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Large eddy simulation of decaying magnetohydrodynamic turbulence
with dynamic subgrid-modeling

O. Agullo,a) W.-C. Müller,b) B. Knaepen, and D. Carati
Euratom-Belgian State Association, Physique statistique et des plasmas, CP 231, Campus Plaine, 
Université Libre de Bruxelles, 1050 Bruxelles, Belgium

The numerical large eddy simulation ~LES! technique is tested on decaying magnetohydrodynamic 
~MHD! turbulence. The LES approach allows for a strong reduction in computational cost compared 
to direct numerical simulations by modeling the effects of the smallest turbulent scales instead of 
computing them directly. Two small-scale models of eddy-viscosity type are presented for this 
purpose in combination with a procedure for the self-consistent calculation of the model parameters 
in the course of the simulation. The method is successfully tested by comparing the obtained results 
to a high-resolution direct numerical simulation of decaying three-dimensional MHD turbulence. 
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Many plasmas in turbulent motion observed in ast
physical systems, as well as nuclear fusion devices, ca
described within the framework of incompressible magne
hydrodynamics~MHD!. Since direct experimental access
fully developed MHD turbulence is often difficult or eve
impossible, one resorts to the numerical simulation of ide
ized systems by solving the incompressible MHD equatio

] tv52¹•~vv2bb!1nDv2¹p, ~1!

] tb52¹•~vb2bv!1hDb, ~2!

¹•v5¹•b50, ~3!

written here with the fluid velocityv, the magnetic-fieldb
expressed in Alfve´n speed units~the constant mass density
rescaled to unity!, the kinematic viscosityn, and magnetic
diffusivity h. The dynamic pressurep is obtained by impos-
ing the incompressibility ofv.

Unfortunately, the numerical resolution necessary to r
der the discrete form of a turbulent MHD flow into a phys
cally meaningful representation of the real system increa
rapidly with the magnetic Reynolds numberRm5v0l 0 /h,
v0 and l 0 being a characteristic flow velocity and leng
scale, respectively. This limits direct numerical simulatio
~DNS! of three-dimensional MHD turbulence on today
supercomputers1–3 to values ofRm that are still several or-
ders of magnitude lower than the ones found in nature, e
in the solar convection zone. A possible alternative to D
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Jérôme, F13397-Marseille Cedex 20, France.
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is the large-eddy simulation~LES! approach, where the Rey
nolds number gap between simulation and reality is n
rowed by restricting direct numerical computation to t
large spatial scales of turbulence in combination with
model to incorporate the effects of the small-scale motio
This approximation is based on the assumption that
large-scale dynamics reflects the characteristic physics
specific turbulent system, e.g., the influence of geometry
boundary conditions, while the small-scale turbulent fluctu
tions act as a statistically quasi-uniform background.

The LES technique is considered a valuable tool
simulating rather large Reynolds number Navier–Stokes
bulence for more than thirty years now,4 while work on
adapting the method to MHD turbulence5–8 has not received
as much attention. This might in part be caused by the
that LES small-scale models usually contain at least one
parameter, which has to be tuned to obtain optimal per
mance of the simulation, turning a LES into a trial and er
process. However, not long ago a dynamic procedure
developed9 that allows for a self-consistent calibration of th
small-scale model during the simulation, leading to convin
ing results when used in Navier–Stokes turbulence. In
Brief Communication we present the generalization and
plication of this procedure to isotropic three-dimension
MHD turbulence, applying two generalized eddy-viscos
models to describe the small-scale dynamics. Scalar-le
tests are performed by comparing the observed temporal
spectral behavior of the kinetic and magnetic energies to
results of a high-resolution DNS of decaying MH
turbulence.3

The formal basis of LES is the application of a spat
gridfilter of width l̄ ~Ref. 10! to ~1!–~3!. The system of fil-
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] tv̄52¹•~ v̄v̄2b̄b̄1tv!1nD v̄2¹ p̄, ~4!

] tb̄52¹•~ v̄b̄2b̄v̄1tb!1hDb̄, ~5!

¹• v̄5¹•b̄50, ~6!

where two unknown terms, usually referred to as subg
scale or filtered-scale stress tensors, have been introduce
the filtering operation and need to be modeled:tv5(vv
2 v̄v̄)2(bb2b̄b̄) andtb5(vb2 v̄b̄)2(bv2b̄v̄). These ten-
sors account for effects of the subgrid-scale motions on
flow at the resolved scales larger thanl̄ . The filter chosen
here is a sharp cubic Fourier cutoff, which sets all spa
Fourier modes with at least one wave-vector compon
larger thankc5p/ l̄ to zero.

In order to assess the LES technique and the dyna
procedure in MHD we have performed simulations of dec
ing isotropic turbulence using the same pseudospec
method as the reference DNS, the same integration dom
~a cube of linear extension 2p with periodic boundary con-
ditions!and the same set of parameters (n5h53•1024) at a
significantly reduced numerical resolution. The initial con
tion has been generated from the reference DNS datat
51 when kinetic and magnetic energy dissipation, start
from smooth initial fields, have reached their maxima a
the dissipative small-scale structures of turbulence are f
developed. The data set has been cutoff-filtered from 5123 to
643 Fourier modes, removing about 99.8% of the origina
available information. The influence of the filtered scales
the remaining large scales of motion, which still contain 90
of the total energy, has to be mimicked by the models for
filtered-scale stress tensorstv andtb.

