
latory elements in the upstream sequences of a set of
known NF-κB target genes. In addition to the PSSMs of
the different members of the Rel/NF-κB family, one PSSM
corresponding to C/EBP was also over-represented in the
set of positive controls (Table 1). NF-κB and C/EBP are
known to interact, and their binding sites combine and
form regulatory modules for several genes [37,38]. More-
over, matrix-based methods have been already used to
predict genes with composite NF-κB:C/EBP regulatory
sites [39]. To account for the frequent presence of multi-

ple binding sites for the same TF in a given regulatory
region, we detected multiple hits from each locally over-
represented PSSM to characterize individual upstream
sequences, and used them as input to train the classifier.

Alignment-based phylogenetic footprinting methods are
widely used to improve the specificity of TF target genes
prediction [28,40]. These methods, however, rely on the
assumption that the regulatory regions are sufficiently
conserved to be aligned. Instead of searching for putative
TFBS that are situated in conserved regions in alignment
between orthologous sequences, we used our classifier to
screen each gene in parallel with a set of its homologs in
other species: a given gene was considered as an NF-κB
target only if its homologs were also classified as NF-κB
regulated genes. This improved the accuracy of our predic-

Table 3: Distribution of functional classes and temporal gene expression clusters between predicted NF-κB target and non-target 
genes in INS-1 cells.

Temporal cluster P-value

cluster 1 0.006
cluster 2 1
cluster 3 0.66
cluster 4 1
cluster 5 0.36
cluster 6 0.32
cluster 7 0.87
cluster 8 0.73
cluster 9 1
cluster 10 0.14
cluster 11 0.64
cluster 12 0.66
cluster 13 0.87
cluster 14 0.53
cluster 15 1

Functional class P-value

Metabolism 0.65
Protein synthesis 0.87
Ionic channels 0.48
Hormones and growth factors 1
Cytokines, chemokines 0.05
Signal transduction 0.94
MHC related 0.06
Cell adhesion 0.03
Transcription factors 0.45
RNA synthesis 1
Cell cycle 1
Defense repair 0.79
Apoptosis ER stress 1
Miscellaneous 0.81

The classifications involved 225 NO-independent and cytokine-regulated genes in INS-1E cells [6]. 32 of them were predicted as NF-κB targets by 
the present approach. P-value: statistical significance of the overlap between the genes belonging to the functional or temporal class and the set of 
predicted NF-κB target genes (hypergeometric probability distribution).
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tions (several of the genes identified by this approach
have been previously shown in other tissues to be NF-κB-
dependent [41,42]), but lead to an 70–80% decrease in
the number of hits. In other words, although this
approach apparently decreases false positives, it leads to a
large increase in false negatives. Thus, manganese super-
oxide dismutase (MnSOD) and c-Myc, known NF-κB
dependent genes [14,43], were lost following this step.

The validation of computational methods is crucial to
assess the significance of bioinformatics predictions. One
of the possible ways for validation is the use of global gene
expression intersection [44]. Thus, we utilized microarray
datasets from our group reporting the transcriptional
response of beta-cells to different putative NF-κB-depend-
ent stimuli [3-6]. By comparing them to our in silico pre-
dictions we observed that, in general, genes regulated by
putative NF-κB-dependent stimuli had a 2–3-fold higher

probability to be predicted as NF-κB targets than non-
responsive genes (p < 0.005). Considering that these
microarray experiments included few time points and a
limited set of genes, and that gene expression can also be
regulated by variables such as chromatin configuration,
which is not detected by in silico approaches, the 20–30%
agreement between our predictions and actual gene
expression data is reasonable. Functional classes such as
cytokines and chemokines, MHC-related genes and adhe-
sion molecules (Table 3), whose expression is known to
be regulated by NF-κB in other tissues [45,46], were signif-
icantly enriched in a set of 32 manually annotated genes
predicted as NF-κB targets. In agreement with these obser-
vations, GO analysis indicated that categories such as
"immune response" and "antigen presentation and
processing" are over-represented in putative NF-κB-
dependent genes. In addition, the temporal expression

Table 4: List of cytokine-regulated and NO-independent genes predicted as NF-κB targets in primary rat beta-cells.

