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ABSTRACT

Transcription factor (TF) databases contain mul-
titudes of binding motifs (TFBMs) from various
sources, from which non-redundant collections are
derived by manual curation. The advent of high-
throughput methods stimulated the production of
novel collections with increasing numbers of mo-
tifs. Meta-databases, built by merging these collec-
tions, contain redundant versions, because available
tools are not suited to automatically identify and
explore biologically relevant clusters among thou-
sands of motifs. Motif discovery from genome-scale
data sets (e.g. ChIP-seq) also produces redundant
motifs, hampering the interpretation of results. We
present matrix-clustering, a versatile tool that clus-
ters similar TFBMs into multiple trees, and automati-
cally creates non-redundant TFBM collections. A fea-
ture unique to matrix-clustering is its dynamic vi-
sualisation of aligned TFBMs, and its capability to
simultaneously treat multiple collections from vari-
ous sources. We demonstrate that matrix-clustering
considerably simplifies the interpretation of com-
bined results from multiple motif discovery tools,
and highlights biologically relevant variations of sim-
ilar motifs. We also ran a large-scale application to
cluster ∼11 000 motifs from 24 entire databases,
showing that matrix-clustering correctly groups mo-
tifs belonging to the same TF families, and dras-
tically reduced motif redundancy. matrix-clustering
is integrated within the RSAT suite (http://rsat.eu/),
accessible through a user-friendly web interface or
command-line for its integration in pipelines.

INTRODUCTION

Transcription factor binding motifs (TFBMs, simply called
motifs below) are models describing the binding specificity
of a transcription factor (TF). Such motifs are generally ob-
tained by aligning the sequences of several binding sites,
and summarizing the nucleotide frequencies per position.
Motifs are commonly represented as position-specific scor-
ing matrices (PSSMs) (1) and visualized as sequence logos
(2). Although the adequacy of PSSMs has been questioned
for some particular TF classes (3–6), e.g. in cases of depen-
dencies between adjacent nucleotides, they are still the most
widely used method to represent the binding specificity of
a TF. Thousands of PSSMs are available in private or pub-
lic databases, such as JASPAR (7), TRANSFAC (8), Cis-
BP (9), FootprintDB (10), HOCOMOCO (11), which con-
stitute key resources to interpret functional genomics re-
sults. A well-known issue with these databases is motif re-
dundancy (12), resulting from various causes: (i) for a given
TF, multiple PSSMs can be built from different collections
of sites characterized with alternative methods (i.e. DNase-
Seq, SELEX, protein-binding microarrays (PBMs), ChIP-
seq); (ii) the binding specificity is often conserved between
TFs of the same family; (iii) some databases contain PSSMs
obtained from orthologous TFs in different organisms; (iv)
some unrelated TFs recognize similar DNA motifs.

In addition to this intra-database redundancy, inter-
database redundancy and the exponential growth of motif
collections are becoming major issues. Indeed, the develop-
ment of high-throughput methods to characterize genome-
wise TF binding locations (e.g. ChIP-seq, ChIP-exo) has led
to an explosion of motifs, with a fast expansion of databases
(e.g. JASPAR almost doubled in size between 2014 (590 mo-
tifs) and 2016 (1092 motifs)) (12). In parallel, some individ-
ual studies targeting many TFs (13,14) produce motif col-
lections as large as the classical reference databases. This
constant increase in the number of motifs and redundant
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Table 1. Features of software tools available to perform clustering of PSSMs

collections represents a real challenge for the community.
Which collection to use? How important is the overlap be-
tween the different collections? Efforts to collect and inte-
grate numerous up-to-date collections into a single meta-
database like FootprintDB (10) or cis-BP (9) are critical for
the community. These metadatabases however do not deal
yet with the redundancy issue, and keep increasing in size.
This now constitutes a bottleneck, by drastically increas-
ing the time needed to compare motifs or to scan sequences
with a complete motif database.

Analysis of high-throughput datasets (e.g. from ChIP-seq
experiments) also produces sets of redundant motifs. It is
common practice to simultaneously run multiple de novo
motif discovery tools, in order to benefit from their com-
plementarity (15–18). While some motifs could be discov-
ered exclusively by a given tool, most will be found indepen-
dently by different tools, hence producing redundant motifs
with small variations in length and/or nucleotide frequen-
cies at some positions. Some of these variations may be im-
portant biologically, but remain undetected when inspect-
ing unordered collections of motif logos.

Motif redundancy can be automatically reduced by iden-
tifying sets of similar motifs and clustering them. Quanti-
fying the similarity between motifs is nevertheless far from
trivial. Many efforts have been done to develop statistical
methods and to find adequate comparison metrics between
motifs, each one with its own strengths and drawbacks (19–
36). Despite this intensive research activity to refine mo-
tif similarity metrics, no general consensus has emerged
about the best one. Currently, a handful of tools are avail-
able for motif comparison: STAMP (22,37), TomTom (23),
MATLIGN (26), macro-ape (27), DMINDA (35), DbcorrDB
(34) and RSAT compare-matrices (38). Other tools are spe-
cialized in motif clustering: STAMP (22), m2match (25),
MATLIGN (26), GMACS (28), DMINDA (35) and motIV
(Bioconductor package) (see Table 1 for a comparison of
their capabilities). However, each of these tools presents
some limitations: analysis based on a single metric, re-
stricted number of input motifs, static visualization inter-
faces.

