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Summary/Abstract 

In this protocol we explain how to run ab initio motif discovery in order to gather putative 

transcription factor binding motifs (TFBMs) from sets of genomic regions returned by ChIP-seq 

experiments. The protocol starts from a set of peak coordinates (genomic regions) which can be 

either downloaded from ChIP-seq databases, or produced by a peak-calling software tool. We 

provide a concise description of the successive steps to discover motifs, cluster the motifs 

returned by different motif discovery algorithms, and compare them with reference motif 

databases. The protocol is documented with detailed notes explaining the rationale underlying the 

choice of options. The interpretation of the results is illustrated with an example from the model 

plant Arabidopsis thaliana. 

Key Words: Chromatin ImmunoPrecipitation DNA-Sequencing (ChIP-seq), transcription factor 

(TF), transcription factor binding motifs (TFBM), transcription factor binding site (TFBS), gene 

ontology (GO), functional enrichment 
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1. Introduction 

1.1. The ChIP-seq Technology 

The ChIP-seq method (1,2), which enables one to characterize transcription factor binding sites 

(TFBS) or chromatin marks in a whole genome, has gained a tremendous popularity to study 

genetic and epigenetic regulation. Although the main field of application so far has been Human 

and model organisms (Table 1), the ChIP-seq technology opens wide perspectives for the 

analysis of plant regulation. 

Chromatin immunoprecipitation, followed by high-throughput sequencing and mapping on a 

reference genome, shows regions with high enrichment in reads. These regions, so-called ChIP-

seq peaks, can be detected by using peak-calling algorithms. They typically encompass a few 

hundreds basepairs, and are centered on a binding site for the immunoprecipitated transcription 

factor (TF). They thus need to be further processed in order to discover transcription factor 

binding motifs (TFBM) and define the precise locations of the binding sites. 

The characterization of TFBM from ChIP-seq experiments presents several advantages: 

1 ChIP-seq peaks provide a relatively precise information about TF binding locations (~200bp 

precision). This makes a drastic difference with the approaches based on co-expression 

clusters (transcriptome arrays, RNA-seq), in particular for multicellular organisms 

(Metazoa, Plants), where regulatory regions can be found not only in the upstream promoter, 

but also in introns, downstream, and dispersed over wide distances. 

2 The transition from ChIP-chip to ChIP-seq yet increased the precision of genome-wide 

location analyses. 
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3 Motifs discovered in ChIP-seq peaks are typically built from several hundreds or thousands 

of binding sites, and are thus much more robust than the previous-generation motifs built 

from a handful of sites that had been gathered one by one with Electrophoretic Mobility 

Shift Assays (EMSA) or footprint (low throughput) experiments. 

4 Peak collections better reflect the in vivo diversity of binding sites for the TF of interest than 

in vitro methods such as Systematic Evolution of Ligands by EXponential Enrichment 

(SELEX). 

5 Since peaks encompass a few hundred base pairs, they contain binding sites not only for the 

immunoprecipitated factor, but also for other interacting factors. Ab initio motif discovery 

thus enables us to detect additional motifs, and infer putative partners of the studied factor. 

The knowledge gained from analyzing motifs and sites in ChIP-seq peaks may be used to enforce 

the design of synthetic promoters by predicting potentially important interactions between 

multiple TF (i.e. co-ocurring motifs), synthetic promoters, and native promoters of the target 

species. 

Since ChIP-seq peaks typically encompass several megabases or tens of megabases, specialized 

bioinformatics tools have been developed to discover motifs ab initio and scan the peaks for 

putative binding sites (3-6). In this chapter, we explain how to combine the motif discovery 

workflow peak-motifs(5,6) and some other tools of the Regulatory Sequence Analysis Tools 

(RSAT, http://rsat.eu/) (7) to discover and interpret TFBMs from plant ChIP-seq peaks. 

1.2. Principle of the ChIP-seq Technology 

The principle of Chromatin ImmunoPrecipitation sequencing (ChIP-seq) technology (1,2) is to 

cross-link a DNA-binding protein (TF, histone) with its bound DNA, shear the DNA by 
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ultrasonication, immunoprecipitate the protein of interest, release the cross-link, select DNA 

fragments of reasonable size (~300bp), and sequence their extremities (NGS sequencing is 

typically restricted to sequences smaller than the fragments). The primary result of a ChIP-seq 

experiment is a file with raw short reads (typically 36 to 75bp), which can be mapped onto a 

reference genome. 

Fig. 1A shows the density profile of ChIP-seq reads for the transcription factor MYB3R3, 

mapped onto chromosomes 1 and 2 of the genome of A. thaliana (TAIR10 assembly version). 

This primary view of the data reveals a first difficulty for the interpretation of ChIP-seq data: 

some genomic regions are covered by a huge number of reads. These regions correspond to 

repetitive elements in centromeric and telomeric regions of the chromsomes. For the sake of 

comparison, Fig. 1B shows the density profile of a control experiment where the ChIP-seq 

protocol was run with an anti-GFP antibody, supposed to give an unspecific signal. This mock 

experiment reveals the same hyper-mapped regions, and can serve to estimate background and 

discard unspecific reads for the peak-calling. Note that mock experiments generally give reduced 

libraries. An alternative way to estimate unspecific background is to sequence genomic DNA 

without applying the immunoprecipitation procedure (genomic input). 