Ensembl gene ID Gene description Prob.

ENSRNOG00000011023 Nitric oxide synthase, inducible 0.999999
ENSRNOG00000022256 Small inducible cytokine B10 precursor 0.9999876
ENSRNOG00000014297 Syndecan-4 precursor 0.9998138
ENSRNOG00000002792 Macrophage inflammatory protein 2 precursor 0.9995781
ENSRNOG00000007390 NF-κB inhibitor alpha 0.9992648
ENSRNOG00000000105 Complexin-2 0.9985486
ENSRNOG00000018735 H-2 class II histocompatibility antigen, gamma 

chain
0.9977451

ENSRNOG00000018273 Nucleolin 0.9966934
ENSRNOG00000030712 RT1 class Ia, locus A1 0.9964791
ENSRNOG00000000451 RT1 class II, locus Ba 0.9949906
ENSRNOG00000016346 Protein kinase C, delta type 0.9937999
ENSRNOG00000002802 Growth regulated alpha protein precursor 0.9917401
ENSRNOG00000021128 ATP-sensitive inward rectifier potassium 

channel 11
0.9899182

ENSRNOG00000031607 RT1 class I, CE4 0.9867331
ENSRNOG00000014288 Fibronectin precursor 0.9827045
ENSRNOG00000009980 Lipid phosphate phosphohydrolase 1 0.977648
ENSRNOG00000022719 Multidrug resistance protein 1 0.9542411
ENSRNOG00000019048 Superoxide dismutase 2, mitochondrial 0.946606
ENSRNOG00000000837 Tumor necrosis factor precursor 0.9223781
ENSRNOG00000018524 Ezrin 0.9157411
ENSRNOG00000001989 CD166 antigen precursor 0.9117247
ENSRNOG00000000763 RT1 class Ib gene RT1-M3 0.8871843
ENSRNOG00000006877 Ephrin-B1 precursor 0.8616659
ENSRNOG00000017496 2',3'-cyclic-nucleotide 3'-phosphodiesterase 0.8035472
ENSRNOG00000003897 Collagen alpha-1 0.73606
ENSRNOG00000012410 S-100 protein, alpha chain. 0.7144861
ENSRNOG00000008144 Interferon regulatory factor 1 0.6926852
ENSRNOG00000006375 Voltage-dependent anion-selective channel 

protein 1
0.604003

ENSRNOG00000007237 DNA-binding protein inhibitor ID-2 0.5668806
ENSRNOG00000015787 Synaptonemal complex protein SC65. 0.5488754
ENSRNOG00000010708 Transcription factor GATA-4 0.5444669
ENSRNOG00000016552 Hydroxymethylglutaryl-CoA synthase, 

cytoplasmic
0.5286608

Prob.: Posterior probability for NF-κB regulation.
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profile described by the enriched temporal "cluster 1" (see
[6]) is consistent with NF-κB regulation.

The predictions obtained from the present analysis repre-
sent manageable gene lists for further experimental vali-
dation, and provide an integrated platform for
deciphering the NF-κB dependent gene networks in beta-
cells. Several genes in these lists are already described as
NF-κB dependent in beta-cells and/or in other tissues,
suggesting that the discrimination procedure generated
reliable results. For instance, the cytokine-induced gene
iNOS, for which the role of NF-κB was already confirmed
in beta-cells [13], was predicted with the highest posterior
probability in primary rat beta-cells (Table 5). Among the
genes already described as NF-κB targets in other tissues,
we predicted with high probability some cytokines and
chemokines such as the macrophage inflammatory pro-

tein 2 (MIP-2) [47] and the small inducible cytokines B10
(IP-10) [48]. Most of the remaining genes, however, are
novel potential NF-κB targets, and those among them
which are predicted with the highest probabilities in dif-
ferent organisms can be interesting candidates for detailed
experimental analysis.

