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When solving inverse problems and using optimization methods with matrix variables in signal processing and machine learning, it is customary to assume some low-rank prior on the targeted solution. Nonnegative matrix factorization of spectrograms is a case in point in audio signal processing. However, this low-rank prior is not straightforwardly related to complex matrices obtained from a short-time Fourier -or discrete Gabor -transform (STFT), which is generally defined from and studied based on a modulation operator and a translation operator applied to a so-called window. This paper is a first study of the low-rankness property of time-frequency matrices. We characterize the set of signals with a rank-r (complex) STFT matrix in the case of a unit hop size and frequency step with few assumptions on the transform parameters. We discuss the scope of this result and its implications on low-rank approximations of STFT matrices.

INTRODUCTION

The Short Time Fourier Transform (STFT), or more generally the Gabor transform, have been widely used, especially when considering audio signal processing. Indeed, time-frequency representations of such signals may ease their processing. The STFT can be defined as a frame by applying a translation operator T and a modulation operator M to a so-called window [START_REF] Strohmer | Computational frameworks for discrete gabor analysis[END_REF]. Analyzing a signal with such a frame produces a time-frequency matrix, which can be after that used to analyse and process the signal. Much attention has been given in the literature to such transformations to study both theoretical aspects and implementations [START_REF] Søndergaard | The linear time frequency analysis toolbox[END_REF].

From the perspective of the optimization over matrix variables in signal processing or machine learning problems, one often uses lowrank matrix factorization models to find some structure in the data and/or to add a good regularization that will improve the estimation. Famous examples are given by collaborative filtering problems with applications to recommender systems [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF]. In audio, such strategies proved to be successful when applied to spectrograms, i.e., by retaining the modulus of the STFT coefficient, ignoring the phase, using nonnegative matrix factorization (NMF) techniques [START_REF] Smaragdis | Non-negative matrix factorization for polyphonic music transcription[END_REF][START_REF] Ozerov | Multichannel nonnegative matrix factorization in convolutive mixtures for audio source separation[END_REF][START_REF] Févotte | Algorithms for nonnegative matrix factorization with the β-divergence[END_REF]. It is useful to extract elementary components, such as musical notes or spectral source patterns, alongside their activation patterns in time. These results give credence to the intuition of the low-rank nature of such matrices, easily visible in specgrograms, as in Figure 1, and the limited number of sound elements. While NMF approaches have given good results for audio problems, such as source separation [START_REF] Ozerov | Multichannel nonnegative matrix factorization in convolutive mixtures for audio source separation[END_REF], music transcription [START_REF] Smaragdis | Non-negative matrix factorization for polyphonic music transcription[END_REF], or spectrogram inpainting [START_REF] Smaragdis | Missing data imputation for spectral audio signals[END_REF], two major This work was supported by the Agence Nationale de la Recherche under grant JCJC MAD (ANR-14-CE27-0002). limitations remain current challenges in research in audio processing. The first limitation is the approximation made by summing the moduli, or squared moduli, instead of summing the original coefficients: only time-frequency components that are not overlapping or that are dominating are preserved. The second limitation is that the phases associated to each coefficient are required to be able to synthesize an audio signal after processing the spectrogram. The problem of phase reconstruction is not only a difficult problem that is still under intensive research, but also requires to split the processing into two separate problems, on the amplitudes and on the phases successively, which is bound to give suboptimal results. One may wish in having the best of both worlds by modelling the complex-valued STFT matrices using low-rank factorizations, allowing true additivity between components, joint modeling of the amplitude and of the phase of the coefficients, and the use of a wide range of optimization and learning tools. However, the definition of the STFT, based on the modulation and the translation of a window, does not give straightforward evidence about the low-rankness of the resulting time-frequency matrices, nor their capability to be well approximated by low-rank matrices.

In this paper, we propose to study low-rank time-frequency (complex-valued) matrices, in order to exhibit the nature of these objects and their potential use to model audio data. The following aspects will be particularly of interest:

• from a general viewpoint, how the intuitions of the lowrankness of the spectrograms can be extended to complexvalued time-frequency matrices, and how to validate them or not ?

• what is a rank-one matrix, or more generally a rank-r matrix, in the time-frequency plane? Can the set of rank-r timefrequency matrices be fully characterized? • do time-frequency matrices of real-world sounds have good low-rank approximations? Which kind of elementary patterns are obtained? The paper is organized as follows: Section 2 is dedicated to the study of the rank of STFT matrices. Numerical simulations are provided in Section 3, while Section 4 details conclusions on the lowrankness of STFT matrices and consequences for their modeling.