We have developed matrix-clustering within the RSAT
suite (39), motivated by the crucial need for a tool to
cluster similar motifs, align them to facilitate visual com-
parison, explore each cluster in a dynamic way, and re-
duce redundancy either automatically or in a supervised,
user-friendly way. We first show with two case studies that
matrix-clustering simplifies the interpretation of motif dis-
covery results, and that a dynamic view of aligned logos can
reveal biologically relevant motif variants. We then consider
two applications encompassing complete databases, which
show that the program regroups motifs bound by TFs of the
same family, and can be used to explore the complementar-
ity between multiple motif collections. This approach paves
the way towards creating systematic non-redundant motif
collections.

MATERIALS AND METHODS

Overview

matrix-clustering first computes a matrix of similarity be-
tween each pair of input PSSMs, runs hierarchical cluster-
ing to build a complete motif tree, which is then partitioned
to generate motif clusters (Figure 1), based on a combina-
tion of thresholds on one or several motif similarity metrics.
Within each cluster, PSSMs are then aligned. The results are
displayed on a dynamic user-friendly web report enabling to
collapse or expand trees at will.

Input formats and processing time

matrix-clustering receives as input one or several collections
of PSSMs (provided as separate files) with an associated
‘collection name’ (e.g. several PSSM collections obtained
from different analyses or databases). This program sup-
ports different file formats: TRANSFAC (default), MEME,
HOMER, JASPAR, etc., and has no restriction on the num-
ber of input PSSMs, but users should be aware that the pro-
cessing time increases drastically with the number of mo-
tifs (time complexity is approximately quadratic, see Sup-
plementary Figure S1). For small collections of motifs, the

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/45/13/e119/3862068 by guest on 05 January 2022



PAGE 3 OF 13 Nucleic Acids Research, 2017, Vol. 45, No. 13 e119

Figure 1. Schematic flow chart of the matrix-clustering algorithm. The program takes as input one (or several) collection(s) of PSSMs, and calculates the
motif similarity using several metrics. One of these metrics is used to group the motifs with hierarchical clustering. A threshold consisting in a combination
of metrics is used to partition the global tree in a set of cluster-specific trees. Each resulting tree then serves as a guide to progressively align the PSSMs. The
PSSMs at the root of each tree are exported as non-redundant motifs. The trees can be collapsed or expanded at each node dynamically on the resulting
web page.
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running time enables matrix-clustering usage via the web-
site (e.g. 7 min for the first case study with 66 motifs). Large
datasets can be treated with a stand-alone installation of the
RSAT suite.

PSSM comparison

Similarity between each pair of input PSSMs is calculated
with the RSAT tool compare-matrices (38,39), which can
compute multiple similarity metrics in a single run: Pear-
son correlation (cor), sum of squared distances (SSD),
Mutual Information, Information correlation (Icor), Eu-
clidean Distances (dEucl), Sandelin–Wasserman Similarity
(SW), as well as width-normalized versions of some met-
rics obtained by dividing the total length of the alignment
by the number of columns where the two PSSMs over-
lap: normalized correlation (Ncor), normalized information
content correlation (NIcor), normalized Euclidian distance
(NdEucl) (see Supplementary Notes for the mathematical
formulae). Each possible offset is tested for each pair of
PSSMs in both orientations, and the program returns the
best matching alignment.

Hierarchical clustering

To build the global hierarchical tree encompassing all input
PSSMs, the user must select one motif similarity metric (to
make the motif-to-motif distance matrix) and one linkage
method (average, complete or single). Some metrics directly
measure distances (dEucl, SSD, SW); for the metrics mea-
suring similarities (e.g. cor, with a range from –1 to +1), the
values are first transformed into dissimilarities (i.e. Dcor =
2 – r, where r is the correlation coefficient).

Identification of motif clusters by tree partitioning

As the RSAT program compare-matrices (38) can return
several metrics simultaneously, any combination of these
can be selected to define thresholds for the partitioning step,
thereby enabling to combine their respective advantages.
The global tree is traversed in a bottom-up way and, for
each intermediate node, the selected metrics values are com-
puted from all pairs of descendent leaves according to the
chosen linkage rule (single, average, complete). Whenever
an intermediate node fails to satisfy any of the threshold
values, a new cluster is created by separating its two chil-
dren branches.

Progressive alignment of the PSSMs

Once the global tree is partitioned, each resulting cluster
tree is used as a guide to progressively align the PSSMs.
They are first orientated (direct or reverse) and then shifted
relative to each other. Note that this algorithm does not in-
sert internal gaps. This process produces one multiple align-
ment for each internal node of each tree, ending with a root
alignment that encompasses all the PSSMs of a cluster.

Branch-wise PSSMs, logos and consensus sequences

Once the PSSMs of each cluster tree have been aligned,
matrix-clustering calculates for each internal node a branch-

wise PSSM by summing (default) or averaging the frequen-
cies of the descendent aligned motifs. It then generates the
corresponding consensus sequences and logos. Branch-wise
PSSMs introduced here are a generalization of the so-called
familial binding profiles (FBP) (37).