1.3. Choice of a Peak-Caller and Tuning of its Parameters 

One of the most crucial steps of the ChIP-seq analysis is the choice of a peak-calling program and 

the tuning of its parameters. 

The peak-calling procedure consists in identifying genomic regions presenting a significant 

enrichment in reads in the ChIP-seq data, compared to some control set. The control set can 
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either be a mock experiment, as in Fig. 1B, or a full-genome sequencing. A large number of 

different programs exist for peak-calling(8,9). 

Fig. 2 shows a detailed view of the peaks identified by some popular peak-callers on an arbitrary 

genomic region of the MYB3R3. Note the difference between the numbers and widths of the 

peaks, depending on the peak-calling tool. One of the most popular peak-calling programs, 

MACS, comes in two releases (10). The first version, MACS14,  tends to return wide regions 

encompassing several topological peaks (compare the peaks with the MYB3R3 density profiles). 

MACS2, an upgraded version of MACS14, allows to specify parameters to obtain narrower 

peaks. Homer (11), based on the findPeaks algorithm, outputs very sharp peaks. The series of 

SWEMBL (12) peaks illustrates the impact of the parameters. This peak-caller proposes a 

"gradient" option (-R), which strongly affects the number of peaks and their width. SPP (13), 

using the FDR as a main parameter, is also to be carefully configured. 

Most publications rely on the prior choice of a popular peak-caller, which is run with default 

parameters. Table 2 shows the wide range of peaks that can be found on a single dataset 

depending on the peak-calling algorithm and its configuration. However, the most appropriate 

algorithm and, even more, the fine-tuning of its parameters depend on the organism, data type, 

and even the purpose of the analysis (gathering high-confidence binding locations, identifying 

likely target genes, building a transcription factor binding motif, etc) (9). There is unfortunately 

no gold standard that would permit to assess the relative merits of peak-callers, and define their 

optimal parameters. 

However, a variety of criteria can be used to evaluate the relevance of the returned peaks by 

various indirect indications, some of which will be illustrated in this protocol: 
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• enrichment of the reference motif (annotated motif for the immunoprecipitated factor) in the 

peak sequences (RSAT matrix-quality); 

• concentration of the reference motif at peak centres;  

• significance of the motifs discovered by ab initio approaches (RSAT peak-motifs); 

• biological relevance of the transcription factors putatively bound to the discovered motifs 

(FootprintDB search); 

• functional enrichment of the genes linked to the peaks (Gene ontology); 

• concentration of the discovered motifs at the peak centers (RSAT position-analysis); 

1.4. The Plant Regulatory Sequence Analysis Tools 

Regulatory Sequence Analysis Tools (RSAT, http://rsat.eu/) is a specialized software suite for the 

analysis of cis-regulatory elements in genomic sequences (7). Since 2015, the services have been 

distributed on taxon-specific servers, including a Plant RSAT (http://plants.rsat.eu/). This address 

will redirect you to the host server http://floresta.eead.csic.es/rsat, which will be used for this 

protocol. 

1.5. Functional Interpretation of ChIP-Seq Peaks 

RSAT supports several approaches to interpret the peaks in functional terms: 

1 Motif enrichment. In some cases, the immunoprecipitated factor is already known, and a 

reference motif exists in some database. It is generally a good practice to start by measuring 

the enrichment of the peak set for this reference motif, in order to check that the procedure 

went fine (from the wet lab to the bioinformatics workflow that produced the peaks). 
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2 Motif discovery. Several ab initio methods can be used to detect exceptional motifs in the 

peak sequences, based on different criteria: over-representation, biased positional 

distribution relative to the peak centers, etc. 

1.6. Transcription factor binding motifs 

Transcription Factor Binding Motifs (TFBMs) are generally represented as Position-Specific 

Scoring Matrices (PSSMs). They are built froman alignment of TF binding sites. Each cell of the 

matrix indicates the frequency of a given nucleotide (matrix rows) in a given column of the 

aligned sites (matrix columns). They can be depicted as sequence logos(14). 

The widespread use of high-throughput technologies, for example ChIP-seq, allows to discover 

novel TFBMs or improve the quality of those existing (i.e. by increasing the number of sites to 

build the TFBMs). As more TFBMs are available, repertoires are required to give an easy access 

to these motifs. Currently there are many public and private motif databases, some of them 

specialized on few organisms (Athamap for Arabidopsis thaliana; Hocomoco for Human and 

Mouse, etc) and others have taxon-wide collections of TFBMs (Jaspar, TRANSFAC, CisBP) for 

plants, vertebrates, fungi, insects, etc. However, as these databases are growing, and since a 

single new study could produce an entire collection of motifs (15), efforts to collect, integrate and 

update many motif databases must be done. One option is FootprintDB(16) which is a meta-

database encompassing 14 up-to-date motif databases (see chapter by Contreras-Moreira and 

Sebastián in this Volume). 

In this protocol, we show how to run ab initio discovery on a set of ChIP-seq peak sequences, 

compare discovered motifs with a reference motif database, and cluster the discovered motifs to 

obtain a non-redundant collection. 
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2. Materials 

2.1. Required Software 

This protocol requires to dispose of 

• a computer with any Web browser installed; 

• a set of peak coordinates from a ChIP-seq or related experiment. 

