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Networks of regulatory relations between transcription factors (TF) and their target genes (TG)- implemented through TF
binding sites (TFBS)- are key features of biology. An idealized approach to solving such networks consists of starting from
a consensus TFBS or a position weight matrix (PWM) to generate a high accuracy list of candidate TGs for biological validation.
Developing and evaluating such approaches remains a formidable challenge in regulatory bioinformatics. We perform
a benchmark study on 34 Drosophila TFs to assess existing TFBS and cis-regulatory module (CRM) detection methods, with
a strong focus on the use of multiple genomes. Particularly, for CRM-modelling we investigate the addition of orthologous
sites to a known PWM to construct phyloPWMs and we assess the added value of phylogenentic footprinting to predict
contextual motifs around known TFBSs. For CRM-prediction, we compare motif conservation with network-level conservation
approaches across multiple genomes. Choosing the optimal training and scoring strategies strongly enhances the performance
of TG prediction for more than half of the tested TFs. Finally, we analyse a 35th TF, namely Eyeless, and find a significant
overlap between predicted TGs and candidate TGs identified by microarray expression studies. In summary we identify several
ways to optimize TF-specific TG predictions, some of which can be applied to all TFs, and others that can be applied only to
particular TFs. The ability to model known TF-TG relations, together with the use of multiple genomes, results in a significant
step forward in solving the architecture of gene regulatory networks.

Citation: Aerts S, van Helden J, Sand O, Hassan BA (2007) Fine-Tuning Enhancer Models to Predict Transcriptional Targets across Multiple
Genomes. PLoS ONE 2(11): e1115. doi:10.1371/journal.pone.0001115

INTRODUCTION
The characterization and understanding of gene regulatory

interaction networks that rigorously control the execution of

genetic programs that make functional cells, tissues, and organisms

is a key challenge for post-genome biology. Such regulatory

interactions are formed by transcription factors (TFs) and their

target genes (TGs) and are implemented via TF DNA-binding sites

(TFBS) located in cis-regulatory modules (CRM) of TGs. A CRM

is a promoter or enhancer sequence that contains TFBSs for one

or more TFs and that controls a specific aspect of the expression

pattern of the TG [1]. A consequence of genetic pleiotropy- one

gene, multiple functions- is that genes often have several distinct

expression patterns regulated by several distinct CRMs per gene.

For example, the expression of the atonal TF in Drosophila

melanogaster (Dmel) in different tissues is regulated by discrete

CRMs, some of which are also autoregulatory [2–4]. It is therefore

not surprising that comparative genomics and computational

CRM predictions [5] suggest large numbers of CRMs per genome,

implying very large numbers of regulatory interactions. The vast

majority of these interactions remain to be discovered. This

complexity means that it will be practically impossible to

understand the logic and organization of gene regulatory networks

without the application of genome-wide, TF-specific computa-

tional TG discovery methods. Although genetic interaction,

expression profiling and chromatin binding approaches can

provide lists of candidate TGs, they each suffer from disadvantages

such as high cost, technical limitations, inability to detect direct

TGs, and prohibitive numbers of conditions to test [6]. Therefore,

experimental approaches would benefit greatly from being

complemented by in silico TG discovery methods.

Ideally, computational approaches to mine entire genomes for

TFBSs and CRMs would generate highly accurate lists of

candidate TGs that can be taken directly to in vivo biological

validation. Bioinformatics approaches have been developed to

predict TFBSs for TFs that have a known consensus TFBS or

position weight matrix (PWM). Unfortunately, this approach

results in a 1000-fold excess of false predictions when applied on

a genomic scale [7]. In a handful of cases, however, genome-scale

scanning for TF-target interactions has been successful, particu-

larly if the binding sites are evolutionarily conserved and if they

occur in clusters. These can be either homotypic clusters with

multiple TFBSs for one TF as is the case for Drosophila Dorsal [8],

Bicoid [9] and Suppressor of Hairless [10], or heterotypic TFBS

clusters for several very well characterized TFs [11–13]. The

methods applied in these studies are often based on Hidden

Markov Models (HMM) [14–16]. They take one motif or a set of

motifs - in the form of PWMs - as input and identify confined
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regions in large DNA sequences that harbor significantly more

motif instances than expected by chance or than given by

a background model. Alternatively, predicted TFBSs can be

filtered by their occurrence in conserved non-coding DNA

stretches [17].

There are a few reasons why such methods cannot be

generalized. First, PWMs for most TFs are built from few

instances and the minimal number of instances for a useful PWM

is not known. Second, not all TFs regulate their TGs via

homotypic TFBS clusters. Third, for most CRMs that contain

heterotypic clusters the cooperating TFs, let alone their PWMs,

are unknown. Fourth, several independent studies have found that

sequence conservation per se is not sufficient to identify enhancers

because many enhancers are functionally conserved without

sharing high levels of sequence identity across a long DNA stretch

[11,13,18]. Based on this latter point, methods have been

developed to search for conserved motif clusters across two

genomes [13,19]. However, these methods have not been assessed

for their ability to score more than two genomes, nor for their

performance on a wide range of TFs. Taken together, these

limitations mean that it is currently unclear under what conditions,

using which parameters and for which TFs genome-scale TG

prediction is feasible.

To investigate these issues we perform a benchmark study on

genome-scale TG prediction for individual TFs. The benchmark

consists of in silico validations on known TGs with identified TFBSs

for 34 Drosophila TFs from the FlyReg database [20]. The

availability of the full genome sequences of twelve Drosophila

species at a range of evolutionary distances from D. melanogaster

provides the opportunity to study the evolution of genes [21] and

the discovery and annotation of functional elements like protein-

coding genes, miRNA genes, and regulatory motifs [22]. In our

benchmark study, we take advantage of the multiple genomes in

several ways. First, we compare the use of Dmel PWMs built from

the known binding sites versus phyloPWMs built from orthologous

binding sites from 10 other Drosophila species. Next, we exploit all

Drosophila genomes to improve the prediction of homotypic TFBS

clusters, either by applying motif conservation or network-level

conservation filters. For TFs that show a low performance in this

approach, we investigate the use of heterotypic enhancer models

consisting of de novo discovered motifs by phylogenetic footprint-

ing, also using all Drosophila genomes. Finally, we model the known

TGs of a 35th TF not included in the initial assessment, namely the

eye determination TF Eyeless (Ey). We find a significant overlap

between predicted TGs and a list of candidate targets obtained

from a recently published and biologically validated microarray

experiment.

