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ABSTRACT

When solving inverse problems and using optimization methods
with matrix variables in signal processing and machine learning, it
is customary to assume some low-rank prior on the targeted solu-
tion. Nonnegative matrix factorization of spectrograms is a case in
point in audio signal processing. However, this low-rank prior is
not straightforwardly related to complex matrices obtained from a
short-time Fourier – or discrete Gabor – transform (STFT), which
is generally defined from and studied based on a modulation oper-
ator and a translation operator applied to a so-called window. This
paper is a first study of the low-rankness property of time-frequency
matrices. We characterize the set of signals with a rank-r (complex)
STFT matrix in the case of a unit hop size and frequency step with
few assumptions on the transform parameters. We discuss the scope
of this result and its implications on low-rank approximations of
STFT matrices.

Index Terms— Short-Time Fourier Transform, low-rankness,

1. INTRODUCTION

The Short Time Fourier Transform (STFT), or more generally the
Gabor transform, have been widely used, especially when consider-
ing audio signal processing. Indeed, time-frequency representations
of such signals may ease their processing. The STFT can be defined
as a frame by applying a translation operator T and a modulation
operatorM to a so-called window [1]. Analyzing a signal with such
a frame produces a time-frequency matrix, which can be after that
used to analyse and process the signal. Much attention has been
given in the literature to such transformations to study both theoreti-
cal aspects and implementations [2].

From the perspective of the optimization over matrix variables in
signal processing or machine learning problems, one often uses low-
rank matrix factorization models to find some structure in the data
and/or to add a good regularization that will improve the estimation.
Famous examples are given by collaborative filtering problems with
applications to recommender systems [3]. In audio, such strategies
proved to be successful when applied to spectrograms, i.e., by retain-
ing the modulus of the STFT coefficient, ignoring the phase, using
nonnegative matrix factorization (NMF) techniques [4, 5, 6]. It is
useful to extract elementary components, such as musical notes or
spectral source patterns, alongside their activation patterns in time.
These results give credence to the intuition of the low-rank nature
of such matrices, easily visible in specgrograms, as in Figure 1, and
the limited number of sound elements. While NMF approaches have
given good results for audio problems, such as source separation [5],
music transcription [4], or spectrogram inpainting [7], two major
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Fig. 1. Spectrogram of the Glockenspiel, composed of about 50
spectral peaks distributed on 15 occurrences of 8 notes. Does the
approximate rank of the complex-valued STFT matrix equal 8, 15,
50, or another value?

limitations remain current challenges in research in audio process-
ing. The first limitation is the approximation made by summing the
moduli, or squared moduli, instead of summing the original coef-
ficients: only time-frequency components that are not overlapping
or that are dominating are preserved. The second limitation is that
the phases associated to each coefficient are required to be able to
synthesize an audio signal after processing the spectrogram. The
problem of phase reconstruction is not only a difficult problem that
is still under intensive research, but also requires to split the process-
ing into two separate problems, on the amplitudes and on the phases
successively, which is bound to give suboptimal results.

One may wish in having the best of both worlds by modelling
the complex-valued STFT matrices using low-rank factorizations, al-
lowing true additivity between components, joint modeling of the
amplitude and of the phase of the coefficients, and the use of a wide
range of optimization and learning tools. However, the definition
of the STFT, based on the modulation and the translation of a win-
dow, does not give straightforward evidence about the low-rankness
of the resulting time-frequency matrices, nor their capability to be
well approximated by low-rank matrices.

In this paper, we propose to study low-rank time-frequency
(complex-valued) matrices, in order to exhibit the nature of these
objects and their potential use to model audio data. The following
aspects will be particularly of interest:

• from a general viewpoint, how the intuitions of the low-
rankness of the spectrograms can be extended to complex-
valued time-frequency matrices, and how to validate them or
not ?



• what is a rank-one matrix, or more generally a rank-r ma-
trix, in the time-frequency plane? Can the set of rank-r time-
frequency matrices be fully characterized?

• do time-frequency matrices of real-world sounds have good
low-rank approximations? Which kind of elementary patterns
are obtained?

The paper is organized as follows: Section 2 is dedicated to the
study of the rank of STFT matrices. Numerical simulations are pro-
vided in Section 3, while Section 4 details conclusions on the low-
rankness of STFT matrices and consequences for their modeling.

2. CHARACTERIZATION OF LOW-RANK STFT
MATRICES

In this first section, we characterize the set of signals with a rank-r
STFT matrix, for any r ∈ N∗, in a context where the signals are dis-
crete and have finite length, and the STFT is circular with maximal
redundancy (i.e., unit hop size and a number of frequency bins equal
to the length of the signal). These conditions, and the scope of the
given results, will be broadly discussed at the end of the section.