For visualization purposes (section 3.5), we also recommend to install the Integrative Genome 

Viewer (17). 

2.2. Data sources 

Peaks can be obtained either from NGS databases (18,19) or by running a peak-calling software 

tool on genome-mapped reads. This protocol starts from pre-computed peak coordinates, and 

does not cover the read mapping and peak calling procedures. 

2.3. Data Formats 

Peak coordinates should be provided in bed format (see the description of NGS file formats at the 

UCSC genome browser (seeNote1). Alternatively, this protocol can be run with peak sequences 

in fasta format (in which case the sequence retrieval steps can be skipped). 

2.4. Study Case 

As a study case we take a recent MYB3R3 study (20). We will use a BED file available at the 

Gene Expression Omnibus Database (GEO), under accession GSE60554 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60554), which contains the results of a 

ChIP-seq experiment with the MYB3R3 transcription factor of Arabidopsis thaliana. The peaks 
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can be found at the bottom of the GEO Web page for the MYB3R3-ChIP-ped sample 

(GSM1482283, http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1482283, peak file 

GSM1482283_MYB3R3-GFP_ChIP_peaks.bed.txt.gz) (seeNote 2). 

The reference motif for this case is that of c-Myb in tobacco (21), likely to be similar to 

MYB3R3 in Arabidopsis thaliana. 
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3. Methods 

3.1. Retrieval of Peak Sequences from the Peak Coordinates 

1 Obtain a bed-formatted list of peak coordinates (seeNote 3). 

2 Open a connection to the Plant Regulatory Sequence Analysis Tools server 

(http://plants.rsat.eu/). 

3 On the left-side panel, open the toolbox "Sequence tools" and click "sequences from 

bed/gff/vcf". 

4 Choose the appropriate genome in the Organism pop-up menu (seeNote 4). For the study 

case, the reference organism is Arabidopsis thaliana.TAIR10.29, where the suffix TAIR10 

indicates the assembly, and the number 29 the EnsemblGenome version. 

5 Enter the Genomic coordinates of your peaks (seeNote 5).Coordinates can be entered in 

different ways: (i) directly pasted in the text area; (ii) large files can be uploaded from your 

computer to the server (option Choose file); (iii) enter the URL of a coordinates file 

available on a Web server (e.g.BEDfile on your account of a Galaxy server). For the study 

case you can enter the downloaded file GSM1482283_MYB3R3-

GFP_ChIP_peaks.bed.txt.gz.  

6 Verify that the option Mask repeats is checked, as plant genomes are often repeat-rich 

(seeNote 6). 

7 For the Output option, choose server, and click GO to submit the job. 

8 After a few seconds, a result page (shown in Fig. 3) should appear with the links to the 

FASTA file containing the peak sequences, plus some additional links to the inputBED file 
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and a log file. Note that the results are kept on the server for a restricted duration (72 hours). 

If you want to keep track of the results, you can right-click on the fasta sequence file and 

download it to your computer.  

At this stage of the protocol, you should have at your disposal a file containing peak sequences in 

fasta format. Typical peak sets include a few hundreds to tens of thousands of peaks, with lengths 

varying from tens to hundreds of base pairs each. 

Note that the results page contains links to other RSAT tools. These enable you to transfer the 

obtained fasta file directly to the next step of the analysis. 

3.2. Ab Initio Motif Discovery in ChIP-Seq Peak Sequences 

We will now describe the way to discover motifs from ChIP-seq peak sequences. We obtained 

these sequences in the previous section, in the form of a fasta file, but it is also possible to upload 

your own fasta file from your computer directly in the peak-motifs section. We assume here that 

the sequences are transferred from the previous step. 

1 At the bottom of the sequence retrieval result page, the Next step box presents a series of 

buttons to transfer the fasta sequences to another tool for further analyses (Fig. 3). Click on 

the peak-motifs button. This will display a new Web form shown in Fig. 4, pre-loaded with 

the URL of the peak sequences. 

2 Before running peak-motifs, you are requested to type a Title for the job. For the study case, 

we can for example type "A.thaliana MYB3R3 versus GFP - GSM1482283". 

3 The Reduce peak sequences frame allows you to trim the number and length of the peaks. 

By default all peaks are retained but those longer than 1Kb (500bp on either side of the peak 
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center) are shortened, because they are suspected to result from peak-calling artifacts rather 

than to represent trustable binding sites. 

4 The Motifs discovery frame permits to choose the discovery algorithms and tune their 

parameters. By default only oligo-analysis and position-analysis are activated (seeNote 7). 

5 Under Motifs discovery activate oligomer lengths 6 and 7 (seeNote 8). 

6 Check that the Markov order is set to automatic (adapted to sequence length) (seeNote 9). 

7 Check that the Number of motifs per algorithm is set to 5 (seeNote 10). 

8 Under Compare discovered motifs with databases, you can select one or more motif 

collections in order to annotate any discovered motifs. For plant sequences we recommend 

footprintDB-plants, which integrates motifs from diverse public databases (see chapter by 

Contreras-Moreira and Sebastián in this Volume). 

9 Optionally, the button below Add your own motif database allows you to upload a custom 

database of transcription factor binding motifs in a TRANSFAC-formatted file. 

10 If there is a known motif for the immunoprecipitated factor, you can upload it with option 

Add known reference motifs for this experiment (seeNote11). 