An important conclusion of this study is that no general rule

exists that applies to all, or even most, TFs. However, most TFs

benefit greatly from the use of multiple genomes in enhancer

scoring. Also, we find that by performing cross-validations, the

optimal strategy and parameters can be determined for each TF.

By training these parameters and through the extensive use of

multiple genomes, combined with Gene Ontology filters or

microarray data, we estimate that genome-wide discovery of

TGs is feasible for about 50% of the TFs tested.

RESULTS

Detecting homotypic enhancers using known PWMs

while eliminating validation bias
The first, and most straightforward, strategy for motif-based TG

prediction, is to use an existing consensus site or PWM for the

TF under study. The genome-wide discovery of TGs through

homotypic cluster prediction [23] was already shown to be

feasible for a number of TFs, particularly Dorsal [8], Bicoid [9]

and Suppressor of Hairless [10]. Here, we test this strategy for all

34 TFs in our dataset (see Methods and Table S1). We have

chosen the Hidden Markov Model implementation of Cluster-

Buster [15], although other methods that take a PWM as input

are available [16,24,25]. Through leave-one-out cross-validation

(LOOCV), we test whether a 1000 bp ‘positive’ sequence

flanking one or more known binding sites can be discriminated

from ‘negative sequences’ by the motif cluster score. As negative

sequences we use 500 randomly selected proximal promoter

sequences. In each run, the 501 sequences are ordered by

descending score and the rank of the positive region is recorded

(Figure 1). For one TF, this process is repeated f times, each time

using a different target sequence as the positive region. The

process is also repeated t times, once for each TF. This way, 166

rank positions (Sfiti) are obtained. Rank positions are then

plotted cumulatively to yield a special type of Receiver

Operating Characteristic (ROC) curves. For different analysis

methods or parameter settings, different curves are obtained that

can be compared, as done previously for related and different

problems [26–30]. The area under this curve (AUC) is a measure

of the overall detection performance integrating both sensitivity

and specificity values. Using the approach outlined above, we

first asked if searching for homotypic clusters of TFBSs is

a generally applicable approach for detecting TGs. A PWM is

built from all the TFBSs of a specific TF in the dataset, including

the TFBSs present in the left-out region. As a negative control,

we use scrambled PWMs. Compared to the negative control

(Figure 2, black curve), the approach yields relatively strong

average performance across the 34 TFs (Figure 2, grey curve). In

other words, it is possible, at least to some extent, to distinguish

the test sequence from other sequences when the footprints that

are present in the test sequence are used to build the training

PWM. Although this is the standard approach used in almost all

studies, there is a serious problem with it: it introduces a strong

bias because the TFBSs in the test region are contained within

the training PWM. As such, this approach does not reflect the

‘real life’ situation in which biologists are attempting to discover

novel TGs starting from known ones. To simulate a realistic

situation, we excluded all TFBSs that are contained within the

test sequence from the training PWM. The unbiased perfor-

mance curve that is obtained when leaving-out the sites in the

test regions is our baseline (Figure 2, blue curve). Whether low-

complexity regions in test and negative sequences were masked

or not did not influence this overall curve (data not shown), and

different sets of negative sequences, for example known

enhancers from REDfly [31] or genomic flanking regions, also

gave similar results (Figure S1). Not surprisingly, the AUC for

this curve is smaller than for the biased curve, but it remains

significantly larger than the negative control.

Next we examined the performance of unbiased homotypic

cluster detection in detail. We find that 37 out of 166 test regions

rank in the top 2% (10/501 scored sequences) representing 19 of

34 TFs. To investigate the performances of each individual TF in

more detail, we plot ROC curves per TF and calculate AUC

scores for each TF separately (Figure 3C, black bars). Amongst the

high scoring TFs are Dorsal (AUC = 0.99) and Bicoid

(AUC = 0.89) that were previously known to use homotypic

clusters. In addition, the homotypic cluster approach to TG

prediction works very well for Adh transcription factor 1 (0.95),

Tinman (0.93), Trithorax-like (0.92), and Zeste (0.90). We could

not find any obvious correlation between the performance and the

size of the data set (Figure 3C). Amongst the high-performing TFs

Target Gene Prediction
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are both factors with large data sets (e.g., dl, Trl, bcd) and factors

with small data sets (e.g., Adf1, tin, Dref). Similarly, amongst the

low-performing TFs are factors with large (e.g., en, Ubx) and small

(e.g., HLHm5, slbo, srp) datasets.

Adding orthologous sites can improve the quality of

sparse PWMs
Given the availability of multiple Drosophila genomes, an in-

teresting question is whether better PWMs can be built using

sequences that are orthologous to the known TFBSs. The issue of

phylogenetic conservation of TFBSs is paradoxical because on the

one hand, TFBSs are known to have a high evolutionary turn-over

rate [32], while on the other hand many have been discovered by

virtue of their evolutionary conservation. We asked if the addition

of conserved sites- defined as aligned sites sharing more than 40%,

70%, 80%, or 90% identity between a given Drosophila species and

Dmel- to the PWM improves the overall performance (see

Methods). A priori we expected the 70% identity cut-off to perform

best because we calculated from all PWMs in the TRANSFAC

library that the sites that make up a PWM have 72% identity on

average. This cut-off allows one substitution in a 6 bp motif, two in

a 8 bp motif, and three in a 10 bp motif. We expected that a less

stringent cut-off (e.g., 40%) would allow too many negative

Figure 1. LOOCV assessment scheme. An enhancer model, consisting of one or more PWMs, is trained on known target regions of a TF, excluding
the target region of the test TG (here TG4 is excluded). This left-out region, together with a set of negative sequences, is scored with the enhancer
model. All 166 rank ratio’s are plotted cumulatively.
doi:10.1371/journal.pone.0001115.g001