2.1. Definitions and properties of STFT representations

We consider complex-valued vectors of length L describing dis-
crete finite signals, denoted by (s [m])m∈[L] ∈ CL, where [L] =

{0, . . . , L− 1} is the set of the first L integers. The so-called
window is denoted by (h [m])m∈[L] ∈ CL. As defined above, a
signal s and a window h are indexed from 0 to L − 1. Whenever
index m is outside this range, we will consider the L-periodic ex-
tension of s and h defined by ∀m ∈ Z, s [m] = s [m%L] and
h [m] = h [m%L], where % denotes the modulo operator.

Definition 2.1 (Fourier matrix). The Fourier matrix E ∈ CL×L is
defined by

E =
(
e−2iπ kt

L

)
k∈[L],t∈[L]

Definition 2.2 (DFT and IDFT). The discrete Fourier transform
(DFT) of u ∈ CL on L discrete frequencies is û = DFT (u) =
Eu. The inverse discrete Fourier transform (IDFT) of u ∈ CL is
ǔ = IDFT (u) = E−1s = 1

L
E∗s where E∗ is the adjoint of E.

There exist different conventions to define the STFT on K
discrete frequencies {νk}K−1

k=0 with νk = k
K

and N time steps
{tn}N−1

n=0 , with tn = nh, where h is an arbitrary hop size. If we
denote by Tn the translation by tn and byMk the modulation by νk,
these conventions depend on the order of application of operators
Tn andMk.

Definition 2.3 ((K ×N)-STFT, band-pass convention). In the so-
called band-pass convention, the (K ×N)-STFT of s ∈ CL is de-
fined on discrete frequency νk, k ∈ [K] and discrete time tn, n ∈
[N ] by

S
(K×N)
BP [k, n] = 〈TnMkh, s〉 =

∑
m

s [tn +m] h [m] e−2iπνkm.

(1)

Definition 2.4 ((K ×N)-STFT, low-pass convention). In the so-
called low-pass convention, the (K ×N)-STFT of s is defined on
discrete frequency νk, k ∈ [K] and discrete time tn, n ∈ [N ] by

S
(K×N)
LP [k, n] = 〈MkTnh, s〉 =

∑
m

s [m] h [m− tn] e−2iπνkm.

(2)

Those definitions are linked by tho following relation: ∀k ∈
JKK, n ∈ Z, SLP (k, n) = SBP (k, n) × e−2iπνkmn , that illustrates
that an identical content between the two conventions up to a fre-
quency, as well as a similar resulting spectrogram.

A case of interest is when K = N = L, i.e. the redundancy is
maximal. The (L× L)-STFT of s ∈ CL in both conventions, which
will be denoted respectively by SBP = S

(L×L)
BP and SLP = S

(L×L)
LP ,

are rewritten

∀k, n,SBP [k, n] =
∑
m

s [n+m] h [m] e−2iπ km
L (3)

∀k, n,SLP [k, n] =
∑
m

s [m] h [m− n] e−2iπ km
L . (4)

It is worth noting that any (K ×N)-STFT representations can be
obtained from the (L× L)-STFT representation by keeping every
L
K

row and every L
N

column:

Proposition 2.1. Let K,N ∈ N be such that K|L and N |L. Then
for any k ∈ [K] , n ∈ [N ], we have

S
(K×N)
BP [k, n] = SBP

[
kL

K
,
nL

K

]
(5)

and S
(K×N)
LP [k, n] = SLP

[
kL

K
,
nL

K

]
. (6)

Proof. The proof follows from the definition of each matrix.

2.2. Characterization of rank-r STFT matrices

Lemme 2.2 (Factorization of STFT matrices). For any signal s ∈
CL and window h ∈ CL, we have

SBP = E diag (h) E−1 diag (ŝ) E (7)

and SLP = E diag (s) E−1 diag
(
ĥ
)

E (8)

Proof. Let us defined H [k, n] = h [k − n] for any k, n ∈ [L].
Because we consider a L-periodic extension of signals, H ∈ CL×L

is a circulant matrix, and then H = E−1 diag
(
ĥ
)

E. In the low-

pass convention, let sn ∈ CL be the windowed signal in frame n ∈
[L], so that we have, for any k ∈ [L]

sn [k] = s [k] h [k − n] = s [k] H [k, n] = (diag (s) H) [k, n] ,
(9)

the STFT matrix can be then written for k, n ∈ [L]

SLP [k, n] = (Esn) [k] = (E diag (s) H) [k, n] (10)

=
(
E diag (s) E−1 diag

(
ĥ
)

E
)

[k, n] , (11)

which proves (8). Eq. (7) is obtained in the same way by permuting
the role of s and h.

Using this new formulation of the STFT, it is possible, under
some conditions on the signal or the mindow, to characterize the
rank of the resulting STFT matrices in both conventions.