11 Click on the title Locate motifs and export predicted sites, check the option Search 

putative binding sites in the peak sequences, and activate the option Peak coordinates 

specified in fasta headers in bedtools getfastaformat (also for retrieve-seq-bedoutput). 

Here we assume that the sequences were obtained from RSAT retrieve-seq-bed as indicated 

above (seeNote 12) but some alternative formats are also supported. 
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12 You can type in your email address to be notified of the job submission and completion, or 

you can choose display, and click GO. 

After a few seconds, the server displays a confirmation of the job submission, with a link to the 

result Web page. Clicking on this link will open the result page on a separate tab of your Web 

browser. This page will be progressively updated to show the results of the analysis. A typical 

analysis should take from a few minutes to one hour, depending on the sequence size and the 

selected options (motif discovery algorithms, motif databases, sequence scanning). 

13 Results will progressively be displayed on this page. Once the job is completed, a summary 

of all results will appear in a box at the top of the results page.After completion of the peak-

motifs workflow, we recommend to download the results on your computer for further 

analyses, since they are kept on the server for a restricted time. 

a. Clicking on the link Download all results, in the header box of the result Web page, will 

allow you to save a zipped file containing the whole HTML report. You will thus be able 

to visualize these pages locally on your computer. 

b. Right-clicking on the link Download all matrices (TRANSFAC format) and saving it as 

peak-motifs_motifs_discovered.tf will allow you to keep a file containing all the motifs 

matrices. This file contains all discovered motifs, in the flat-file motif description format 

designed for the TRANSFAC database (this format is convenient because it allows to 

associate annotations to each motif). We will use it below in the section about matrix 

clustering (section 3.3). 

c. In the Sequence composition (test sequences) section, right-click on the link 

"[coordinates: UCSC BED track ]" (right panel) and save theBED file as peak-

motifs_test_seqcoord.bed. This file contains the peaks used for the peak-motifs analysis. 
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d. At the bottom of the Web page, look for section Motif locations (sites), then Predicted 

sites on test peaks (all motifs). Right-click on the "[bed]" link to download the 

corresponding file peak-motifs_all_motifs_seqcoord.bed. This file can be loaded in a 

genome browser such as IGV (17). 

3.2.1. Interpretation of the Peak-Motifs Results 

The peak-motifs results are displayed in a Web form giving access to all the files generated 

during the analysis. 

Fig. 5 shows a partial snapshot of the peak-motifs results with the study case. Since the workflow 

covers many types of analyses and results, here we attempted to present a human-readable report, 

organized according to the successive steps of the workflow: sequence composition (Fig. 5A), 

motif discovery (Fig. 5B), comparison of discovered motifs with known motifs (Fig. 5C).  

Sequence composition 

This section, described in Fig. 5A, shows some properties of the peak sequences. 

• The top panelof the synthetic table shows the distribution of sequence lengths. In this study 

case, we can observe that most sequences have a length around 200 bp, which is a good 

indication for transcription factor ChIP-seq peaks (histone peaks are generally longer). 

• The second panelshows the nucleotide composition of the sequences, with a heatmap 

indicating the frequencies of each nucleotide, and a plot displaying the profile of frequencies 

for each nucleotide along the peaks. In this example we can see that G and C are less 

frequent than A and Tover the whole peak width. Interestingly, we also notice a 
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nucleotidicskew, with an enrichment of As and Gs upstream peak centers, and a symmetrical 

enrichment of Ts and Cs downstream. 

• The third panel shows the dinucleotide composition of the sequences. The transition table 

indicates the probabilities of each nucleotide (column) depending on the preceding 

nucleotide ("prefix", rows). Gray shades denote the relative frequencies, and highlight 

dependencies between adjacent nucleotides. For example, in the study case, we observe that 

the frequency of As varies from 0.36 after another A (AA dinucleotide) to 0.21 after a T (TA 

dinucleotide). The dinucleotide profiles provide a visual representation of the positional 

distribution for each dinucleotide. On the study case we note an upstream-downstream skew 

for AA, TT, CC and GG, and a local depletion of TA and AT in the peak centers. 

Discovered motifs (by algorithm) 

This section (Fig. 5B) shows the full list of discovered motifs, organized by motif discovery 

algorithm (oligo-analysis, position-analysis) and by k-mer size. 

The name of each motif (e.g. oligos_6nt_mkv3_m1) indicates: 

• The algorithm used (oligos for oligo-analysis, positions for position-analysis). 

• The k-mer length used to build the motif (6nt, 7nt). 

• The order of the Markov model (mkv). 

• The rank of the motif (m1 to m5). 

In addition, the motif logo is displayed in both orientations. 

In this section, an important information is that each discovered motif is associated with ane-

value and a derivedsignificance score: sig = -log10(E-value). The e-value indicates the expected 
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number of false positives. E-values much lower than 1 (corresponding to highly positive sig 

scores) indicate a very significant over-representation (oligo-analysis) or positional bias 

(position-analysis) of the motif. The most significant motifs are highlighted in red and bold. In 

our study case, the motif CACGTG is over-represented with a significance of 187, which 

corresponds to an e-value (expected number of false positives) of ~10-187. The same motif is 

found by position-analysis, yet with a much lower significance (s=3.34, e-value 0.00046). It is 

thus the most significant motif in terms of over-representation, but other motifs are much more 

significant in terms of positional bias, in particularwwttGGCGGGAaaat (positions_6nt_m1), 

which achieves a significance of 34.61. This example shows the interest of combining two 

independent criteria to discover exceptional motifs. 