Dynamic visualization of the clusters

The clusters are displayed as a PSSM forest, i.e. a collection
of trees (one per cluster) with a PSSM associated with each
leave. A unique feature of matrix-clustering is that trees can
be browsed dynamically: each branch can be collapsed by
clicking, and it is replaced by the logo of the branch PSSM,
thereby enabling to produce customized motif trees (Figure
1).

Cross-coverage of motif collections

When two or more motif collections are given as input, the
cross-coverage indicates the percentage of the PSSMs from
one collection that co-occur in clusters with PSSMs from
another collection. The coverage of collection A by collec-
tion B (cA,B) is the number of PSSMs from A co-clustered
with PSSMs from B (|Awi th B|), divided by the total number
of motifs in A (|A|).

cA,B = |Awi th B|
|A|

Reciprocally, the coverage of collection B by collection A
is computed as follows.

cB,A = |Bwi th A|
|B|

This asymmetrical comparison provides a more realistic
interpretation of the importance of the intersection relative
to the respective sizes of collections (e.g., a comparison be-
tween smaller and bigger databases). The cross-coverage is
displayed as a heatmap, and a Venn diagram is drawn for
each pair of collections. The percentage of specific motifs
to each collection is also indicated.

PSSM datasets of the case studies

Case studies 1 and 2: in order to illustrate the clustering of
ab initio discovered motifs, we used 359 PSSMs obtained
with the RSAT tool peak-motifs (15,40) from 12 TF ChIP-
seq peak-sets (41). We also collected the PSSMs obtained
by analysing one ChIP-seq peak set with MEME-ChIP (16)
and Homer (42).

Case studies 3 and 4: for full database clustering, we
analysed 24 taxon-specific collections from 18 databases
(Supplementary Table S1): vertebrates (JASPAR (7), HO-
COMOCO mouse and human (11), Cis-BP (9), Jolma
2013 ‘HumanTF’ (4), Jolma 2015 ‘HumanTF dimers’ (13),
Uniprobe (43), Fantom5 ‘novel’ motifs (44), hPDI (45),
epigram (46), Homer (42), Encode (47)), plants (JASPAR,
Athamap (48), Cis-BP, ArabidopsisPBM (49) and Cistrome
(14)) and insects (OntheFly (50), JASPAR, dmmpmm
and idmmpmm (51), Cis-BP (9), FlyFactorSurvey (52),
DrosphilaTF (53)).
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Implementation

matrix-clustering is implemented in Perl and R. The Logo
trees are implemented in HTML5 with the D3 JavaScript
library (54) (http://d3js.org/).

RESULTS

We have developed matrix-clustering to deal with the in-
creasing number of motifs and reduce the inherent redun-
dancy within collections. It takes as input one or more col-
lections of PSSMs, measures the similarity between them
using several motif comparison metrics, builds a similarity
tree by hierarchical clustering, splits the initial tree to ob-
tain one tree per cluster, generates a consensus and a logo
for each branch of each tree, computes branch-wise PSSMs,
and generates different graphical representations, including
a dynamic visualization enabling flexible customization of
the display (Figure 1).

Choice of the default clustering parameters

Parameters of matrix-clustering were chosen based on a
detailed comparison between clusters of 374 PSSMs from
HOCOMOCO human TFBMs (11) and their classification
in 21 families taken from the TFClass database (55). We
tested four alternative similarity metrics (cor correlation,
Ncor normalized correlation, Icor information correlation,
and NIcor normalized information correlation), three link-
age rules (single, average or complete), incremental series
of partitioning threshold values on each metric (by step of
0.05), as well as combined thresholds applied on a metric
and its normalized version (Ncor + cor or NIcor + Icor).
Based on this study, we defined the default parameters: the
motif-to-motif similarity matrix is computed using Ncor
with a minimal alignment width of 5 columns, the motif
tree is built with the average linkage rule, and the partition-
ing criterion combines thresholds on two metrics: cor ≥ 0.6
and Ncor ≥ 0.4. The detailed results of the systematic eval-
uation, as well as the parameters used for each program, are
described in the Supplementary Notes.

Case study 1: identification of TF binding motif variants
within motifs discovered with multiple tools in ChIP-seq
datasets

It is common practice to perform ab initio motif discovery
with several algorithms and to consider the motifs found by
several approaches as robust predictions. Yet, some motif
variants can be found only by a particular algorithm. This
first case study aims at comparing motifs detected in ChIP-
seq peaks with three motif discovery tools: RSAT peak-
motifs, Homer and MEME-ChIP. We re-analysed the ChIP-
seq peaks for the Oct4 TF (also named Pou5f1) in mouse
embryonic stem cells (ESC) from Chen et al (41).

Altogether, the three tools produced 66 motifs: 22 discov-
ered by RSAT peak-motifs, 25 by MEME-ChIP and 19 by
Homer. matrix-clustering separated these 66 PSSMs into 13
clusters (Supporting website). The largest cluster regroups
37 PSSMs corresponding to Sox, Oct and other Oct-like
motifs (Figure 2A). Since the name of the source collection
is automatically displayed besides each logo (spelled RSAT

for RSAT peak-motifs, MEME for MEME-ChIP, HOMER
for Homer), we readily identify the robust motifs discovered
by multiple tools, as well as motif variants detected by a sin-
gle algorithm.