Improvement of in silico analysis may be achieved by a
more efficient integration of other types of genomic data.
For instance by adding gene expression profiles to the
matrix score vectors describing the upstream sequences,
we can provide an important discriminative criterion to
the classifier. Expression profiles of genes regulated by the
same TF are often highly correlated [32], and addition of
this information to the classifier may improve prediction
specificity.

Hierarchical view of the Gene Ontology (GO) analysis results for predicted NF-κB target genesFigure 4
Hierarchical view of the Gene Ontology (GO) analysis results for predicted NF-κB target genes. The gray circles 
are statistically over-represented GO biological processes within the predicted NF-κB target genes as compared to the NF-κB 
non target genes (FDR adjusted p-value < 0.05 from Fisher's exact test). The Biological process node is the root of the GO 
biological processes. Downstream terms in the GO hierarchy provide more specific annotations. Additional information, 
including lists of all biological processes assigned to the analysed genes, is provided in Additional files 8, 9 and 10.
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Conclusion
The sequencing of the human, rat and mouse genomes
[34,49-51] allows the development of new approaches to
determine global cellular regulatory mechanisms by in sil-
ico sequence analysis. In the present work discriminant
analysis has been successfully applied to identify novel
NF-κB-regulated genes in pancreatic beta-cells. The discri-
minant classifier was developed based on the matrix score
profiles of putative TFBSs in the upstream sequences of
NF-κB-regulated and non-regulated genes and showed
reasonable predictive power. The results obtained provide
new insights into the modeling of gene networks regulat-
ing cytokine-induced beta-cell dysfunction and death,
and open several new avenues for research. In future work,
the method will be improved and applied for detecting
the regulatory targets of other TFs, such as STAT-1, that
also regulate key beta-cell genes implicated in beta-cell
death [52].

Microarray gene expression data, in combination with the
present and future in silico sequence analysis, will hope-
fully provide valuable tools to unravel the architecture of
key beta-cell gene networks. The in silico work will help to
characterize gene clusters regulated by similar transcrip-

tion factors, and will focus the laborious promoter studies
on selected genes. This combined approach will identify
the genetic network structure of beta-cells and might gen-
erate new targets for drug design and imaging. For
instance, and based on this approach, we have already
developed in vivo approaches to prevent experimental dia-
betes by blocking NF-κB [11] and STAT-1 [52] and identi-
fied several interesting targets for beta-cell imaging
(Flamez D, Kutlu B, Goodman N and Eizirik DL, unpub-
lished data).

In conclusion, the present approach constitutes a "proof
of principle" for the integrated use of functional genomics
[3-7] and bioinformatics ([36]; present study) in the
detailed molecular characterization of a relevant cell type
for human pathology. By following this integrated
approach, we expect to fully map the interacting networks
of genes and proteins downstream of the pro-apoptotic
signals leading to beta-cell death in T1DM. This will allow
us to move the search for a cure for T1DM from an empiric
and often blind approach to one that is really mechanisti-
cally driven – the ultimate outcome being the develop-
ment of logical and targeted therapies to prevent the
disease.

Table 5: List of primary rat beta-cell genes predicted as NF-κB targets in both rat and a primate species (top 30 genes).