Figure 2. LOOCV performance for homotypic cluster detection on
Dmel. For each of the 34 TFs, target sequences are scored with Cluster-
Buster, using a PWM built from all known binding sites (grey curve) or
from all known binding sites except those located in the region being
scored (blue curve). Scrambled PWMs are used as negative controls
(black curve).
doi:10.1371/journal.pone.0001115.g002
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sequences in the phyloPWM, and that a more stringent cut-off

(e.g., 90%) would not introduce enough variability. To our

surprise, we do not observe an increased average performance

across all 34 TFs with any of these phyloPWMs (Figure 4A). This

is not because we have too few conserved sites due to alignment

errors [32] since the 70% phyloPWMs for example are built

from 7.81 times more sites on average than the Dmel PWM

(where the maximal number of orthologous sites would be 11

times the number of Dmel sites, for 11 genomes used). When

looking at individual TFs, we find that only three TFs benefit

from a phyloPWM with more than 10% performance increase,

namely HLHm5, Scalloped, and Ventral Veins Lacking.

Figure 4B shows the difference in AUC for each TF between

the Dmel-PWM and the phyloPWM. PWMs built from fewer

than 20 sites are found to be more susceptible to phylogenetic

extension than PWMs built from more than 20 sites (Figure 4B).

Note that the performance of a PWM with few sites can also

decrease when adding orthologous sites. This is a first illustration

of how the cross-validation assessment can assist in the selection

of the most appropriate model, in this case the type of PWM, for

each TF.

Different approaches for enhancer scoring using

multiple genomes: network-level conservation

versus motif conservation
Using multiple genomes in the training step to construct PWMs

only sometimes improve detection of test TG enhancers. However,

using sequence conservation between Dmel and D. pseudoobscura

(Dpse) during enhancer scoring has been suggested as a useful filter

[13,19]. The program STUBBMS [19] also implements a Hidden

Markov Model like Cluster-Buster used above, but can score two

genomes simultaneously given one or more PWMs as input. When

we apply the program STUBBMS [19] to the combined scoring of

Dmel and Dpse regions we find a better performance than using

Cluster-Buster on Dmel alone (Figure 3A). This suggests that the

addition of a second genome improves enhancer scoring.

However, STUBBMS is limited to only two genomes. To solve

this we propose two new approaches. In the first approach we

attempt to integrate HMM-based enhancer scoring with ranking

across muliple genomes using the premise that orthologous

enhancers can be functionally conserved without necessarily

having high sequence identity [11]. To this end we scored each

Figure 3. Integrating HMM-based enhancer scoring across multiple genomes. (A) LOOCV performances of Cluster-Buster (red dashed curve) and
STUBBMS (green curve) on two genomes (Dmel and Dpse), Cluster-Buster on all genomes using network-level conservation (NLC) (red curve), and
Cluster-Buster combined with motif conservation (MC) (purple curve). The red dotted curve is the negative control. (B) Implementation of network-
level conservation by integrating the Cluster-Buster scores on multiple genomes through order statistics. Rank ratios for orthologous sequences
(both positive and negative) are obtained for each species separately and are integrated by the order statistics formula. Dmel sequences are finally
ranked according to the integrated score. (C) LOOCV performances (AUC values in the y axis) for each TF (x axis), using the Dmel PWM or the
phyloPWM. The first two bars represent the scoring on Dmel alone, the next two on all genomes with network-level conservation (NLC), and the last
two on all genomes with motif conservation (MC). The TFs are sorted according to decreasing baseline performance (black).
doi:10.1371/journal.pone.0001115.g003
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species separately with Cluster-Buster and used order statistics

[30,33] to combine the species-specific rankings of all orthologous

test regions into one overall rank (Figure 3B and Methods). This

approach can be classified under the so-called network-level

conservation approaches [34]. In our case, sequence alignment

data are only used initially to search for the best orthologous

match(es) in a given species to a Dmel 1 kb region. We assembled

orthologous sequences from 10 other species by directly querying

the net alignments of the UCSC Genome Browser database [35].

We also constructed a second series of sets using LAGAN [36]

aligments and these yielded similar performance results (data not

shown).

We find that using order statistics to integrate information from

all 11 species during enhancer scoring for homotypic clusters

results in the best performance, with a significant improvement

over Dmel alone, or any pairwise combination with Dmel (data

shown for Dmel-Dpse). To ensure that the order statistics themselves

do not bias the results, we combined the rankings obtained from

scrambled PWMs. This did not result in an increased performance

compared to scrambled PWMs from Dmel alone (Figure 3A, red

dotted curve). Therefore, including all Drosophila genomes in the

scoring step improves enhancer detection when searching for

homotypic clusters.

In a second, more classical approach, we filtered the HMM-

based motif cluster predictions based on sequence conservation of

the predicted motifs themselves. Using the phastCons scores [37]

from the UCSC browser we masked all nucleotides with

a conservation score below 0.90 before applying the HMM-

scoring (thresholds of 0.5 and 0.7 gave similar results; data not

shown). The resulting overall performance is better than the

STUBB-MS performance on two genomes only (purple curve in

Figure 3B), but slightly worse than the performance of the

network-level conservation approach.

Importantly, the ROC curves depict averages across 34

transcription factors. When looking at the performances of the

individual TFs, it became clear that some factors benefit more

from network-level conservation (e.g., tin, kr, twi, zen) and others

are better suited for motif conservation applications (e.g., abd-A,

Ubx, HLHm5, cad, gt). Again, we could not find any obvious

correlation between the methods and the size of the starting data

sets, neither in terms of target genes nor in terms of binding sites

per TF. The TF-wise performances for each method, both for the

Dmel PWM and the phyloPWM are presented in Figure 3C,

together with the size of each data set. This is a second illustration

of how the cross-validation assessment can assist in the selection of

the most appropriate model, in this case the type of conservation

filter.