We manually collapsed the cluster tree and identified six
non-redundant motifs (Figure 2B) for which we searched
for similarities in JASPAR vertebrates and HOCOMOCO
Human (Figure 2C).These six motifs correspond to the
canonical Oct4 (blue box on Figure 2A and B), Sox2 (or-
ange), the composite SOCT (Sox+Oct) motif (red) (56), an
alternative configuration of Oct4 (black) (57), a palindromic
Oct homodimer (more palindromic oct factor recognition
element, MORE) (green) (58), and an octamer-repeat (Ocr)
(purple) (59). Of note, these last two motifs were only found
by RSAT peak-motifs (Figure 2B).

The contributions of the respective motif discovery tools
to the clusters are unbalanced. While RSAT contributes to
three clusters shared with MEME and HOMER, MEME
raised one single-PSSM cluster (singleton) and HOMER six
(Figure 2D). The cross-coverage between the tools (Figure
2E) confirms that RSAT and MEME show high overlap,
whereas the HOMER motifs are quite dissimilar from those
obtained with the other tools. Of note, many PSSMs only
found by Homer are actually of low-complexity (2-residue
repeats) and are not likely to correspond to bona fide TF-
BMs.

Altogether, this case study demonstrates that matrix-
clustering can guide and accelerate human-based reduc-
tion of a highly redundant collection of motifs, produced
by running several motif discovery tools on the same se-
quence set. The clustering moreover highlights the existence
of TFBM variants and combinations (e.g. homodimers, het-
erodimers).

Case study 2: identification of exclusive or shared motifs be-
tween various ChIP-seq experiments

We extended our previous analysis to the 12 TFs studied by
Chen et al. (41) in order to identify common and set-specific
motifs among the ChIP-seq peak sets. We ran RSAT peak-
motifs on each peak set separately and obtained 359 PSSMs,
regrouped by matrix-clustering into 28 clusters (Supporting
website).

Some clusters contain set-specific motifs, e.g. Stat3 (clus-
ter 12), Nanog (cluster 14), Ctcf (cluster 17) and Zfx (clus-
ter 18) (Figure 3A). Other clusters contain motifs found
in two or more peak sets: the Sox (cluster 10), Myc (clus-
ter 5) and Oct motifs (cluster 1) are respectively found in
three (Oct4, Sox2 and Nanog), two (nMyc and CMyc) and
six (Oct4, Sox2, Nanog, Stat3, Tcfcp2l1, cMyc) peak sets
(Figure 3A). These TFs are known to cooperatively regu-
late common target genes, explaining why their motifs are
found across multiple peak sets (41,56). The cross-coverage
heatmap (Figure 3B) provides a global view of the content
similarity between motif collections. This representation
confirms that PSSMs discovered in Oct, Sox and Nanog
peak sets are highly similar, consistent with the fact that
these TFs co-occur in shared enhancers (41). This is also the
case for the cMyc and nMyc motifs, as well as for E2f1 and
Zfx, which are functionally related as histone genes regula-
tors (60). By contrast, the motifs discovered in CTCF peak
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Figure 2. Clustering of PSSMs discovered in the Oct4 ChIP-seq peaks using several motif discovery tools. The Oct4 peaks identified by Chen et al. (41) were
submitted to three de novo motif discovery programs: RSAT peak-motifs, MEME-ChIP and Homer. All discovered PSSMs were clustered simultaneously
by matrix-clustering. (A) Hierarchical tree corresponding to cluster 1 (37 motifs), where different Oct motif variants and Sox2 motifs are highlighted with
different coloured boxes. The leaves are annotated with the name of the submitted motif and the name of its collection (RSAT, MEME, HOMER). (B)
Reduced tree showing six non-redundant motifs, obtained after manual curation of the cluster 1, by collapsing the branches. (C) Annotation of the six non-
redundant variants (‘branch PSSMs’) based on alignments to reference motifs (see main text). When available in databases (JASPAR or HOCOMOCO),
the ID of the reference motif is indicated. Otherwise, it is replaced by the PMID of the publication mentioning the motif. (D) Heatmap summarizing the
number of motifs from each collection found in each cluster. (E) Heatmap of the cross-coverage between each collection.
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Figure 3. Clustering of 12 sets of PSSMs discovered in mouse ESC TF ChIP-seq peaks. (A) Matrix showing the cluster composition by motif collection.
Examples of motifs found in one or several collections (and their corresponding logos) are indicated with green and blue arrows, respectively. (B) Heatmap
showing the cross-coverage between the 12 motif collections corresponding to the ESC TF peak-sets.

sets are mostly specific to this collection. This case study
shows that handling multiple motif collections (a feature
unique to matrix-clustering) can highlight their similarities
and differences.

Case study 3: complete database analyses highlights relation-
ships between motif clusters and TF families

We evaluated whether a clustering of complete motif
databases enables (i) to identify redundancy between motifs,
and (ii) to regroup PSSMs from the same TF family. TFs
are classified in families according to their DNA-binding
domains (55,61), which usually recognize similar binding
sites. TFs belonging to the same families are thus often as-
sociated with similar TFBMs, which constitute a source of
redundancy.