Theorem 2.3 (Rank-r STFT matrices). Let s ∈ CL. If h ∈ CL
is a window that does not vanish, i.e., ∀k ∈ [L] ,h [t] 6= 0, then
rank (SBP) = ‖ŝ‖0.

Similarly, if h ∈ CL is a window such that its DFT does not
vanish, i.e., ∀k ∈ [L] , ĥ [k] 6= 0, then rank (SLP) = ‖s‖0.



Fig. 2. Analysis of a signal withNc = 6 sinusoids with a Gaussian window: DFT of the signal and of the window (left), spectrogram (middle)
and singular values of STFT matrices, magnitude and energy spectrograms (right).

Proof. If window h does not vanish, then rank (diag (h)) = L.
According to Proposition 2.2, SBP = E diag (h) E−1 diag (ŝ) E is
the matrix product of diag (ŝ) with full rank matrices, leading to a
resulting matrix with rank rank (SBP) = rank (diag (ŝ)) = ‖ŝ‖0.

Similarly, if ĥ does not vanish, SLP = E diag (s) E−1 diag
(
ĥ
)

E

is the matrix product of diag (s) with full rank matrices, leading to a
resulting matrix product with rank rank (SLP) = rank (diag (s)) =
‖s‖0.

This theorem states that under weak conditions that are com-
mented below, the set of rank-r STFT matrices in the band-pass con-
vention is composed of signals that are the sum of r pure complex
exponentials at Fourier frequencies, while the set of rank-r STFT
matrices in the low-pass convention is composed of signals that are
the sum of r diracs at integer times. Due to the duality between the
two conventions and between dirac and sinusoids, we will mainly
comment on the case of SBP.

Rank-one elements. Theorem 2.3 states the elementary rank-
one components in low-rank SBP matrices are pure sines at Fourier
frequencies. This is a very restricted set compared to the intuition on
spectrograms, where an exact or approximate rank-one matrix may
be composed by any fixed spectral pattern – e.g., a sum of sinusoids
or a wide-band noise – which may be modulated in amplitude in
consecutive frames. No such degrees of freedoms are allowed in
complex-valued rank-one STFT matrices.

Finite signals, discrete frequencies and circularity. The fact that
only discrete Fourier frequencies are allowed in Theorem 2.3 can
be viewed as a boundary effect. Indeed, since signals are finite and
circular, only sinusoids with discrete Fourier frequencies have an in-
tegral number of periods and do not present a discontinuity. Hence,
this contraint on discrete frequencies is not very restrictive: one may
obtain rank-r matrices with a finer frequency discretization by in-
creasing the length of the signal, until having a continuous set of
frequencies when the signal is supported on Z.

Condition on the window. The condition on the absence of zeros
in window h or in its DFT can be satisfied easily, e.g., by choosing
a (truncated) Gaussian window, as illustrated below. Theorem 2.3
does not cover the use of windows with a more compact support that
results in zeros in the time and Fourier domains – e.g., Hamming,
Hann, rectangular, and so on. We conjecture that in those cases,
some additional signals have a low-rank STFT matrix, that they are
very specific signals with contents that depends on the STFT param-
eters, and that it may not affect the main analysis and conclusions
of this paper. A dedicated study of those signals would extend the

scope of Theorem 2.3. Another remark is that in practic when the
signal length L is large, even if the condition on the window is sat-
isfied, the amplitude of a windows or its DFT may decrease to be on
the order of the numeric precision: this may cause some changes in
the actual rank of the STFT matrix, as illustrated below.

Extension to rank K ×N -STFT matrices. Under the same con-
ditions as in Theorem 2.3, the rank of any K × N -STFT matrices
is upper-bounded by the rank of the N × N -STFT given by Theo-
rem 2.3, thanks to eq. (5) and (6). An exact characterization of the
rank of S

(K×N)
BP and S

(K×N)
LP would be an interesting extension of

Theorem 2.3.

3. NUMERICAL EXPERIMENTS

All the experiments in this section have been realized using the
Python version1 of the LTFAT toolbox [2]. For reproducibility
purposes, the code will be made available with the paper2.

3.1. Analysis of low-rank STFT matrices

A direct illustration of Theorem 2.3 is represented in Figure 2, that
shows the analysis of a signal with lengthL = 128 and composed by
a sum of Nc = 6 complex sinusoids at exact Fourier frequencies. A
group of sinusoids have closed frequencies 25

128
, 26
128

, 28
128

, 30
128

, 32
128

while the other sinusoid with frequency −40
128

is isolated, in terms of
the frequency resolution imposed by the Gaussian window in use.
This can be observed in the DFT of the signal and of the window in
the left plot of Figure 2. As a result on the spectrogram, the group
of sinusoids generates a wide, modulated strip, while the isolated
component appears as a time-invariant pattern. When looking at the
singular values in decreasing order on the right plot of Figure 2, one
can see that the rank of SBP exactly equals the number of sinusoids,
as predicted by Theorem 2.3. Matrix SLP, in the other STFT conven-
tion, has many high singular values, which prevents any good low-
rank approximation. This illustrates the importance of the choice of
the STFT convention. The dual counterpart, with a signal composed
of diracs at discrete times 25, 26, 28, 30, 32, and 88, would result
in a permutation between the SBP and SLP curves. The rank of the
energy spectrogram is larger than the number of components, while
the magnitude spetrogram has singular values that decrease more
slowly.