CHARACTERIZATION OF LOW-RANK STFT MATRICES

In this first section, we characterize the set of signals with a rank-r STFT matrix, for any r ∈ N * , in a context where the signals are discrete and have finite length, and the STFT is circular with maximal redundancy (i.e., unit hop size and a number of frequency bins equal to the length of the signal). These conditions, and the scope of the given results, will be broadly discussed at the end of the section.

Definitions and properties of STFT representations

We consider complex-valued vectors of length L describing discrete finite signals, denoted by

(s [m]) m∈[L] ∈ C L , where [L] = {0, . . . , L -1} is the set of the first L integers. The so-called window is denoted by (h [m]) m∈[L] ∈ C L .
As defined above, a signal s and a window h are indexed from 0 to L -1. Whenever index m is outside this range, we will consider the L-periodic extension of s and h defined by

∀m ∈ Z, s [m] = s [m%L] and h [m] = h [m%L],
where % denotes the modulo operator.

Definition 2.1 (Fourier matrix). The Fourier matrix E ∈ C L×L is defined by

E = e -2iπ kt L k∈[L],t∈[L]
Definition 2.2 (DFT and IDFT). The discrete Fourier transform

(DFT) of u ∈ C L on L discrete frequencies is u = DFT (u) = Eu. The inverse discrete Fourier transform (IDFT) of u ∈ C L is ǔ = IDFT (u) = E -1 s = 1 L E * s where E * is the adjoint of E. There exist different conventions to define the STFT on K discrete frequencies {ν k } K-1 k=0 with ν k = k K and N time steps {tn} N -1
n=0 , with tn = nh, where h is an arbitrary hop size. If we denote by Tn the translation by tn and by M k the modulation by ν k , these conventions depend on the order of application of operators Tn and M k .

Definition 2.3 ((K × N )-STFT, band-pass convention). In the so- called band-pass convention, the (K × N )-STFT of s ∈ C L is de- fined on discrete frequency ν k , k ∈ [K] and discrete time tn, n ∈ [N ] by S (K×N ) BP [k, n] = TnM k h, s = m s [tn + m] h [m] e -2iπν k m .
(1) Definition 2.4 ((K × N )-STFT, low-pass convention). In the socalled low-pass convention, the

(K × N )-STFT of s is defined on discrete frequency ν k , k ∈ [K] and discrete time tn, n ∈ [N ] by S (K×N ) LP [k, n] = M k Tnh, s = m s [m] h [m -tn] e -2iπν k m . (2)
Those definitions are linked by tho following relation:

∀k ∈ K , n ∈ Z, SLP (k, n) = SBP (k, n) × e -2iπν k
mn , that illustrates that an identical content between the two conventions up to a frequency, as well as a similar resulting spectrogram.

A case of interest is when K = N = L, i.e. the redundancy is maximal. The (L × L)-STFT of s ∈ C L in both conventions, which will be denoted respectively by SBP = S (L×L) BP and SLP = S

(L×L) LP , are rewritten ∀k, n, SBP [k, n] = m s [n + m] h [m] e -2iπ km L (3) ∀k, n, SLP [k, n] = m s [m] h [m -n] e -2iπ km L . (4) 
It is worth noting that any (K × N )-STFT representations can be obtained from the (L × L)-STFT representation by keeping every L K row and every L N column: Proposition 2.1. Let K, N ∈ N be such that K|L and N |L. Then for any k ∈

[K] , n ∈ [N ], we have S (K×N ) BP [k, n] = SBP kL K , nL K (5) 
and

S (K×N ) LP [k, n] = SLP kL K , nL K . ( 6 
)
Proof. The proof follows from the definition of each matrix.

Characterization of rank-r STFT matrices

Lemme 2.2 (Factorization of STFT matrices). For any signal s ∈ C L and window h ∈ C L , we have

SBP = E diag (h) E -1 diag ( s) E (7) 
and

SLP = E diag (s) E -1 diag h E (8) Proof. Let us defined H [k, n] = h [k -n] for any k, n ∈ [L].
Because we consider a L-periodic extension of signals, H ∈ C L×L is a circulant matrix, and then H = E -1 diag h E. In the lowpass convention, let sn ∈ C L be the windowed signal in frame n ∈ [L], so that we have, for any k ∈ [L]

sn [k] = s [k] h [k -n] = s [k] H [k, n] = (diag (s) H) [k, n] , (9) 
the STFT matrix can be then written for k, n

∈ [L] SLP [k, n] = (Esn) [k] = (E diag (s) H) [k, n] (10) 
= E diag (s) E -1 diag h E [k, n] , (11) 
which proves [START_REF] Eckart | The approximation of one matrix by another of lower rank[END_REF]. Eq. ( 7) is obtained in the same way by permuting the role of s and h.