We clustered the complete set of taxon-specific motifs
from JASPAR (vertebrates and insects), and species-specific
motifs from HOCOMOCO (human and mouse). The clus-
tering of JASPAR insects (133 motifs grouped in 35 clusters)
reveals a large cluster of 70 PSSMss (Figure 4A; Support-
ing website) encompassing almost half of the database. This
corresponds to homeodomain-containing TFs, whose TF-
BMs are characterized by the core consensus 5′-TAAT-3′
(62). The dynamic browsing capabilities of matrix-clustering
enable to manually reduce these 70 PSSMs to 10 distinct
motifs (Figure 4B). The numerous members of this family
in the insect database reflect a bias in the content, as most
of these PSSMs result from a single analysis covering many
homeodomain TFs analyzed with bacterial one-hybrid sys-
tem (62).

By contrast in vertebrates, the 641 human PSSMs of
HOCOMOCO are reduced to 127 small clusters (Figure
4C). We obtained similar results for JASPAR vertebrates
and HOCOMOCO mouse collections (Supplementary Fig-
ure S2A and B, Supporting website). As HOCOMOCO in-
cludes the information about TF families imported from
TFclass (55), we analyzed the correspondence between clus-
ters produced by matrix-clustering and these TF families.
The majority of the clusters (77 out of 127) indeed regroup
motifs bound by TFs from a single family (Figure 4D).
Furthermore, most of the other clusters actually regroup
TFs belonging to different families of the same class. The
remaining clusters encompass TFs from different classes
but nevertheless bound to similar motifs, and thus correctly
grouped by matrix-clustering.

Reciprocally, for each TF family we counted the number
of covered clusters (Figure 4E, Supplementary Figure S3).
Among the 78 families from HOCOMOCO, 29 are consis-
tently packed in a single cluster, 10 in two clusters, and 16 in
three clusters. On the other extreme, some TF families are
split into many clusters, in particular the Zinc finger fami-
lies (e.g. for the family ‘Factors with multiple dispersed zinc
fingers’, each PSSM comes as a separate cluster). This dis-
persion is perfectly consistent with the well-known proper-
ties of these TFs: the sequence bound by each Zinc finger
domain is determined by the four specific amino acids en-
tering in contact with the DNA (63).

As above mentioned, we explored the impact of cluster-
ing parameters on the correspondence between clusters of
PSSMs from Human HOCOMOCO (11) and the families
of the bound TFs (see section ‘Choice of the default parame-
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Figure 4. Clustering of complete Insect and Human motif databases. (A) Heatmap representing the similarity (Ncor) between all 133 PSSMs of JASPAR
Insects. The 35 clusters found are indicated with a colored bar above the heatmap. The black square emphasizes the large cluster (almost half of the PSSMs)
containing the very similar Homeodomain motifs. (B) The 70 Homeodomain motifs were manually reduced by collapsing the tree branches into ten motifs.
The collapsed tree is displayed along with the corresponding aligned branch motifs. (C) Heatmap representing the similarity (Ncor) between all 641 PSSMs
of HOCOMOCO Human. (D) Repartition of the clusters formed from HOCOMOCO Human with TF families. The bar plot indicates that most clusters
are composed of a single TF family. The pie chart illustrates the reasons for observing multiple TF families in a single cluster. (E) Scatterplot comparing the
number of members of each TF family as a function of the number of covered clusters. The name of the families with more than 20 members are shown. (F)
Scatterplot showing the trade-off between sensitivity and specificity by clustering PSSMs from the same family with either matrix-clustering or STAMP,
using different parameters to compute similarities between each pair of input matrices, build the trees and define the clusters. For matrix-clustering, the
curves denote a series of tests performed with different threshold values on the same similarity metric. For STAMP, the number of clusters is defined
automatically. Dot sizes are proportional to the Adjusted Rand Index (ARI). The ideal clustering would be in the top-right corner.
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ters’ and Supplementary Notes). The best correspondence,
as measured by both Adjusted Rand Index (ARI) and ge-
ometric accuracy (Acc), was achieved with Ncor as matrix-
to-matrix comparison metric, average linkage rule to build
the tree, and a partitioning combining thresholds on Ncor
(≥0.4) and cor (≥0.6) (Figure 4F).

This case study demonstrates how matrix-clustering can
handle large collections of PSSMs and automatically re-
duce their redundancy within a database, while correctly re-
grouping motifs from TFs belonging to the same family.

Case study 4: comparison and integration of multiple motif
databases

To evaluate inter-database redundancy and to automati-
cally produce a non-redundant motif set, we clustered 24
motif collections and measured their cross-coverage (see
Supplementary Table S1 and Material and Methods for the
complete list of collections).