Learning contextual motifs to construct heterotypic

enhancer models
Using multiple genomes resulted in improved performance in

homotypic cluster prediction for many TFs. However, it is known

that many TFs operate in cooperation with other TFs that bind to

different binding sites in the neighborhood, which is often

a relatively small sequence window (e.g., 1 kb). To take the

existence of such heterotypic motif clusters into account in our

dataset of 166 enhancers, we added a pattern discovery step to

identify a shared context between all regions targeted by the same

TF, always excluding the left-out test region (Figure 1). The

trained model consists of a set of motifs, represented by PWMs,

used to score the left-out region. As for homotypic enhancer

models, a large set of negative sequences are scored and the rank

of the test region within this test set is plotted.

First, we apply two traditional motif discovery methods,

namely MotifSampler [38] and oligo-analysis [39] to each Dmel

training set. The number of motifs found by MotifSampler is

a parameter of the method, and was set to 5. Oligo-analysis has

the advantage that only significantly over-represented k-mers

(where k is 6,7 or 8) are reported, yielding between zero and 18

motifs per regulon, with an average of 4.3 and a standard

deviation of 4.17. Oligo-analysis gives slightly better results than

MotifSampler in the high-specificity range in which we are

interested. The reason why the performance for oligo-analysis

decreases in the low-specificity range is our conservative

approach that instructs Cluster-Buster to rank the left-out region

last when oligo-analysis does not find any common motifs in the

training set. Note that oligo-analysis yields over-represented

DNA words, not PWMs, while Cluster-Buster requires PWMs as

input for the scoring step. To solve this problem we transform

each over-represented word into a pseudo-PWM (see Methods

and Supplementary Note 1). In agreement with published results

[40], we observe that single species motif discovery results in

unsatisfactory enhancer models that are not able to generalize

Figure 4. Homotypic cluster detection with phyloPWMs. (A) LOOCV
performance for Dmel PWMs (blue curve), and phyloPWMs from all
species tested (Dmel, Dsim, Dsec, Dere, Dyak, Dana, Dpse, Dper, Dvir,
Dmoj, and Dgri). Orthologous sites were chosen based on a minimum of
either 40% (green curve), 70% (red), 80% (brown), or 90% (orange)
identity with the Dmel true binding site. (B) Differences between the
AUC values obtained from a Dmel PWM and a phyloPWM, for each TF.
TFs with differences above 0.05 are colored orange. PWMs with few
sites (y-axis) have greater AUC differences than PWMs with many sites.
doi:10.1371/journal.pone.0001115.g004
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(Figure 5A). We therefore reasoned that a multiple species motif

discovery method might increase performance. We chose

PhyloGibbs [41] but other methods like PhyME, OrthoMEME,

PhyloConn are also available. Similar to MotifSampler, the

number of motifs found by PhyloGibbs is a parameter of the

method and was set to 5. The performance of the resulting

enhancer models (green curve in Figure 5A) is slightly better than

those trained by oligo-analysis on Dmel alone, but remains

unsatisfactory. When inspecting the predicted motifs by the

pattern discovery methods, we observed that even the real motif

can only be found in a limited number of cases, for example for 8

out of 34 factors when using PhyloGibbs (Figure S2), and for 14

out of 34 factors when using oligo-analysis (data not shown). To

further improve the performance, we combined the known,

experimentally determined, PWM with the de novo discovered

PWMs in one enhancer model. The average performance of this

hybrid model across all TFs is similar to that of the homotypic

baseline model (Figure 5A, dashed green and orange curve for

PhyloGibbs and oligo-analysis respectively). In an attempt to

further increase the sensitivity and specificity, we combined the

search for heterotypic clusters with our new method of scoring

multiple genomes using network-level conservation. To do this

we applied motif discovery with either PhyloGibbs or oligo-

analysis. For PhyloGibbs we use the same PWMs for all species

because each PWM was built from all species during the

PhyloGibbs motif discovery step. For oligo-analysis, which works

on single species, we discovered new motifs in each species

separately and then scored each species with its own species-

specific collection of pseudo-PWMs. The performance curves for

the heterotypic models consisting of PhyloGibbs or oligo-analysis

motifs, combined with the true PWM, and scored on all available

species show significantly improved performance (Figure 5B). Of

the 166 enhancers 49 (29.5%) and 54 (32.5%) rank within the top

2% for models from PhyloGibbs and oligo-analysis, respectively.

We examined individual TF performances (Figure 5B) and

compared them to the performances of the Dmel PWM with

network conservation (i.e., the red bars in Figure 3C) because here

the experimental PWM and the scoring method are the same. We

find several factors, such as gt, kni, E(spl), tll, ftz, abd-a, and

HLHm5 with significantly improved performances. This is the

third illustration of how cross-validations can be used to identify

the optimal enhancer model for each transcription factor.

Figure 5. LOOCV performances for heterotypic CRM-models. (A) Heterotypic models consist of PWMs obtained by motif discovery on Dmel
sequences using MotifSampler (brown curve) or oligo-analysis (orange curve) and on all species using PhyloGibbs (green curve). Models consisting of
combined de novo PWMs with the true experimental PWM are shown for oligo-analysis (dashed orange) and PhyloGibbs (dashed green). Scoring is
either done on Dmel alone (thin full lines) or on all species by network-level conservation (NLC) (thick lines and dashed lines). (B) In green and orange
are LOOCV performances for scoring with heterotypic models (either species-specific for oligo-analysis or cross-species for PhyloGibbs) on all species
including the Dmel PWM (cfr thick full lines in A). Scoring on all species is done by network-level conservation (NLC). In blue is the control, namely
NLC using the Dmel PWM alone, without newly discovered motifs.
doi:10.1371/journal.pone.0001115.g005
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When the optimal method is used for each TF, the AUC

increases by more than 10% over the initial performance baseline

for 25 out of the 34 TFs. The number of TFs for TG detection is

highly performant (AUC.0.9) increases from 5 to 19 out of 34

(Figure 3C, black bars and Figure 5B).