Using this new formulation of the STFT, it is possible, under some conditions on the signal or the mindow, to characterize the rank of the resulting STFT matrices in both conventions.

Theorem 2.3 (Rank-r STFT matrices). Let s ∈ C L . If h ∈ C L is a window that does not vanish, i.e., ∀k ∈ [L] , h [t] = 0, then rank (SBP) = s 0 .
Similarly, if h ∈ C L is a window such that its DFT does not vanish, i.e., ∀k ∈ [L] , h [k] = 0, then rank (SLP) = s 0 . Proof. If window h does not vanish, then rank (diag (h)) = L. According to Proposition 2.2, SBP = E diag (h) E -1 diag ( s) E is the matrix product of diag ( s) with full rank matrices, leading to a resulting matrix with rank rank (SBP) = rank (diag ( s)) = s 0 .

Similarly, if h does not vanish, SLP = E diag (s) E -1 diag h E is the matrix product of diag (s) with full rank matrices, leading to a resulting matrix product with rank rank (SLP) = rank (diag (s)) = s 0 .

This theorem states that under weak conditions that are commented below, the set of rank-r STFT matrices in the band-pass convention is composed of signals that are the sum of r pure complex exponentials at Fourier frequencies, while the set of rank-r STFT matrices in the low-pass convention is composed of signals that are the sum of r diracs at integer times. Due to the duality between the two conventions and between dirac and sinusoids, we will mainly comment on the case of SBP.

Rank-one elements. Theorem 2.3 states the elementary rankone components in low-rank SBP matrices are pure sines at Fourier frequencies. This is a very restricted set compared to the intuition on spectrograms, where an exact or approximate rank-one matrix may be composed by any fixed spectral pattern -e.g., a sum of sinusoids or a wide-band noise -which may be modulated in amplitude in consecutive frames. No such degrees of freedoms are allowed in complex-valued rank-one STFT matrices.

Finite signals, discrete frequencies and circularity. The fact that only discrete Fourier frequencies are allowed in Theorem 2.3 can be viewed as a boundary effect. Indeed, since signals are finite and circular, only sinusoids with discrete Fourier frequencies have an integral number of periods and do not present a discontinuity. Hence, this contraint on discrete frequencies is not very restrictive: one may obtain rank-r matrices with a finer frequency discretization by increasing the length of the signal, until having a continuous set of frequencies when the signal is supported on Z.

Condition on the window. The condition on the absence of zeros in window h or in its DFT can be satisfied easily, e.g., by choosing a (truncated) Gaussian window, as illustrated below. Theorem 2.3 does not cover the use of windows with a more compact support that results in zeros in the time and Fourier domains -e.g., Hamming, Hann, rectangular, and so on. We conjecture that in those cases, some additional signals have a low-rank STFT matrix, that they are very specific signals with contents that depends on the STFT parameters, and that it may not affect the main analysis and conclusions of this paper. A dedicated study of those signals would extend the scope of Theorem 2.3. Another remark is that in practic when the signal length L is large, even if the condition on the window is satisfied, the amplitude of a windows or its DFT may decrease to be on the order of the numeric precision: this may cause some changes in the actual rank of the STFT matrix, as illustrated below.

Extension to rank K × N -STFT matrices. Under the same conditions as in Theorem 2.3, the rank of any K × N -STFT matrices is upper-bounded by the rank of the N × N -STFT given by Theorem 2.3, thanks to eq. ( 5) and ( 6). An exact characterization of the rank of S (K×N ) BP and S (K×N ) LP would be an interesting extension of Theorem 2.3.

NUMERICAL EXPERIMENTS

All the experiments in this section have been realized using the Python version 1 of the LTFAT toolbox [START_REF] Søndergaard | The linear time frequency analysis toolbox[END_REF]. For reproducibility purposes, the code will be made available with the paper2 .