We first merged these public databases to obtain three
taxon-specific collections for insects (7 databases; 1895
PSSMs), plants (5 databases; 1590 PSSMs) and vertebrates
(12 databases; 7781 PSSMs), respectively. We then applied
matrix-clustering and obtained 354 clusters for insects (19%
of the total merged PSSM collection), 306 for plants (19%)
and 1757 for vertebrates (33%) (Supporting website). In or-
der to obtain non-redundant motifs whilst preserving speci-
ficity, we used more stringent partitioning criteria than the
default (cor ≥ 0.8 and Ncor ≥ 0.65): the threshold on cor-
relation ensures that the clustered motifs are highly simi-
lar and the additional threshold on normalized correlation
selects the alignments covering most of the motif lengths,
in order to separate composite motifs (e.g., bound by a TF
dimer) from their elementary components.

We then explored the mutual overlap between the origi-
nal collections by computing the cross-coverage (Figure 5).
For the insect databases, Cis-BP, OnTheFly, FlyFactorSur-
vey and JASPAR are the most similar to each other, while
DrosophilaTF is drastically different from all of them (Fig-
ure 5A), likely because this collection was built by selecting
motifs discovered exclusively on Drosophila promoters, and
whose binding factors are unknown (53).

For the plant databases, JASPAR and Cis-BP are most
similar to each other (Figure 5B), which is coherent with
Cis-BP being an integrative motif collection encompass-
ing other public collections (including JASPAR). The three
other databases focus on sets of motifs characterized by
specific experimental methods (PBM for ArabidopsisPBM,
binding sites curated from literature for Athamap, DAP-seq
for CisTrome).

Regarding vertebrates, five databases have a similar con-
tent (HOCOMOCO human and mouse, JASPAR, cis-BP,
Jolma 2013 ‘HumanTF’), which is explained by the inte-
gration of HOCOMOCO and JASPAR in Cis-BP, as well
as by the similarity of the original datasets used to build the
TFBMs (mostly public ChIP-seq, Selex-seq and PBM), yet
with different algorithms (Figure 5C). Note that the cross-
coverage is not reciprocal since the number of motifs and the
motif diversity differ among these databases. For example,
JASPAR includes 62% of the content of Cis-BP, whereas
the latter encompasses 86% of JASPAR motifs (Figure 5D).

Figure 5. Cross-coverage of public motif databases. Several full public col-
lections were merged and clustered, separately by taxa. The heatmaps of
the cross-coverage between each collection is plotted for (A) seven insect
collections, (B) five plant databases and (C) twelve vertebrate databases.
The heatmaps show the cross-coverages for each pair of databases. Note
that the heatmaps are not symmetrical because the numbers of motifs in
the different databases differ. (D) Venn diagrams showing the asymmetry
of cross-coverage between two databases with different sizes.

We observed that the motif diversity is not proportional to
the database size (e.g. the 641 JASPAR vertebrate PSSMs
cover 82% of the 1800 Cis-BP Human PSSMs). In con-
trast, the contents of the remaining databases differ con-
siderably according to the different methods and data used
to build the motifs: a single type of data (Uniprobe, derived
from PBMs only), restricted numbers of sites (hPDI, 17 se-
quences per motif on average), data from ChIP-seq exper-
iments targeting histone marks in different cell types (epi-
gram), or motifs modelling TF dimers (Jolma 2015 ‘Hu-
manTF dimers’). The low cross-coverage of Fantom5 col-
lection of ‘novel’ motifs is consistent with the definition
if this database, which is restricted to motifs without any
match in reference databases (44).

In summary, this case study highlights how matrix-
clustering can be used to automatically reduce motif re-
dundancy across multiple databases into non-redundant
taxon-wise motif collections (available as Supporting files
1–3 and on the Supporting website) encompassing several
thousands of PSSMs. The concise representation provided
by the cross-coverage heatmap enables to intuitively grasp
the overlap between each pair of individual collections.
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Comparison with alternative motif clustering tools

RSAT matrix-clustering is the only tool supporting dynamic
browsing of motif trees with custom collapse/expansion of
branches, and providing multiple ways to inspect the results:
motif forest with branch motifs at each level of each tree,
similarity heatmap, searchable table of motifs and clusters,
comparison between multiple collections with contingency
tables summarizing relationships between clusters and col-
lections, as well as cross-coverage between collections. See
Table 1 for a list of features supported by existing motif clus-
tering tools. This flexibility has a cost in computing time (see
Supplementary notes for a comparison of time efficiency be-
tween STAMP and matrix-clustering).

Figure 4F shows a comparison between the performances
of matrix-clustering and STAMP, based on three evalua-
tion criteria: the abscissa indicates the positive predictive
value (PPV), i.e., the proportion of a motif cluster that be-
longs to the same TF family, whereas the ordinate indicates
the sensitivity (Sn), i.e., the proportion of a motif family
found grouped in the same cluster. The size of the sym-
bol is proportional to the Adjusted Rand Index (ARI), a
single-valued metric capturing the global correspondence
between the clusters and the TF families (see Supplemen-
tary Notes for the detailed formulae). A perfect correspon-
dence would reach the top-right corner. The result closest
to this ideal is achieved by matrix-clustering with the dou-
ble threshold on Ncor and cor (orange empty diamonds),
which supersedes the single-metric thresholds on Ncor (blue
diamonds) or cor (red diamonds). STAMP results are rep-
resented by a single symbol (crossed diamond) per metric
rather than a curve, since it partitions the tree based on an
automatic, non-tunable criterion. The best result returned
by STAMP is obtained with the average linkage on Pear-
son correlation coefficient (PCC). Interestingly, this result
is inferior to matrix-clustering result with the same metric
(cor) and linkage rule. All the other metrics supported by
STAMP return poorer results. In particular, the Kullback–
Leibler metric (KL) generates almost one cluster per motif,
therefore reaching a trivial result with maximal PPV (each
cluster matches a single TF family) but a very poor sensitiv-
ity (clusters only cover a tiny fraction of each family). The
Sum of Square Distance (SSD) metrics has the opposite
bias: it produces only two clusters, which results in a very
high sensitivity (almost all the members of a given TF fam-
ily are comprised in either of these clusters) but a weak PPV
(since each cluster regroups many families, cluster member-
ship is not informative).