Genome-wide target gene prediction
The ultimate goal of computational target gene prediction is to

obtain a high quality set of candidate targets by scanning one or

more genomes. The cross-validations described above show

promising results for a number of transcription factors. However,

in practice several obstacles arise. The first obstacle in genome

scanning is the definition of the search space and the association of

a predicted regulatory region with a target gene. For the Drosophila

genomes we chose to attribute a CRM to a gene when it either lies

in an intron of that gene or within 5 kb upstream of that gene.

Each sequence region of a gene (i.e., each intron and the upstream

sequence) receives the maximal CRM score found within that

region. For the network-level conservation approach, each region

in the Dmel genome is associated with its orthologous region in

another genome using UCSC’s genome alignments. The top 100

scoring genes for each of the 34 TFs (using the optimal enhancer

model for each TF), together with the locations of the predicted

motif clusters, are presented on our website (http://med.kuleuven.

be/cme-mg/lng/cisTarget).

The second, more problematic obstacle is the size of the test set

that now consists of 93330 regions (all regions for all genes).

Sensitivities of 50% will no longer be feasible because the top 10%

regions represent more than 1000 genes, which is too large for

biological validation and even for further filtering by functional

annotations. On the other hand, we know from the LOOCV tests

that even the top 1% (136 genes) could contain a few bona fide

target genes, because about 10% of the targets (18 out of 166 for

the phyloPWM with motif conservation) were found in the top 1%

(i.e., top 5 out of 501 regions) in the LOOCV. We attempted to

enrich for true targets within the top 100 genes by comparing

over-represented Gene Ontology (GO) terms with the GO

annotation of the TF itself. When the optimal model – based on

the LOOCV results - is chosen for each TF, 15 TFs show a top

100 TG prediction with a significant enrichment of at least one

biological process of the TF (see Table 1; the complete GO results

for all TFs are available from our website). To test whether the

selection of the optimal model is important for GO enrichment,

we compared the optimal model to one reference model, namely

the homotypic model using the Dmel PWM and network-level

conservation. Indeed, by using the reference model instead of the

optimal model for each TF, 8 factors loose the GO enrichment

that was relevant for the TF, another three TFs have a p-value that

is still significant but less than the optimal method, one TF has the

same p-value and only 1 TF has a better p-value (data not shown).

Filtering based on functional annotation is however limited to

the detection of genes with GO IDs. For genes without GO IDs

computational predictions can be complemented with data from

other sources, such as phenotypic data, protein-protein interaction

or expression data. As an example we analyzed a regulon of the

eye determination transcription factor Ey. Ey was not included in

our earlier dataset because the FlyReg database only contains one

target gene of Ey, namely sine oculis (so). However, recent studies

have identified four more targets of Ey: eya, shf, Optix, and atonal

[42]. The first three were found by expression studies comparing

wild type and ectopic Ey over-expression [43]. All five genes have

identified Ey binding sites that have been validated through in vitro

binding studies and in vivo reporter assays. Ostrin et al. conducted

a microarray experiment and identified 188 potential TGs of Ey

whose expression is independent of the function of the retinal

differentiation TF atonal. The total of five target regions can now

be subjected to cross-validation. The assessment suggests that the

homotypic approach with multiple genomes performs best for Ey,

although the differences between methods are small in the high

specificity range in which we are interested (data not shown).

Although Ostrin et al. used a phyloPWM in their study [43], the

cross-validation performances we observed for our phyloPWM

were similar to the Dmel PWM. The homotypic model using the

Dmel PWM and network-level conservation was applied to the full

genome, ranking all 5 kb upstream regions and all introns. The

top 100 scoring genes have ‘‘photoreceptor cell differentiation’’

over-represented with a p-value of 6.45e-06. The 9 photoreceptor

differentiation genes in the top 100 are bun, eya, fz, hth, lilli, mbl,

Optix, pnt, and sdk. It is important to note that neither GO:0048748,

nor any other eye development GO term, is over-represented in

the top100 candidate genes when the scoring is performed on Dmel

alone.

There are 9 genes in the top 100 genes that are also present in

the set of 188 genes of Ostrin et al. To determine the significance of

this result, the same procedure was repeated for 100 randomiza-

tions of the Ey PWM. The top 100 scoring genes from randomized

PWMs contain 3.7062.84 genes (95% confidence interval) in

common with the Ostrin set of 188 genes. The maximal difference

between the true ranking and the randomizations is obtained at

a threshold of 171 genes (Figure S3). At this threshold, the

randomized PWMs yield an overlap of 6.0563.65 while the true

PWM yields an overlap of 14 genes (p-value of 2.3288e-05). These

14 genes are mspo, SK, so, toy, ey, CG17816, Optix, CG30492,

CG32521, osp, Fas2, CG5888, Tie, and eya.

DISCUSSION
Gene regulatory networks of TFs and their TGs play key roles in

development, homeostasis and behavior. The relationship between

a TF and its TGs is achieved through ‘‘DNA words’’, usually 4–

12 bp long, acting as binding sites for the TF in question. A

collection of such motifs regulating a specific aspect of the

expression of a gene defines a CRM. Therefore, to understand

network organization, we need to understand the organizational

logic of CRMs. Since most networks mediating a specific

biological function consist of multiple TFs and their- sometimes

overlapping- TGs, the capacity to detect TGs genome-wide and in

silico with high accuracy would bring major advantages. In this

respect, regulatory bioinformatics faces a few challenges. First, the

organizational logic(s) of CRMs is not clear. Do most TFs regulate

their TGs via multiple or single TFBSs? How conserved do such

TFBSs need to be at the sequence level to be detectable? Can the

contextual information around a given TFBS in a CRM be

harnessed to improve TG detection? Does the availability of

multiple related genomes foster or complicate CRM detection?