Ensembl gene ID Gene description Prob. Human Mouse Chimpanzee

ENSRNOG00000011023 Nitric oxide synthase, inducible 0.999999 NF-κB NF-κB NF-κB
ENSRNOG00000022256 Small inducible cytokine B10 precursor 0.999988 NF-κB NF-κB NF-κB
ENSRNOG00000014297 Syndecan-4 precursor 0.999814 NF-κB NF-κB NF-κB
ENSRNOG00000012180 RAB5A, member RAS oncogene family 0.999691 NF-κB NF-κB NF-κB
ENSRNOG00000020102 sirtuin 0.999613 NF-κB NF-κB NF-κB
ENSRNOG00000002792 Macrophage inflammatory protein 2 precursor 0.999578 NF-κB NF-κB NF-κB
ENSRNOG00000021130 Sulfonylurea receptor 1 0.999543 NF-κB NF-κB CTL
ENSRNOG00000021156 PREDICTED: vascular endothelial growth factor B 0.999392 NF-κB NF-κB NF-κB
ENSRNOG00000007390 NF-κB inhibitor alpha 0.999265 NF-κB NF-κB NF-κB
ENSRNOG00000013412 cAMP response element binding protein 0.999217 NF-κB NF-κB NF-κB
ENSRNOG00000002843 Small inducible cytokine B5 precursor 0.999081 NF-κB NF-κB NF-κB
ENSRNOG00000008217 Mucosal addressing cell adhesion molecule 1 precursor 0.998906 NF-κB NF-κB NA
ENSRNOG00000020481 Platelet-activating factor acetylhydrolase IB gamma subunit 0.998769 NF-κB NF-κB NF-κB
ENSRNOG00000031090 RT1 class I, CE7 0.99778 NF-κB NF-κB NF-κB
ENSRNOG00000000723 RT1 class I, CE5 isoform 2 0.99716 NF-κB NF-κB NF-κB
ENSRNOG00000011559 Calponin-3 0.996972 NF-κB NF-κB NF-κB
ENSRNOG00000000468 RT1 class I, A3 0.996707 NF-κB CTL NF-κB
ENSRNOG00000030251 RT1-CE10 protein 0.996647 NF-κB NF-κB NF-κB
ENSRNOG00000030712 RT1 class Ia, locus A1 0.996479 NF-κB NF-κB NF-κB
ENSRNOG00000005438 Neuroendocrine convertase 2 precursor 0.995956 NF-κB NF-κB NF-κB
ENSRNOG00000032707 Pro-epidermal growth factor precursor 0.993999 NF-κB NF-κB NF-κB
ENSRNOG00000016346 Protein kinase C, delta type 0.9938 NF-κB NF-κB CTL
ENSRNOG00000006268 Interferon beta precursor 0.99279 NF-κB NF-κB NF-κB
ENSRNOG00000016630 Tln_predicted protein. 0.989963 NF-κB CTL NF-κB
ENSRNOG00000019080 hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 7 0.987715 NF-κB NF-κB NF-κB
ENSRNOG00000031607 RT1 class I, CE4 0.986733 NF-κB CTL NF-κB
ENSRNOG00000004148 Serine/threonine-protein kinase PCTAIRE-2 0.98582 CTL NF-κB NF-κB
ENSRNOG00000028387 START domain containing 3 0.985143 NF-κB CTL NA
ENSRNOG00000003743 Aspartyl-tRNA synthetase 0.984986 NF-κB CTL CTL
ENSRNOG00000016588 myeloid-associated differentiation marker 0.983779 NF-κB NA NF-κB

Known NF-κB target genes are in bold; Prob.: Posterior probability for NF-κB regulation; NF-κB: the homolog gene is predicted as an NF-κB 
target; CTL: the homolog gene is predicted as a non NF-κB target; NA: upstream sequence of the homolog gene not available.
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Methods
Calibration sets
To train and evaluate the discriminant analysis methods
used in this study, we acquired a calibration dataset con-
sisting of putative promoter sequences for positive and
negative examples of NF-κB regulation. The set of positive
examples was extracted from a compilation of genes
known to contain functional NF-κB binding sites from
diverse tissues of human, mouse and rat [46]. From this
collection we selected 96 human, 17 mouse and 7 rat
genes with a strong experimental evidence for NF-κB
binding. As negative examples we selected 120 genes with
the least significant changes in expression in a microarray
analysis where rat beta-cells were stimulated by cytokines
[3]. These genes are supposed not to be regulated by NF-
κB.