Discovered motifs (with motif comparison) 

Illustrated in Fig. 5C, this section displays each motif individually with matches found in 

collections of known TFBMs (e.g. FootprintDB plants, Jaspar plants, etc). 

Additionally, for each motif, two other plots are shown: 

• The positional distribution of predicted sites relative to peak centers (e.g. showing that most 

matches are located around the center of the peaks). 

• The distribution of the number of binding sites per sequence. For the CACGTG motif, 

occurrences per peak show a particular teeth-shaped distribution due to the reverse 

complementary palindromic nature of the motif (occurrences are systematically found on 

both strands). 
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Note that the algorithms produce redundant motifs. For example a motif with the core GGCGGG 

is found by both oligo-analysis and position-analysis, with different k-mer lengths; thus, the next 

step in the analysis is to reduce the redundancy of the motifs. 

3.3. Motif Clustering 

Using different motif discovery algorithms to analyze the same sequences is useful and 

recommended to increase the sensitivity (some algorithms discover motifs that others do not) or 

to corroborate the results (e.g. gain confidence by observing that the same motif is both over-

represented and concentrated on the peak centers). However in some cases the redundancy 

between motifs returned by different algorithms and with different parameters makes it difficult 

to interpret the results as a whole. 

The RSAT web site includes a new specialized tool called matrix-clustering, which identifies 

groups of similar motifs, generates consensus matrices, and provides a dynamical visual interface 

to browse and inspect the relationships between multiple motifs. We will use this tool to obtain a 

non-redundant collection of motifs from the motifs discovered with peak-motifs. 

1 Open a connection to the Plants Regulatory Sequence Analysis Tools server 

(http://plants.rsat.eu/). 

2 On the left-side panel, open the toolbox "Matrix tools" and click "matrix-clustering". 

3 On the title box you can give a title to the analysis for example Myb3R3 discovered motifs. 

4 Upload the motif file obtained from peak-motifs and select the TRANSFAC format. 

5 In the Motif comparison options section, you can fine-tune the thresholds that will be used 

to split the tree with all the motifs in a collection of trees (forest). The default cutoffs are 
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relatively lenient, but for this application more conservative values can be chosen. In the 

column lower threshold, set w to 5, cor to 0.75 and Ncor to 0.55. 

6 In the Clustering options section, select Ncor (Normalized Pearson Correlation) as a 

Metric to build the trees and average as the Agglomeration rule. 

7 You can either select emailoutput and fill up your address, or display, and click GO. 

After a few seconds the Web site displays a link to the result page. You can already open this 

page as soon as the link appears. Even though the program may take a few minutes to accomplish 

the clustering, the result page will be updated periodically. 

3.3.1. Interpretation of the Matrix-Clustering Results 

The matrix-clustering results are organized in different sections  (Fig. 6). You can display/hide 

each one by clicking on the buttons. 

• The Results summary section shows a table indicating the number of input motifs, the 

number of clusters and the parameter used to cluster the motifs, additionally a link to 

download all the results in zip. In this case the 20 motifs discovered with peak-motifs were 

regrouped in 8 distinct clusters. 

• The Clusters summary section shows a table with the motifs belonging to each cluster and 

the logos in both orientations representing the root motifs of each cluster (i.e. a motif formed 

by summing or averaging the counts of all the motifs belonging to the cluster). 

• The Logo Forest section points to a link where the clusters are displayed as a set of trees, 

each corresponding to a cluster. In this link you can dynamically expand/collapse the tree, 

each time a branch is collapsed, it shows the branch-motif which represents all the 
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descendant motifs of the collapsed branch. Fig. 7 shows the first three clusters of the logo 

forest produced by matrix-clustering from the motifs discovered by peak-motifs in MYB3R3 

peaks. 

• The Individual Motif View section shows a table with all the input motifs and some of their 

attributes (assigned cluster, aligned and colored consensus, small logos). 

• The Individual Cluster View section shows some properties of each cluster individually. You 

can select a specific numbered node of tree to select its corresponding branch-motif. 

• The Heatmap view section shows a heatmap of the motifs grouped in clusters. 

• The Additional Files section shows a table with additional files (motif comparison results, 

the motifs associated to each cluster, etc) including the Root motifs file, which contains the 

collection of non-redundant motifs. This file will be used for the following part of the 

analysis. 

8 Right-click the "Root motifs" link and save file as matrix-clustering_cluster_root_motifs.tf 

on your computer. 

The 20 motifs discovered with peak-motifs were separated in 8 clusters of variable size (Fig. 7). 

For example, cluster 1 contains 8 motifs corresponding to the EF2 family while the motif for 

cluster 6 (singleton) corresponds to the MSA motif reported in the published work selected as our 

case study (15). 

3.4. Negative controls with random genomic regions 

RSAT motif discovery tools compute the significance of the motifs based on theoretical models 

(Markov chains, which take into account the dependencies between adjacent nucleotides). 
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However, it is not obvious a priori that these models perfectly suit the properties of biological 

sequences. A pragmatic way to check the correctness of the models is to measure the empirical 

rate of false positives with a negative control set, i.e. set of sequences supposedly not enriched 

for any particular TFBM. In principle, motif discovery programs should be able to return a 

negative answer (no result) when such datasets are submitted. 