And finally, do different TFs follow different logics? Developing

and assessing methods that can address these issues is clearly

a major goal of regulatory bioinformatics.

To begin to address these issues we took advantage of the

availability of 12 Drosophila genomes and the Drosophila database of

TF-TG relations (FlyReg) to perform a benchmark study on

genome-wide in silico TG prediction. Drosophila is ideally suited for

such an approach not only because multiple genomes are now

available, but also because a few regulatory networks, such as the

segmentation network, have been well-established in vivo resulting

in several deeply understood TF-TG relations. One challenging

problem of target gene prediction is the mapping of an in silico

predicted regulatory locus to the gene it potentially regulates.

Indeed, several known enhancers are located one or several genes
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upstream of the actual target gene, for example the cluster of

dorsal binding sites that regulates zen is located directly upstream

of CG1162. To circumvent this problem in the benchmark

analysis and to make direct comparisons at the sequence level

possible, we added isolated regulatory regions to sets of negative

sequences. This setup has the additional advantage that it requires

less computational resources so that more parameters can be

varied. We chose the same region size for each enhancer and each

transcription factor to exclude confounding effects of the size when

comparing across factors (Cluster-Buster can generate higher

scores for larger regions). For the cross-validations we arbitrarily

set this size to 1 kb. Such a choice is justified because the cross-

validations are intended to compare relative performances rather

than absolute performances. When a cross-validation procedure is

applied on a single factor under study, the region size could be

considered as an additional parameter. For the genome-wide

scoring, the size of the motif clusters is determined by Cluster-

Buster.

Cross-validation tests and subsequent genome-wide TG predic-

tions result in both higher average performances across a data set

of more than 30 TFs (of a total of approximately 700 TFs in the

Dmel genome [44]) as well as determination of the optimal

parameters for each of the individual TFs. This is of particular

value for molecular geneticists who are likely to be interested in

one or a few TFs within a network and for whom average

performance across a large dataset is not particularly useful. The

difference between the two is highlighted by our finding that two

different performance parameters result in highly similar average

Table 1. Selection of GO-filtered genome-wide target gene predictions from our website.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TF Known TGs Model AUC GO ID GO Term P-value Candidate TGs

bcd tll, eve, ems, Kr, kni, salm, h,
hb

Homotypic P-NLC 0.91 GO:0008595 determination of
anterior/posterior axis,
embryo

2.00E-07 gt, kni, pum, hb, slp1, oc,
tll, eve, Kr

dl rho, zen, twi, sna, dpp Homotypic F-NLC 1 GO:0007498 mesoderm
development

6.08E-04 dpp, mbl, zfh1, sna, S, pnt,
twi, tmod, jeb, vnd

tin Mef2, eve, betaTub60D, tin Homotypic F-NLC 0.99 GO:0007507 heart development 4.63E-11 mid, G-oalpha47A, fz, apt,
lbl, svp, hh, fas, tin, Mef2,
pnr

brk zen, lab, bi Homotypic P-MC 0.95 GO:0007179 transforming growth
factor beta receptor
signaling pathway

0.0308 Dad, sog, pnr, bun

cad ftz, kni, salm Homotypic P-MC 0.92 GO:0007379 segment specification 7.58E-06 kn, osa, Antp, cad, Abd-B,
kis, abd-A

pan slp1, eve, Ser Homotypic P-MC 0.88 GO:0016055 Wnt receptor signaling
pathway

0.0168 osa, Notum, Wnt4, Axn,
par-1

Mad zen, vg, tin Homotypic P-MC 0.88 GO:0007267 cell-cell signaling 0.00563 DopR, para, NetA, pum,
mib1, D2R, shot, wb, scrib,
Or98a, bab1, dlg1, fru

sd ct, bs, vg, kni, salm Homotypic P-MC 0.91 GO:0007476 wing morphogenesis 0.03205 vg, dpp, bs, fz, shot, sgg,
px

E(spl) ac, sc, l(1)sc, Espl Heterotypic F-O-NLC 0.94 GO:0045165 cell fate commitment 0.000383 fz, l(1)sc, Ubx, pum, vn,
bun, spen, mam, fas, sc

gt abd-A, eve, Kr, kni HeterotypicF-O-NLC 0.96 GO:0007354 zygotic determination
of anterior/posterior
axis, embryo

0.00104 tll, gt, kni, sog, Kr

HLHm5 ac, l(1)sc, Espl Heterotypic F-O-NLC 0.91 GO:0045165 cell fate commitment 4.40E-05 hth, srp, pnt, l(1)sc, pum,
Ubx, vn, bun, spen, ac, kay

kni Ubx, eve, Kr, h Heterotypic F-O-NLC 0.99 GO:0035290 trunk segmentation 0.00150 kni, Ubx, eve, Kr

ovo orb, otu, Sxl, ovo Heterotypic F-O-NLC 0.92 GO:0009993 oogenesis (sensu
Insecta)

0.00158 dpp, Ptp61F, Eip74EF, Sxl,
pum, bun, dnc, ovo, Fas3,
ttk, sty, Eip75B, Mef2, ct

tll Ubx, ems, Kr, kni, h, hb Heterotypic F-O-NLC 0.9 GO:0045165 cell fate commitment 1.76E-09 hth, eya, fz, kni, vvl, Ubx,
pum, hdc, run, h, tll, fas, sc,
Kr, ct

twi rho, Ubx, sna, sim, tin Heterotypic F-O-NLC 0.92 GO:0007507 heart development 0.00244 fz, fas, Antp, apt, Ubx,
Mef2

ey so, shf, Optix, eya, ato Homotypic F-NLC 0.94 GO:0007456 eye development
(sensu Endopterygota)

9.98E-05 hth, Optix, Fas2, eya, fz,
pnt, so, bun, toy, lilli, S,
klar, fred

Overlap with 188
upregulated genes after
ey over-expression from
[43]

2.33e-05 mspo, SK, so, toy, ey,
CG17816, Optix, CG30492,
CG32521, osp, Fas2,
CG5888, Tie, eya

Candidate targets are presented for those TFs with AUC above 0.88 and with a TF-associated functional enrichment in the list of top 100 candidates. Results for other
factors, for other functional classes, and for genomic locations of predicted motif clusters can be found at http://med.kuleuven.be/cme-mg/lng/cisTarget/. F = FlyReg
PWM, P = phyloPWM, NLC = Network-level conservation, MC = Motif Conservation, F-O = FlyReg PWM+oligo-analysis motifs.
doi:10.1371/journal.pone.0001115.t001..
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performance, but radically different single TF performance

profiles. As a result of these advantages the number of factors

for which TG detection becomes highly performant (AUC values

above 0.90) is increased from 5/34 to 19/34.