Analysis of low-rank STFT matrices

A direct illustration of Theorem 2.3 is represented in Figure 2, that shows the analysis of a signal with length L = 128 and composed by a sum of Nc = 6 complex sinusoids at exact Fourier frequencies. A group of sinusoids have closed frequencies 25 128 , 26 128 , 28 128 , 30 128 , 32 128 while the other sinusoid with frequency -40 128 is isolated, in terms of the frequency resolution imposed by the Gaussian window in use. This can be observed in the DFT of the signal and of the window in the left plot of Figure 2. As a result on the spectrogram, the group of sinusoids generates a wide, modulated strip, while the isolated component appears as a time-invariant pattern. When looking at the singular values in decreasing order on the right plot of Figure 2, one can see that the rank of SBP exactly equals the number of sinusoids, as predicted by Theorem 2.3. Matrix SLP, in the other STFT convention, has many high singular values, which prevents any good lowrank approximation. This illustrates the importance of the choice of the STFT convention. The dual counterpart, with a signal composed of diracs at discrete times 25, 26, 28, 30, 32, and 88, would result in a permutation between the SBP and SLP curves. The rank of the energy spectrogram is larger than the number of components, while the magnitude spetrogram has singular values that decrease more slowly. Another illustration is given in Figure 3, that displays the rank of the STFT representations and the corresponding spectrograms with respect to the number of components Nc of the signal of length L = 64. In this example, the frequencies of components are drawn randomly at exact Fourier frequencies. The rank of SBP perfectly equals the number of components, as predicted by Theorem 2.3, except for high values where a plateau is reached, which may be due to numerical precision. As expected, the rank of SLP is high. The rank of the energy spectrogram seems to follow a trend in Nc(Nc+1) 2 , which is an upper bound that can be found by the fact that for any matrix M with rank r, the rank of |M| 2 is upper bounded by r(r+1) 2 (the proof is easy and omitted by lack of space). This is due to the interference between close components, which are perfectly modelled as a low-rank part in the SBP matrix and not in the spectrogram matrix. Together with the magnitude spectrogram which has an even higher rank, this shows that in this context, an STFT matrix may be of lower rank than the related spectrograms.

Low-rank approximation of STFT matrices of audio signals

While the previous section demonstrates that low-rank STFT matrices are in a very narrow set, we illustrate in this section how this impact the low-rank approximation of STFT matrices of real sounds. The (classical) problem considered here consists in finding the best approximation X ∈ C F ×T of rank K of a matrix X ∈ C K×N , that is to say to solve the following problem:

X = arg min Y∈C F ×T ,rg(Y)≤K X -Y 2 F ( 12 
)
The Eckart-Young theorem [START_REF] Eckart | The approximation of one matrix by another of lower rank[END_REF] states that the solution is X = U Σ V * , where UΣV * is the singular value decomposition (SVD) of X and U (resp. Σ, V) is the truncated version of U (resp. Σ, V) related to the K largest singular values of X. In addition, the minimum satisfies X -X Figure 4 displays the normalized approximation error of the STFT representation, obtained after performing a low-rank approximation of the STFT and of the corresponding spectrogram matrices, for the Glockenspiel sound represented in Figure 1. The sound is sampled at 44.1 KHz, and the STFT is computed using a Hann window of size 2048 with 75% overlapping. The approximation is better for the spectrograms than for the STFT, confirming that low-rank models are too constraining for STFT matrices. Yet, the approximation error being directly related to the singular values as explained above, one can see that the STFT matrix is somehow low-rank approximable. 

CONCLUSIONS

In this paper, we have first characterized exactly the set of low-rank matrices in a general context that allows to draw conclusions for low-rank models on this kind of data. First, this set of low-rank matrices is very narrow, which highly limits the modeling capacity.

Second, it appears that the phase convention used to define the STFT is critical, and that the STFT of a mixture of sinusoids and dirac cannot be jointly described by a low-rank model, which is another major limitation. One may conclude that using a low-rank prior on complex-valued STFT matrices is not a good strategy. For instance, one may better design optimization problems with such matrices, and use a low-rank constraint on its magnitude or square magnitude. However, as we have shown that sinusoids or diracs give exact low-rank STFT matrices, it would be also possible to extend these results by designing low-rank models for local parts of the timefrequency plane, like patches in images, instead of using a low-rank prior on the full matrix. These study, despite the negative results when applied on real audio signals, provides nevertheless a better understanding of the low-rankness property of STFT matrices, and, to our opinion, brings real hope for the development of innovant structured models considering low-rank constraints in the time-frequency plane.
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 1 Fig. 1. Spectrogram of the Glockenspiel, composed of about 50 spectral peaks distributed on 15 occurrences of 8 notes. Does the approximate rank of the complex-valued STFT matrix equal 8, 15, 50, or another value?
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 2 Fig. 2. Analysis of a signal with Nc = 6 sinusoids with a Gaussian window: DFT of the signal and of the window (left), spectrogram (middle) and singular values of STFT matrices, magnitude and energy spectrograms (right).
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 3 Fig. 3. Rank of the STFT matrix with respect to the number of sinusoids in the signal, for several types of time-frequency matrices.

2 F=

 2 min(F,T )k=K+1 σ 2 k . We solve this problem for X = SBP and X = |SBP| for different values of K.

2 Fig. 4 .

 24 Fig. 4. Glockenspiel sound: normalized approximation error of the STFT representation when considering a low-rank decomposition of the STFT matrix SBP (blue), the magnitude spectrogram (green) and the energy spectrogram (yellow).

See the ltfatpy module at http://pythonhosted.org/ ltfatpy/.
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