The model expressions used here are based on the e
viscosity assumption widely applied in LES of Navier
Stokes turbulence.11 This class of models aims at reprodu
ing the subgrid-scale kinetic-energy dissipation by assum
a linear relation between the deformation tensors at reso
and dissipative scales

tv522n tS̄, S̄5~¹ v̄1@¹ v̄#T!/2,

where the superscript ‘‘T’’ denotes the transposed matrix
n t is the eddy-viscosity. When restricting the dependence
n t to a characteristic mixing-lengthl̄ on the spatial scale
under consideration and the subgrid kinetic-energy diss
tion «K, dimensional analysis suggestsn t; l̄ 4/3(«K)1/3. For
the magnetic energy one can proceed analogously, ta
into account that the property of the magnetic field, wh
gives rise to resistive dissipation, is its curl rather than
deformation. This yields the model prototype

tb522h t J̄, J̄5~¹b̄2@¹b̄#T!/2,

tered equations can then be solved using a coarser grid, since 
fluctuations on spatial scales smaller than ̄ l —the subgrid 
scales—have been removed. In the following, l̄ -filtered 
quantities will be denoted by an overbar. The filtered equa-

tions for v̄ and ̄b thus read
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with the eddy-resistivityh t; l̄ 4/3(«M)1/3,«M denoting the
subgrid magnetic energy dissipation.

Depending on the way of estimating the subgrid dissi
tion, different eddy-viscosity models can be construct
Here we consider two variants. Ifl̄ lies somewhere in the
inertial scale range of fully developed turbulence and,
observed in the reference DNS, the nonlinear energy tran
between kinetic and magnetic energy is much smaller t
the respective energy dissipation,«K and«M can be assumed
as spatially constant. This yields the generalized Kolm
orov scaling subgrid model

M1 : n t5C1~ t ! l̄ 24/3, h t5D1~ t ! l̄ 24/3,

whereC1 andD1 are unknown parameter functions of tim
The widely applied Smagorinsky model12 approximates

«K as the product of the resolved local dissipation rate a
the associated length scalel̄ , leading to«K; l̄ 2(2S:S)3/2.
Together with the corresponding extension to MHD8 «M

; l̄ 2u j̄ u3, j̄ 5¹3b̄ being the resolved electric current densit
this gives

M2 : n t5C2~ t ! l̄ 2~2S:S!1/2, h t5D2~ t ! l̄ 2u j̄ u.

Both models contain parametersCi andDi ( i 51,2), for
which no direct relationship with the resolved large-sc
quantities can be obtained without further assumptio
Therefore, one would be forced to prescribe these parame
in order to optimize the simulation results with respect
known reference characteristics. Apart from the arbitrarin
introduced to the subgrid-modeling by such an approach,
lack of sufficiently large experimental MHD turbulence d
tabases, like they exist for the Navier–Stokes case, prev
any a priori justification of freely prescribed subgrid-mod
parameters. Fortunately, this problem can be circumven
by exploiting the self-similarity of fully developed turbu
lence. A corresponding technique, that has proven to be
cessful in Navier–Stokes LES, is the dynam
procedure.13–16

The basic idea of this method is the application of
second filter—the test filter—of widthl̂ . l̄ to the LES equa-
tions ~4!–~6!. The test filtering operation, here a cubic cuto
with l̂ 52 l̄ , will be indicated by the hat symbol, •ˆ . Introduc-
ing the filtered-scale stress tensors at test filter level asTv

5(vvR2vRvR2(bbR2bRbR ) and Tb5(vbR2vRbR )2(bvR2bRvR) leads
to the Germano identities14 for MHD

Tv5 t̂v1L v, Tb5 t̂b1Lb, ~7!

where the Leonard tensorsL v5( v̄v̂̄2vRvR)2(bbR2bRbR ) and
Lb5(vbR2vRbR )2(bvR2bRvR) are known in terms of the re
solved fields and, as such, do not require any modeling
contrast, the filtered-scale stress tensors at grid scales (tv,tb)
and test scales (Tv,Tb) have to be modeled. Since the turb
lent fields are assumed to be self-similar on scales within
interval @ l̄ , l̂ #, the applied models and their parameters
independent of the test filter width. Hence, for the stre
tensorsTv and Tb at test filter level the same model an
coefficients should be used as fortv and tb, respectively.
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Due to the modeling of the filtered-scale stress tensors
identities ~7! are not exactly fulfilled. The errors can b
quantified as

Qv5E
V
d3r ~Tv2 t̂v2L v!2, Qb5E

V
d3r ~Tb2 t̂b2Lb!2,

where the model parameters are assumed to be consta
space, which is justified when dealing with spatially hom
geneous turbulence. Minimizing the deviationsQv and Qb

by variation with respect to the model coefficients13 yields an
optimization ansatz for the filtered scale stress tensors.
implementation of the dynamic procedure is somewhat m
difficult when there is no flow direction of homogeneit
However, several solutions have been considered in
case, like the local dynamic procedure17 or the Lagrangian
dynamic procedure.18 The choice of the ratioa5 l̂ / l̄ 52 as
mentioned above has been guided by a series of test
with model M1 , confirming the self-similarity of the turbu
lent fields foraP@1.5,2.5#.