We furthermore submitted our case studies 1 and 3 to
several motif clustering tools (using default parameters):
STAMP (22), m2match (25), Matlign (26) and Gmacs (28).
This analysis was restricted to case studies 1 and 3, since
no other tool currently supports the clustering of multiple
collections. The results are detailed in the Supplementary
Notes.

Performances of clustered and unclustered matrices to predict
binding sites

Motif clusters are built from motifs differing by their
lengths, numbers of sites and information content (IC). By

Figure 6. Information content and predictive power of the unclustered
and clustered motifs. (A) Clustering of five HOCOMOCO human mo-
tifs bound by NF-kappaB-related factors. The blue numbers at the tree
branches indicate the information content of each PSSM. The number of
sites used to build each matrix is indicated in parenthesis. (B) Logos of
the merged motif at each level of the tree. (C) Enrichment of predicted
NFKb binding sites for original and merged (branch + root) motifs in
ChIP-seq peaks for RelA in Hodgkin Lymphoma Cell Line (GEO entry
GSM1556331) (64). (D) Distribution of IC relative differences measured
during the clustering of 519 human TFBMs from HOCOMOCO.

summing up the information from several matrices, clus-
tered motifs are expected to gain sensitivity at the cost of
specificity. We wondered whether merged motifs at each
node of a tree would perform better or worse to predict TF-
BSs than the original motifs (the leaves). We focused on an
illustrative cluster regrouping the five motifs of Human HO-
COMOCO NF-kappaB-related factors (TFClass 6.1.1) and
the merged motifs produced at each level of the tree (Fig-
ure 6A and B). The original matrices were built based on
various kinds of experiments, with numbers of sites varying
from 11 (NFKB1) to 498 (TF65). Figure 6A shows that for
this cluster, the IC of the branch motifs takes an intermedi-
ate value between those of the two original motifs.

We measured the enrichment of predicted binding sites
in ChIP-seq peaks for the RelA TF (GEO GSM1556331)
(64) for the five original matrices and the merged motifs cor-
responding to each branch of the tree. The heatmap (Fig-
ure 6C) shows an enrichment score (NWD, defined in (65))
relative to random peaks of the same sizes. The motifs are
sorted by decreasing enrichment. The motif with the highest
enrichment is TF65, the original matrix encompassing the
largest number of sites (498). The second-ranking matrix is
the branch matrix that regroups TF65 and NF�B1, the two
motifs with the largest number of sites. All the other mo-
tifs, built from 11, 28 and 74 sites respectively, show poorer
performances than the branch and root motifs.

This example suggests that clustered motifs do not su-
persede the motifs from which they were merged, in partic-
ular when these motifs were built from hundreds of ChIP-
seq peaks, such as TF65. However, a systematic analysis re-
veals that this observation admits exceptions. Indeed, we ex-
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tended this analysis by comparing the IC of each merged
motif with the two original motifs along the trees resulting
from the clustering of all the Human TFBMs from the HO-
COMOCO database. The distribution of relative IC differ-
ences (Figure 6D, see Supplementary Notes for the formu-
lae) shows that in most cases (361/514) the IC of the merged
motif has an intermediate value between the respective ICs
of the two original motifs. However, we also observed 41
cases of IC gain and 112 cases of IC loss (i.e. the merged
motif has respectively a higher or lower IC than either of
its children). Two illustrative examples of IC gain and loss
are shown in Supplementary Figure S4. In this example the
IC gain comes from the merging between two motifs re-
spectively built from 1230 and 27 sites. Although the sec-
ond motif only contributes a tiny proportion of sites for the
merged matrix, it increases the information content because
it adds three columns at the motif end, resulting in addi-
tional IC computed from these only 27 sites (Supplemen-
tary Figure S4B green rectangle). We also observed IC gain
when a short motif is merged with a larger one (e.g., align-
ment of a monomer with a dimer). By contrast the IC loss
is mainly observed when two motifs are highly similar ex-
cept for one or a few positions (Supplementary Figure S4C,
red rectangle), where the fusion between two conserved po-
sitions (e.g., a C in one motif and a G in the second one)
leads to a less informative column in the merged matrix (C
or G).