When analyzing genomic regions such as ChIP-seq peaks, the recommended negative control 

consists in analyzing regions of the same sizes as the peaks picked up at random in the reference 

genome. 

1 Open a connection to the Plant Regulatory Sequence Analysis Tools server 

(http://plants.rsat.eu/). 

2 In the left-side panel, open the toolbox "NGS ChIP-seq" and click "random genome 

fragments". 

3 Under Random fragments, click the “Browse...” button and locate the peak sequences file 

on your computer (the fasta file downloaded at step 8 in section 3.1.). 

4 Under Organisms, select the reference organism. For the study case, this is Arabidopsis 

thaliana.TAIR10.29. 

5 In the Output section, select Sequences in fasta format (only for RSAT organisms) and 

check the Mask repeats option. 

6 Select the server output and click GO. The selection of random genomic regions should take 

a few seconds. 

7 On the result page, you can access the randomly picked up genomic sequences by clicking 

on the link to the fasta file (Genomic fragments (fasta)). You can optionally save this result 

to keep a copy of these random genomic fragments. 
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8 In the Next Step section of the result page, click on the peak-motifs button. This will 

display a peak-motifs form pre-filled with the URL of the random genomic sequences. Set 

the title to “A.thaliana random fragments”. Check that all the other parameters have the 

same parameters as for the analysis of the actual ChIP-seq peaks in the previous sections, 

and click GO (seeNote13). 

9 Once the job is completed, open the results page, and click the link Download all matrices 

(TRANSFAC format) in the summary, to store the matrices on your computer. 

10 Repeat the matrix-clustering analysis (steps 22 to 28) using the matrices obtained with 

Random fragments (TRANSFAC file). 

3.4.1. Interpretation of the Negative Control 

The goal of this negative control is to obtain an empirical estimation of the rate of false positives. 

In some cases, these controls reveal that the actual rate of false positive exceeds the theoretical 

expectation (indicated by the e-value of the motif discovery programs). 

When the sequences of interests are genomic regions such as ChIP-seq peaks, the most relevant 

negative control consists on selecting random genomic regions of the same sizes. For the study 

case, we analyzed a dataset made of 2,931 random regions from Arabidopsis thaliana. The 

sequence length distributionis, as expected, exactly the same as for the actual peaks analyzed 

above. However the mono- and di-nucleotide composition may differ, because they reflect a 

random sampling of any type of genomic regions rather than regulatory regions. 

Peak-motifs 

The analysis of random genomic regions returned17 motifs (Fig. 8A), most of which are of low 

complexity (e.g.atAAaATAaata, aaaAACAAAA, or motifs showing repeated sequences, e.g. 
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TATATATA). Some of these motifs show a high similarity with some reference motifs stored in 

FootprintDB, suggesting that they might correspond to some actual transcription factor.  

The most important criterion in this control is to inspect the significance of the discovered motifs 

in the section Discovered motifs (by algorithm) (Fig. 8A). In our experience, programs based on 

a global over-representation (oligo-analysis, dyad-analysis) tend to return results even with 

random genomic regions, although with significance hopefully lower than with the real peaks: in 

the study case, oligo-analysis returns significance scores of 188 with the actual peaks, and 13.6 

with random genomic regions. These motifs are actually correctly qualified of over-represented, 

but their over-representation is general in the genome rather than specific to the peaks. These 

motifs can correspond to low complexity regions or to functional elements found in abundance 

throughout the genome. 

In contrast, programs relying on positional distributions (position-analysis, local-word-analysis) 

generally perform very well in negative controls (Fig. 8A), in the sense that they return motifs of 

poor significance (lower than 3) or no motif at all. This emphasizes once again the importance of 

evaluating multiple criteria before considering a motif as relevant. 

In the section Discovered motifs (with motif comparison), the positional distribution of 

predicted sites is not as concentrated around the centersof random fragments as they were for 

actual MYB3R peaks (Fig. 5C). Also, the number of matches is generally lower than the real 

peaks.  

Matrix-clustering 

With our random trial, the clustering separated the 17 significant motifs into 14 clusters (Fig. 

8B,C), where only three clusters contain at least two motifs (the rest are singletons). This lack of 



24 

consistency between the discovered motifs is also an indication of the poorer relevance of the 

motifs discovered in random regions, relative to those found in actual peaks. 
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4. Notes 

1. Format descriptions at UCSC: https://genome.ucsc.edu/FAQ/FAQformat.html 

2. Direct access to the peak coordinates of the study case: 

ftp://ftp.ncbi.nlm.nih.gov/geo/samples/GSM1482nnn/GSM1482283/suppl/GSM1482283_MYB3

R3-GFP_ChIP_peaks.bed.txt.gz 

3. When working with lab data, peaks are obtained by running peak-calling programs on the 

aligned reads. Alternatively they can be downloaded from specialized databases such as GEO 

(18, http://www.ncbi.nlm.nih.gov/geo/) or ArrayExpress 

(19, https://www.ebi.ac.uk/arrayexpress/). 

4. It is very important to specify the same assembly as used for the read mapping, since otherwise 

the coordinates on the BED file might not match the correct genomic sequences. Please contact 

the administrator of the RSAT Plant site if the required assembly does not appear in the list. 