A basic LES requirement is the reproduction of the te
poral and spectral behavior of the filtered kinetic (EK) and
magnetic (EM) energy. The time evolution of these quan
ties is shown in Figs. 1 and 2, wheret is given, like for the
reference DNS, in units of the large eddy turnover time. D
monds represent the filtered DNS results, the solid and

FIG. 1. Decay of the kinetic-energyEK. Diamonds correspond to the refe
ence DNS filtered to 643, the dotted line shows the result of theM 0-LES
without model. The solid and dashed lines represent the predictions o
LES with, respectively, modelM1 and modelM 2 .

FIG. 2. Decay of the magnetic energyEM. For symbol explanation see
Fig. 1.
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dashed lines give the energy development for LES with
modelsM1 and M2 , respectively. To evaluate the overa
influence of the dynamic subgrid modeling the dotted lin
show the energy curves for a LES withM0 :tv5tb50.

As expected, theM0-LES results strongly deviate from
the filtered DNS data, since energy dissipation is mainly d
to the high wave number modes, which have been cutoff
the gridfiltering operation. The lack of a well-developed d
sipation range hampers energy decay and leads to an a
mulation of kinetic and magnetic energy in the high wa
number region of the LES system~see below!.

A clear improvement is observed when the subgrid m
els M1 and M2 are applied. The evolution ofEK is well
reproduced in both cases, showing that the main influenc
the small-scale velocity field fluctuations on the kinetic e
ergy is dissipative. The temporal development of the m
netic energy in the LES withM1 andM2 also satisfactorily
fits the reference data, though one observes an offset betw
the LES results and the DNS. Closer inspection reveals
this phenomenon is caused by an initial overshoot of
model resistivities estimated by the dynamic procedure. T
effect is known from Navier–Stokes LES using dynam
models and can be reduced by allowing for a short mo
relaxation period at the beginning of the simulation. Due
the spatial homogeneity of the turbulent system, there is o
a small systematic difference between the results obta
with the Kolmogorov scaling modelM1 , which mainly de-
pends on the spatially averaged extrapolation process in
ent to the dynamic procedure, and the Smagorinsky vers
M2 , that additionally takes into account the local field gr
dients.

The application of the virtually parameter free dynam
subgrid models reproduces rather sensitive quantities like
angle-averaged energy spectra in good agreement with
DNS data. The kinetic-energy spectraEk

K are shown in Fig. 3
at timet56, whenEK has decreased by a factor of about 6
Both models,M1 and M2 , lead to spectra that follow the
filtered DNS data up to the high wave number range of
LES system. Nevertheless, the simple applied eddy-visco
models provide too much dissipation in the high wave nu
ber range, leading to a slightly stronger fall-off of the LE
spectra when compared to the reference data. One obse

he
FIG. 3. Kinetic-energy spectrumEk

K at time t56. Symbols are the same a
in Fig. 1.
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that the over-dissipation is reduced by the Smagorinsky t
in modelM2 , yielding a better spectral performance.

The agreement of the LES results with the filtered DN
spectrum is evidently due to the subgrid modelsM1 andM2 ,
since the lack of such a model in theM0-LES causes a large
accumulation of kinetic energy over nearly two-thirds of t
LES wave number space, which is the consequence of
missing filtered-scale energy dissipation in combination w
the direct spectral energy cascade.

The same trends are observed in Fig. 4 for the an
averaged magnetic energy spectrumEk

M . However, the LES
show a spectral magnetic-energy distribution that is too
across a wide range of scales when compared to the D
spectrum. Since theM0-LES without model exhibits the
same behavior, the observation cannot be explained by
subgrid models being too dissipative. This implies that
model for the filtered-scale stress tensortb in Eq. ~5! has to
be more complex than the simple dissipative subgrid mod
M1 and M2 , e.g., allowing for a spectrally local inflow o
magnetic energy. Nevertheless, the improvement in re
ducing the magnetic energy reference spectrum using
presented subgrid-scale models compared to aM0-LES is
still tremendous.

FIG. 4. Magnetic-energy spectrumEk
M at time t56. Symbols are the sam

as in Fig. 1.
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The results presented in this Brief Communication sh
that LES with dynamic subgrid modeling are able to rep
duce the temporal and spectral energy evolution in isotro
MHD turbulence. Since decaying turbulence was conside
the LES subgrid models had to adapt to a nonstationary
vironment, where a continuous self-calibration of the mo
parameters as realized in the dynamic procedure is of
ticular importance. The achieved LES performance, es
cially when the highly reduced numerical resolution and
simplicity of the purely dissipative filtered-scale models a
taken into account, encourages further work on dynamic s
grid modeling of MHD turbulence.
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