DISCUSSION

With the advent of large-scale experimental approaches to
uncover TF binding specificity such as ChIP-seq, Selex-
seq and PBMs, the number of TFBMs has recently ex-
ploded, and motif redundancy is becoming a critical bottle-
neck for sequence analyses. Although many software tools
are available to measure motif similarity, only a few tools
are truly specialized in motif clustering. A basic survey
of motif clustering tools and their functionalities (Table
1) revealed many limitations that prompted us to develop
matrix-clustering.

A key feature that distinguishes matrix-clustering from
the other tools is its dynamic interface to browse clustered
PSSMs. This feature substantially facilitates the manual
control of cluster visualization and reduces the time for hu-
man analysis of motif sets. Notably, this visualization has
enabled us to identify the Ocr motif in the Oct4 ChIP-seq
peaks (Figure 2). This motif was already present in our pre-
vious analysis of the same dataset (15), but we had not been
able to detect this subtle variation among all other unclus-
tered motifs. We thus expect that this dynamic visualisation
of motif clusters will be beneficial to both experts and non-
experts users. Furthermore, matrix-clustering dynamic in-
terface can be used and integrated in the website of motif
databases.

Our method relies on hierarchical clustering with a
bottom-up partitioning. The tree is thus segmented based
on the similarity between all the descendant PSSMs of each
branch, which strongly differs from the usual cut-off at an
arbitrary height of the tree. We evaluated an alternative seg-
mentation method called dynamic tree cut, which relies on
tree topology to produce balanced clusters (66), but we kept

our approach because it allows to cut the tree based on
motif similarity rather than on the sole tree topology. One
caveat of hierarchical clustering is to produce ‘frozen’ clus-
ters, when nodes regrouped early in the tree cannot be re-
located in later steps (28). Note that some motif clustering
tools avoid this problem by using iterative assignment algo-
rithms, such as k-medoids (28), and that STAMP circum-
vents it by refining the tree a posteriori (22). Our quantita-
tive evaluation based on HOCOMOCO TF families how-
ever shows that appropriately chosen thresholds on multi-
ple metrics achieve better results than such methods. Parti-
tioning thresholds can further be tuned to reach the desired
granularity of clusters. Based on the systematic evaluation
of HOCOMOCO motifs, we used default thresholds (Ncor
> = 0.4 and cor > = 0.6) to group the TF binding vari-
ants and motifs from the same TF family within the same
cluster. However, in order to favor specificity and obtain
non-redundant collection of motifs (case study 4), stringent
thresholds can be used (Ncor > = 0.65 and cor > = 0.80).

Several databases like JASPAR and HOCOMOCO al-
ready provide non-redundant collections, obtained by a
time-consuming manual curation, which will become com-
plicated to maintain with the increasing number of motifs.
Of note, in motif databases, the term non-redundant de-
notes the restriction to one PSSM per TF (7). However,
distinct TFs may also bind very similar motifs (e.g. Oct4,
Oct9 and Oct11), and in some cases a same TF might bind
to alternative motifs (e.g., TF complexes, or multi-domain
TFs). In this study, the term non-redundant refers to a sin-
gle PSSM summarizing a set of highly similar motifs, inde-
pendently of the binding TF.

Reducing the size of motif collections is becoming cru-
cial to limit the processing time of tools relying on full motif
databases (e.g., motif enrichment, motif comparisons, iden-
tification of regulatory variants). As a proof-of-concept, we
have shown that matrix-clustering can be used to compare
full collections, but also to drastically reduce inter-database
redundancy: in case study 4 we produced non-redundant
motifs collections that reduced the insect, plant and ver-
tebrate collections to 19%, 19% and 32% of their origi-
nal sizes, respectively. We thus expect that meta-databases,
such as footprintDB (10) or Cis-BP (9) could benefit from
matrix-clustering to offer non-redundant motif collections.

Non-redundant motif collections would reduce comput-
ing time when scanning large sequence sets with large col-
lections of PSSMs. However, it should be noted that merged
motifs resulting from clustering are by definition less spe-
cific than the original motifs, more so if they have a poor
quality. Still, for motifs built from a few binding sites, a
merged motif could be more specific (Figure 6 and Sup-
plementary Notes). We suggest that merged PSSMs could
be used to represent a group of similar motifs to reduce
computing time for tasks affected by motif redundancy (e.g.
comparison of discovered motifs with reference databases).
For more precise tasks, such as TFBS prediction, they can
be suboptimal.

The possibility to cluster several collections simultane-
ously makes matrix-clustering a versatile tool, as demon-
strated by the four case studies considered (identification
of motif variants, integration of motifs found by multi-
ple motif discovery tools, comparison of motifs obtained
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from many collections). The same tool could be used to
compare motifs obtained for different experimental con-
ditions. Given the compatibility with many PSSMs for-
mats (TRANSFAC, MEME, HOMER) and its Web access,
matrix-clustering will be of interest to the broad community
of biologists and bioinformaticians involved in the analysis
of regulatory sequences.

AVAILABILITY

The tool matrix-clustering is freely available on the RSAT
Web servers (http://www.rsat.eu/) (39). It can also be down-
loaded with the stand-alone RSAT distribution to be used
on the Unix shell, allowing its inclusion in automated
pipelines. The complete results of the case studies are avail-
able on the supporting website: http://teaching.rsat.eu/data/
published data/Castro 2016 matrix-clustering/.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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