We attempted to address some of the questions facing

regulatory bioinformatics. The major conclusions from our work

are as follows. First, there is unlikely to be a single unifying CRM

logic, at least at current levels of genome annotation resolution.

We find that whereas some TFs perform optimally with single

TFBS parameters (data not shown), others use clusters of

homotypic TFBSs and still others use heterotypic TFBS clusters.

Thus, a methodology that can determine the optimal approach

per TF a priori is necessary for successful single TF based TG

predictions. Second, the availability of multiple genomes is, in

general, extremely useful for genome-wide TG prediction. One

exception to this rule is that, contrary to conventional wisdom and

several previous reports, additional genomes do not always result

in better PWM building. The reason for this could be that PWMs

that are built from sufficiently distinct binding sites (e.g., more than

20) already possess enough variation and do not benefit from the

addition of more sites. A small amount of PWMs with very few,

but highly conserved sites (e.g., HLHm5) do benefit from

a phylogenetic extension.

The availability of multiple genomes becomes especially useful in

two other ways. First, it improves the training of a CRM model from

a set of known target regions, to discover sites that are both

conserved and shared across this set. We have assessed whether such

de novo discovered motifs could contribute to a better enhancer model

for the TF. Second, it improves the scoring of a CRM model by

taking advantage of functional enhancer conservation or TFBS

conservation. We found no obvious explanation (e.g., in terms of

correlations with TF families, with the conservation of known sites,

or with the size of the TG set) why some TFs perform better with

network-level conservation and others with motif conservation.

When more cis-regulatory data becomes available as validation sets,

for example through open community based annotation [45],

a deeper investigation of this issue may become feasible.

Although several of the tested variables, most importantly the

integration of multiple genomes, can result in significantly enhanced

TG prediction accuracy, more work is needed to improve on this

performance because only a portion of the true target enhancers

could be detected. Again, it can be expected that performances will

increase further, when more knowledge about regulatory regions

emerges. For example, King et al. found recently that in vertebrates

some regulatory regions correlate well with phastCons conservation

scores (used for our motif conservation), while other regulatory

regions correlate better with alignment-based scores that are

corrected for background neutral substitution rates[46]. However,

even with more advanced interspecies comparisons, on a genomic

scale the true positive TF-TG interactions are spread out across

many other high-scoring interactions. At present it is difficult to

determine for a certain TF whether the other high scoring genes are

also bona fide TGs, false positive predictions, or- most likely- a mix of

both. Several ways can be envisioned to further improve the

performance. For example, enhancer predictions can be combined

with other data types to filter the ranked enhancers, such as GO

terms, as we have shown for the TFs in Table 1, and/or large scale

expression data, as we tested for the eye determination TF Ey. The

benchmark dataset can be used in the future to evaluate novel

methods for de novo motif discovery, enhancer prediction, or target

gene prioritization.

In summary, we have tested several strategies and parameters

for the computational prediction of TF-TG relations through

TFBS and CRM detection. The selection of the best strategy for

each individual TF, combined with the extensive use of multiple

genomes during both the training and scoring of enhancer models

results in a significant step forward in the bioinformatics to solving

the architecture of gene regulatory networks.

MATERIALS AND METHODS

Data
Our dataset consists of 166 TF-target relations for 34 transcription

factors, generated by selecting all known TFs from FlyReg [20]

that have minimally 3 distinct target genes (Table S1). Each TF-

TG is represented by a test sequence, defined by selecting 1000 bp

flanking sequence around only one of the TF-specific footprints

around the TG. The ‘experimental’ PWMs are constructed by

taking the best hit within each footprint after scoring with the

corresponding matrices that were construced by Daniel Pollard

using the MEME algorithm (http://rana.lbl.gov/,dan/matrices.

html). The scoring was done using Patser [47]. PWM scrambling is

done by permuting the columns of a matrix, thereby conserving

the A/T en C/G composition. 500 negative sequences are selected

ad random from all 1 kb proximal sequences from the UCSC

Table Browser [48]. Other negative sets that we tested are all the

REDfly [31] enhancers with a maximal size of 1 kb (308 in total),

extended in the genome to 1 kb, and 250 sequences of 1 kb

surrounding a test sequence (125 on each side). Sets of orthologous

sequences for positive and negative Dmel sequences are assembled

using the liftOver utility of the UCSC Genome Browser [49].

Multiple output regions, due to homology to discontinuous

regions, are all retained for training and scoring. Aligned

sequences to Dmel TFBSs, used to build phyloPWMs, are also

obtained through the UCSC liftOver utility. PhastCons conserva-

tion scores were downloaded from the UCSC download pages.

Species and UCSC assemblies used throughout the analyses are D.

melanogaster (dm2), D. simulans (DroSim1), D. sechellia (DroSec1), D.

yakuba (DroYak1), D. erecta (DroEre2), D. ananassae (DroAna2), D.

pseudoobscura (dp3), D. persimilis (DroPer1), D. virilis (DroVir2), D.

mojavensis (DroMoj2), and D. grimshawi (DroGri1).