5. A common difficulty withBED files is that the chromosome naming convention differs 

between genome databases. In particular, some databases systematically use a "chr" prefix (chr1, 

chr2, chr3, ..., chrMt, chrPt) whereas some others simpy use the chromosome number (1, 2, 3, ...) 

or name (Mt, Pt). To circumvent this problem, the sequence retrieval tool automatically checks 

the consistency of chromosome names between the queryBED file and the genome sequence file 

installed on RSAT, and prepends or removes the chr prefix if required. 

6. In plant genomes, repeated elements may result from various sources: transposons, polyploidy, 

etc (see chapter by Contreras-Moreira, Castro-Mondragon et al. in this Volume). Repetitive 

elements cause particular problems for motif discovery, because the statistics of over-

representation rely on an assumption of independence between the sequences. It is thus 
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recommended to mask repeated elements during the motif discovery step of a ChIP-seq analysis 

workflow. Note that in some other contexts (for example scanning sequences with a TF binding 

motif), it might be relevant to keep the repetitive elements in order to detect all the putative 

binding sites. 

7. Two other algorithms can be selected for finding motifs: dyad-analysis detects over-

represented dyads (spaced pairs of trinucleotides), which are typically bound by dimeric 

transcription factors; local-words detects k-mers with local overrepresentation, i.e. having a 

higher number of occurrences in a particular positional window, relative to the rest of the peaks. 

Selecting more algorithms is sometimes helpful to gather a wider set of discovered motifs, as 

some algorithms can discover motifs that other would not. However, in many cases the different 

algorithms return very similar motifs, thus producing redundancy in the result. We thus activated 

by default the two algorithms offering a good trade-off between computing time and sensitivity, 

and which rely on two complementary criteria (over-representation and positional distribution 

relative to peak centers). 

8. Beware, oligomer-length is not the same as motif length. Indeed, the significant k-mers and 

dyads are assembled and used as seeds to collect sites, which are in turn aligned to build the final 

motifs (position-specific scoring matrices). The resulting matrices are thus generally wider than 

the oligomer length. The default lengths were chosen because they generally provide a good 

tradeoff between sensitivity and specificity, and were shown to return the most relevant motifs 

(22). 

9. The program oligo-analysis relies on Markov models to compute the prior probability of each 

k-mer, i.e. its probability to be found at a given position in the sequence. In peak-motifs, the prior 

probability of each oligonucleotide (k-mer) is estimated on the basis of the frequencies of smaller 
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k-mers in the sequence. The Markov order specifies the stringency of the background model. 

Increasing the order improves the specificity at the cost of sensitivity. This automatic option 

applies an ad-hoc rule to choose a Markov order ensuring a balance between sensitivity and 

specificity, depending on the total size of the peak set. 

10. By default the program restricts the results to 5 motifs (assembled matrices) per algorithm. 

This number could be increased if you have some particular reason to think that the peak set 

contains a wider variety of motifs, with a proportional increase in the computing time. This can 

be useful for example for peaks from particular histone modification marks corresponding to 

enhancer regions supposedly bound by multiple factors. 

11. Beware, there is a distinction between the options reference motifs and custom database. 

Reference motifs should be one or a few motifs expected to be found in the ChIP-seq peaks, 

whereas the custom database may be a large collection encompassing all the known motifs for the 

organism or taxon of interest. 

12. By default, sequence scanning returns the putative binding site coordinates relative to the 

peak sequences. If appropriately formatted, the sequence headers of the peak file can indicate the 

coordinates of each peak relative to the chromosomes. The program can then convert each 

binding site coordinate from peak-relative to chromosome coordinates. The resulting files can 

then be loaded in a genome viewer (e.g. IGV). 

13. The peak-motifs analysis will take approximately the same time as for the actual peaks, 

between a few minutes and several tens of minutes depending on the sequence size. 

14. Example of structured query to gather ChIP-seq series (GSE) for a given taxon in GEO 

datasets (http://www.ncbi.nlm.nih.gov/gds/): ("gse"[Entry Type] AND "genome 
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binding/occupancy profiling by high throughput sequencing"[DataSet Type] AND 

"Viridiplantae"[Organism]) 
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Figure captions 

Figure 1. Density profiles of reads mapped on chromosomes 1 and 2. 

A. MYB3R3-bound immunoprecipitated chromatin. Reads were mapped on the TAIR10 

assembly of Arabidopsis thaliana genome. 

B. Control experiment (mock with anti-GFP antibody). Reads from the control experiment are 

used as "input" for the peak-calling, which enables peak-callers to avoid reporting peaks in the 

repetitive regions. 

In both, ChIP and control tracks, note the striking concentration of reads in particular genomic 

locations, corresponding to repetitive regions. The map was generated with the Interactive 

Genome Viewer (12). 

Figure 2. Peak profiles obtained with a variety of peak-calling algorithms and parameters. 

Zoom of the reads and peaks in an illustrative region of chromosome 1 (coordinates 570,625 to 

580,625). Each peak-caller is denoted by a specific color: MACS (pink) (10), Homer (green) 

(11), SWEMBL (orange) (12) and SPP (cyan) (13). Two peaks are detected by most peak-callers, 

although with different widths. One of these peaks is located in a gene promoter (at 572 kb), and 

another one within an intron (576 kb). The sensitivity of each peak-caller can be tuned with some 

specific parameters, as illustrated with the SWEMBL series (sensitivity increases from top to 

bottom) or SPP (false discovery rate set to 0.001 or 0.01, resp.). Relatively stringent settings are 

recommended to obtain a good tradeoff between sensitivity and relevance of the peaks. 
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Figure 3. Results of the sequences retrieval procedure. 