1See the ltfatpy module at http://pythonhosted.org/
ltfatpy/.

2http://mad.lif.univ-mrs.fr/

http://pythonhosted.org/ltfatpy/
http://pythonhosted.org/ltfatpy/
http://mad.lif.univ-mrs.fr/


Fig. 3. Rank of the STFT matrix with respect to the number of sinu-
soids in the signal, for several types of time-frequency matrices.

Another illustration is given in Figure 3, that displays the rank of
the STFT representations and the corresponding spectrograms with
respect to the number of components Nc of the signal of length
L = 64. In this example, the frequencies of components are drawn
randomly at exact Fourier frequencies. The rank of SBP perfectly
equals the number of components, as predicted by Theorem 2.3, ex-
cept for high values where a plateau is reached, which may be due
to numerical precision. As expected, the rank of SLP is high. The
rank of the energy spectrogram seems to follow a trend in Nc(Nc+1)

2
,

which is an upper bound that can be found by the fact that for any
matrix M with rank r, the rank of |M|2 is upper bounded by r(r+1)

2
(the proof is easy and omitted by lack of space). This is due to the
interference between close components, which are perfectly mod-
elled as a low-rank part in the SBP matrix and not in the spectrogram
matrix. Together with the magnitude spectrogram which has an even
higher rank, this shows that in this context, an STFT matrix may be
of lower rank than the related spectrograms.

3.2. Low-rank approximation of STFT matrices of audio signals

While the previous section demonstrates that low-rank STFT ma-
trices are in a very narrow set, we illustrate in this section how this
impact the low-rank approximation of STFT matrices of real sounds.
The (classical) problem considered here consists in finding the best
approximation X̃ ∈ CF×T of rank K of a matrix X ∈ CK×N , that
is to say to solve the following problem:

X̃ = arg min
Y∈CF×T ,rg(Y)≤K

‖X−Y‖2F (12)

The Eckart-Young theorem [8] states that the solution is X̃ =

ŨΣ̃Ṽ∗, where UΣV∗ is the singular value decomposition (SVD)
of X and Ũ (resp. Σ̃, Ṽ) is the truncated version of U (resp. Σ,
V) related to the K largest singular values of X. In addition, the

minimum satisfies
∥∥∥X− X̃

∥∥∥2
F

=
∑min(F,T )
k=K+1 σ2

k. We solve this

problem for X = SBP and X = |SBP| for different values of K.
Figure 4 displays the normalized approximation error of the

STFT representation, obtained after performing a low-rank approxi-
mation of the STFT and of the corresponding spectrogram matrices,

for the Glockenspiel sound represented in Figure 1. The sound is
sampled at 44.1 KHz, and the STFT is computed using a Hann
window of size 2048 with 75% overlapping. The approximation
is better for the spectrograms than for the STFT, confirming that
low-rank models are too constraining for STFT matrices. Yet, the
approximation error being directly related to the singular values
as explained above, one can see that the STFT matrix is somehow
low-rank approximable.
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Fig. 4. Glockenspiel sound: normalized approximation error of the
STFT representation when considering a low-rank decomposition of
the STFT matrix SBP (blue), the magnitude spectrogram (green) and
the energy spectrogram (yellow).

4. CONCLUSIONS

In this paper, we have first characterized exactly the set of low-rank
matrices in a general context that allows to draw conclusions for
low-rank models on this kind of data. First, this set of low-rank
matrices is very narrow, which highly limits the modeling capacity.
Second, it appears that the phase convention used to define the STFT
is critical, and that the STFT of a mixture of sinusoids and dirac
cannot be jointly described by a low-rank model, which is another
major limitation. One may conclude that using a low-rank prior on
complex-valued STFT matrices is not a good strategy. For instance,
one may better design optimization problems with such matrices,
and use a low-rank constraint on its magnitude or square magnitude.

However, as we have shown that sinusoids or diracs give exact
low-rank STFT matrices, it would be also possible to extend these
results by designing low-rank models for local parts of the time-
frequency plane, like patches in images, instead of using a low-rank
prior on the full matrix. These study, despite the negative results
when applied on real audio signals, provides nevertheless a better un-
derstanding of the low-rankness property of STFT matrices, and, to
our opinion, brings real hope for the development of innovant struc-
tured models considering low-rank constraints in the time-frequency
plane.
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