Cross-validation
Methods for motif discovery, for CRM prediction, and for the use

of multiple genomes are compared through leave-one-out cross-

validation (LOOCV) (see Figure 1). For a regulon of N targets, an

enhancer model is trained on N-1 positive regions of 1000 bp. The

model is used to score the Nth (left-out) target region and a set of

negative sequences. All sequences are then ordered by descending

score and the rank of the left-out region is recorded. For one TF,

this process (training, scoring, ranking) is repeated N times, each

time leaving out another target region. The process is also

repeated for each TF. This way, a total of 166 rank positions are

obtained. By ordering these, and plotting them cumulatively,

a kind of Receiver Operating Characteristic (ROC) is obtained.

For different analysis methods, different curves are obtained that

can be compared. Also, the area under this curve (AUC) is

a measure for the overall detection performance integrating

sensitivity and specificity values.

Sequence scoring
The program Cluster-Buster [15] is used to score a sequence with

a set of PWMs, using 1000 bp (the length of the test sequences) as

range (-r option) for counting local nucleotide abundances. Order

statistics are applied to integrate Cluster-Buster-based rankings on

multiple genomes as described in [30] and in Figure 3B. STUBBMS

is used with windowsize and shiftsize 1000, to give one score to the

1 kb test sequence. Gene Ontology statistics on lists of top scoring
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genes were calculated with the Generic GO Term Finder at http://

go.princeton.edu/cgi-bin/GOTermFinder [50].

Pattern discovery
For each LOOCV run, the Gibbs sampling program MotifSam-

pler [38] was run 50 times for motifwidths 5, 6, 8, 10, 12, and 14,

prior 0.2 and a 0th order backgroundmodel from the whole 1 kb

dataset. Resulting motifs were clustered and ranked according to

information content as done in [40].

The program oligo-analysis [39] detects motifs in sequences by

counting the occurrences of all oligonucleotides, and calculating

their significance according to a background model, estimated by

counting the occurrences of all oligonucleotides in all species-

specific upstream sequences. Prior to their analysis, training

sequences were purged with the program mkvtree [51] to discard

internally repeated fragments. The genome-wide repetitive frag-

ments were also masked for the pattern discovery step using

UCSC Genome Browser RepeatMasker annotation (http://www.

repeatmasker.org). Oligonucleotide occurrences of all sizes be-

tween 6 and 8 were counted on both strands, only considering the

renewing occurrences (self-overlapping occurrences of a same

word were discarded). The threshold of significance was set to 1,

corresponding to an E-value of 1 false positive oligonucleotide per

10 training sets. Each run of oligo-analysis returns a set of over-

represented oligonucleotides, which were used to construct

a pseudo-PWM for each over-represented oligo with a value of

10 for the letters forming the word, and 0 for the other letters (see

Note S1). To use oligo-analysis on multiple species, we detect over-

represented words in each species separately, and use those to

score the test regions of the respective species.

The PhyloGibbs program allows detecting motifs that are both

conserved and shared across co-regulated sequences [41].

PhyloGibbs was run with parameters -D1 -m8 -z5 (5 motifs of

width 8), -L‘‘((DroGri1:0.7,(DroVir2:0.75,DroMoj2:0.75):0.7):0.5,

((DroPer1:0.95,Dp3:0.95):0.7,(DroAna2:0.8,(DroEre1:0.82,(Dro

Yak1:0.85,(Dm2:0.9,(DroSec1:0.95,DroSim1:0.95):0.9):0.85):0.82):0.8):0.7):0.5)’’

and whole chr2L as background sequence. Resulting matrices

were compared with FlyReg matrices using the Kullback-Leiber

distance [17].

SUPPORTING INFORMATION

Figure S1 Leave-one-out cross-validation performance for differ-

ent negative sets. The rank of the positive ‘‘test’’ region (1 kb) within

a set of negative sequences (all 1 kb) is plotted cumulatively. As

negative sequences were used 500 randomly selected proximal

promoter sequences, upstream of the annotated transcription start

site (black curve) or 308 REDfly enhancers of maximally 1 kb length

(blue curve), then all genomically extended to 1 kb, or 250 flanking

sequences around the positive region (green curve), or 500 randomly

generated sequences of 1 kb using a 5th order Markov model trained

on all Dmel upstream sequences.

Found at: doi:10.1371/journal.pone.0001115.s001 (0.15 MB

PDF)

Figure S2 Cmparison of PhyloGibbs PWMs and real PWMs. All

16665 motifs resulting from PhyloGibbs were compared to all 34

real PWMs, using the progam MotifComparison that implements

the Kullback-Leiber distance between matrices [1]. Left column

are real PWMs, middle column are matching PhyloGibbs motifs,

and right column is the distance between both. Only eight real

PWMs could be matched below distance threshold 1.0.

Found at: doi:10.1371/journal.pone.0001115.s002 (0.70 MB

PDF)

Figure S3 Overlap between Ey candidate targets obtained from

microarray data and from genome-wide binding site prediction. At

different cut-offs N (x-axis), the N top scoring Ey candidate targets,

based on motif detection, are compared with the 188 Ey candidate

targets obtained from gene expression studies [1]. The same is

done for each of 100 randomized rankings (obtained by using

a randomized Ey PWM). (A) For each cut-off value, the number of

genes in common between the two sets is plotted on the y-axis.

The values for the true Ey PWM are in blue, while the mean

values of the randomized PWMs are in black. A 95% confidence

interval is plotted in red dashed lines. (B) A p-value for each cut-off

value is plotted on the y-axis. The p-values are calculated using

a normal distribution based on the mean and standard deviation

from the randomized rankings. The optimal p-value is obtained by

using a cut-off value of 171.

Found at: doi:10.1371/journal.pone.0001115.s003 (0.08 MB

PDF)

Table S1 Dataset used in the study. 166 TF-target relations

extracted from the FlyReg database [1]. For all factors with at least

three different target genes, one footprint was chosen. 1000 bp

flanking this footprint is used as training or test sequence in the

cross-validation.

Found at: doi:10.1371/journal.pone.0001115.s004 (0.11 MB PDF)

Note S1 Linking oligo-analysis output with Cluster-Buster input.

Found at: doi:10.1371/journal.pone.0001115.s005 (0.07 MB PDF)
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