View of the result page from the sequence retrieval step, made using aBED file (15) and the tool 

“sequences from bed/gff/vcf”.Next analysis steps can be processed with by simply clicking the 

corresponding buttons. 

Figure 4.View of the peak-motifs form. 

Two fields are required in order to proceed with the analysis: “title” and “peak sequence”. Here, 

the sequence file was automatically uploaded from the previous step. 

Figure 5.Peak-motifs results. 

A. General information about the peak sequences of our study case, including their composition 

in nucleotides and dinucleotides, and the corresponding profiles. 

B. Discovered motifs (by algorithm). This example shows the 6-nucleotide motifs found with the 

oligo-analysis algorithm, using a Markov model of order 3. 

C. Discovered motifs (with motif comparison). Shows the comparison of the discovered motifs 

versus a collection of TFBMs databases, and the distribution profile of the motifs in the peaks. 

Figure 6.Matrix-clusteringresults. 

General view of matrix-clustering report. Each button can be clicked to show/hide details. 

Figure 7. Matrix-clustering results. 

The 20 motifs discovered by peak-motifs in the MYR3R3 ChIP-seq peaks were separated in eight 

clusters. Each tree shows the alignments of a cluster of similar motifs. The leaves indicate the 

motif discovery algorithm with which each motif was found. Note that the similar motifs are 
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discovered independently by different algorithms (oligo-analysis, position-analysis), or are found 

with different parameters (e.g. k-mer length) of the same algorithm. 

Figure 8. Negative controls with random genomic regions. 

A. Partial results of the peak-motifsmotif discovery result in random genomic regions. Note that 

the most significant motifs are poor-complexity motifs corresponding to repetitive elements.  

B. Overview of the matrix-clustering results for these motifs. Note the high number of clusters, 

indicating that most motifs are detected by only one motif discovery method. 

C. Clustering of the motifs discovered in the random peaks.  

Figure 9. Heatmap of mutual coverage of peak-calling results. 

The second column indicates the number of peaks depending on the peak-calling program and the 

main parameters affecting the stringency of the result.  Further columns indicate the proportion of 

peaks of one peak-calling result (row) covered by peaks of another peak-calling result (columns). 
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Table captions 

Table 1. ChIP-seq samples per taxa. 

Number of ChIP-seq samples available in the Gene Expression Omnibus database (13) (Dec 18, 

2015) per taxonomic group (seeNote 14). 

Table 2. Contingency tables comparing peak-caller results. 

Each cell indicates the number of peaks of one peak-calling result covered by peaks of another 

peak-calling result. The diagonal indicates the number of peaks detected by each one of them. 

See also Fig. 9 for a heatmap of the relative frequencies. 
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Tables 

Table 1 

Taxon GEO ChIP-seq series 

No taxon specified (any taxon) 4722 

Metazoa 4255 

Homo sapiens 1542 

Musmusculus 1793 

Caenorhabditiselegans 410 

Drosophila melanogaster 542 

Fungi 238 

Saccharomyces cerevisiae 163 

Viridiplantae 157 

Bacteria 64 

Escherichia coli 24 

Alveolata 14 

Archaea 1 

 



38 

Table 2 

Peak-caller 
Macs2 

(qval=0.05) 

Macs2 

(qval=0.001) 

Macs14 

(pval=0.00001) 

Homer 

(fdr=0.01)

SPP 

(fdr=0.01)

SPP 

(fdr=0.001)

SWEMBL 

(R=0.1)

SWEMBL 

(R=0.07) 

SWEMBL 

(R=0.05) 

SWEMBL 

(R=0.02)

SWEMBL 

(R=0.01)

Macs2 

(qval=0.05) 
2931 3335 2699 2854 3408 532 1298 2224 2704 2848 3263

Macs2 

(qval=0.001) 
2930 9711 5494 8136 9576 544 1340 2767 5020 8840 11973

Macs14 

(pval=0.00001) 
2895 7360 6242 7359 9767 535 1325 2659 4510 9518 17225

Homer 

(fdr=0.01) 
2851 8884 6114 18812 16898 534 1328 2743 5091 17125 24503

SPP (fdr=0.01) 2920 9291 6166 15364 24781 544 1333 2751 5104 20399 39018

SPP 

(fdr=0.001) 
534 640 533 534 680 544 532 533 536 557 654

SWEMBL 

(R=0.1) 
1374 1764 1294 1377 1786 534 1352 1343 1340 1368 1502

SWEMBL 

(R=0.07) 
2355 3606 2561 2861 3679 535 1352 2788 2765 2864 3424

SWEMBL 

(R=0.05) 
2852 6302 4224 5316 6697 538 1352 2787 5256 5541 7277

SWEMBL 

(R=0.02) 
2931 9692 6236 16734 20518 544 1352 2788 5256 31867 41904

SWEMBL 

(R=0.01) 
2931 9710 6242 18611 24365 544 1352 2788 5256 31864 92695
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