Upstream sequence collections
We analyzed the promoters of sets of genes expressed in
rat primary beta-cells (3575 genes) [3-5], insulin-produc-
ing INS-1E cells (3068 genes) [6] or human islets (9443
genes) [7]. For each gene the 1 kb upstream sequence,
starting from the TSS, was retrieved from the ENSEMBL
database (release 35, [53]) and analyzed as explained in
the next section. The choice of the 1 kb limit for upstream
sequence was based on findings on rodent genomes indi-
cating that most annotated TFBSs are located at this posi-
tion [34].

PSSM selection and binding site scoring
The web application TFM-Explorer [26] was used to deter-
mine PSSMs enriched in NF-κB target genes. This program
identifies all potential TFBSs in the set of promoter
sequences using all available vertebrate matrices of the
matrix library collected in the TRANSFAC database. It
reports statistically significant regions where predicted
binding sites show local over-representation. The top six
significant matrices discovered by this method were used
to scan both the upstream sequences present in the cali-
bration dataset and those corresponding to genes
expressed in primary rat beta-cells, INS-1E cells and
human pancreatic islets. This scanning step was per-
formed using the pattern-matching program patser [54].
For a given PSSM of width w, the patser program slided a
window of length w along both strand sequences and
assigned a score to each position; the top five matching
scores were retrieved for each analyzed upstream
sequence. Each upstream sequence was thus represented
by a 30-element TFBS matrix score vector (5 top scores ×
6 matrices).

Discriminant methods
Discriminant analysis seeks to find a rule for accurately
predicting a categorical response (i.e. regulated vs. not reg-
ulated) based on a set of measured variables (i.e. TFBS

matrix-scores) [24]. Our selected dataset was used to train
two discrimination methods, LDA and QDA, for recogniz-
ing NF-κB target genes according to the observed matrix
matching scores in their promoter regions. The ultimate
goal was to allocate a gene to a regulation group, NF-κB
target or non target genes, based on the 30-element vector
of TFBS matrix scores. In addition to assigning each ele-
ment to a group (regulated or not), discriminant analysis
estimates posterior probabilities, indicating the probability
for this element to belong to the respective groups and
classifying the gene as belonging to the group with the
highest posterior probability. Discriminant analysis also
allows specifying prior probabilities to estimate the fraction
of elements expected in the different groups. LDA and
QDA differ in that LDA is based on the assumption that
the variables are multivariate normally distributed in each
group, with different mean vectors but identical covari-
ance matrices, whereas QDA is based on the assumption
of group-specific covariance matrices.

Cross validation, variable selection and noise reduction
Stratified 5-fold cross-validation
To evaluate the accuracy of the classification methods uti-
lized in this work, the above described dataset was first
divided into five subsets of equal size, with the positive
and negative examples of NF-κB regulation represented by
the same number of genes. In each experiment four sub-
sets were used for training and the remaining one for test-
ing. Performance statistics were then averaged over the
five test folds. Three different statistics were used to evalu-
ate the predictive performance of LDA and QDA. Sensitiv-
ity is Sn = TP/(TP+FN), specificity is Sp = TN/(TN+FP) and
positive predictive value is PPV = TP/(TP+FP), where TP,
TN, FP and FN refer to the number of True Positives, True
Negatives, False Positives and False Negatives, respec-
tively.

Variable selection
Variable selection is a crucial step in machine learning.
Due to the problem of over-fitting many classification
methods perform poorly when taking into consideration
large numbers of variables [55]. The problem of over-
dimensionality is particularly sensible in QDA, since this
method considers each pairwise combination of varia-
bles. To reduce the number of variables we presently
applied a forward stepwise procedure, which starts from
an empty set of variables and adds at each step a single
variable which produces the greatest improvement in the
performance of the classifier [55]. Within each training
phase, the forward stepwise variable selection procedure
was performed using an internal leave-one-out cross-vali-
dation (LOOCV) [55,56]. LOOCV is the extreme case of
the k-fold cross validation procedure: if one has N data
examples, N experiments will be performed with N-1
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training cases and 1 test case. The performance statistics
are then averaged over the N test folds.

Noise reduction by iterative procedure
Given the protocol for building the calibration dataset,
the training groups may themselves contain errors. In par-
ticular, the negative control set might contain genes which
would be regulated by NF-κB under different conditions
than those presently tested. In addition, the positive train-
ing set might contain genes for which the binding sites are
outside the 1 Kb sequence considered in this analysis.
Such erroneous training examples should be removed as
they can affect the performance of the discriminant anal-
ysis [57]. To address this issue, an iterative procedure was
performed within each training phase to reduce noise. The
classifier was first trained using the original training sub-
set; then, in the next round of the procedure, the elements
which were misclassified during the internal LOOCV were
removed, and the remaining examples were used as a pre-
processed training subset. The procedure was iterated
until the training subset was not any more modified.

Phylogeny-based filtering of predicted NF-κB target genes
Rat, human, mouse and chimpanzee homologs from
ENSEMBL database were retrieved for each gene expressed
in rat primary beta-cells, insulin producing INS-1E cells or
human pancreatic islets. The discriminant procedure took
as input these sets of homologs, predicted NF-κB regula-
tion and returned a posterior probability for each gene.

The classification was initially performed for each organ-
ism separately. Then, the overlap predictions (number of
genes predicted in both organisms) was computed for
each pair of organisms and tested for significance by the
hypergeometric distribution using the compare-classes pro-
gram from the Regulatory Sequence Analysis Tools
(RSAT) suite [58]. The program compare-classes compares
two classifications (clustering results, functional classes,
etc.) and assesses the statistical significance of common
members between each pair of classes by calculating the
hypergeometric probability. For the final prediction, we
required homologs predicted as NF-κB-regulated genes to
be present in at least one rodent and one primate species.

Comparison of in silico analysis against microarray data
The microarray data utilized for the comparison against
the present in silico analysis were obtained using the rat
genome Affymetrix U34-A Gene Chips containing ~8,000
probes or the human genome U133-A arrays containing
22,000 probe sets corresponding to 14500 distinct genes.
Using these arrays, we detected 3575, 3068 and 9443
genes expressed in respectively primary rat beta-cells [3-5],
insulin producing rat INS-1E cells [6] and primary human
islets [7]. Integrated information on these genes is availa-
ble at the "Beta-Cell Gene Expression Bank" [59].

To assess the statistical significance of the over-representa-
tion of predicted NF-κB-regulated genes we used the
Fisher exact probability test for 2 × 2 contingency tables
implemented in the statistical package R [60].

From nearly 500 genes described as cytokine-regulated
[6], 225 NO-independent genes were retrieved and
mapped to the list of 3068 genes expressed in INS-1E cells,
resulting in 32 genes predicted as NF-κB-target. The pro-
gram compare-classes was used to detect significant over-
laps between annotated classes (14 different functional
classes and 15 temporal gene expression clusters,
described in [6]), and the subsets of genes predicted as
NF-κB targets (32 genes) or not (193 genes).

The FatiGO (Fast Assignment and Transference of Infor-
mation using Gene Ontology (GO)) web tool [61], avail-
able at [62], was used to search for significant differences
in distributions of GO:Biological Process (GO:BP) catego-
ries between predicted NF-κB-regulated and non-regu-
lated groups of genes. GO:BP categories that were
statistically over- or under-represented in the predicted
sets of NF-κB target genes were identified by a Fisher's
exact test (adjusted p < 0.05) that consider multiple test-
ing. Adjusted p-values returned by FatiGO were calculated
using the false discovery rate (FDR) [63].
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