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GPR56-related bilateral frontoparietal polymicrogyria: further evidence for an overlap with the cobblestone complex
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GPR56 mutations cause an autosomal recessive polymicrogyria syndrome that has distinctive radiological features combining bilateral frontoparietal polymicrogyria, white matter abnormalities and cerebellar hypoplasia. Recent investigations of a GPR56 knockout mouse model suggest that bilateral bifrontoparietal polymicrogyria shares some features of the cobblestone brain malformation and demonstrate that loss of GPR56 leads to a dysregulation of the maintenance of the pial basement membrane integrity in the forebrain and the rostral cerebellum. In light of these findings and other data in the literature, this study aimed to refine the clinical features with the first description of a foetopathological case and to define the range of cobblestonelike features in GPR56 bilateral bifrontoparietal polymicrogyria in a sample of 14 patients. We identified homozygous GPR56 mutations in 14 patients from eight consanguineous families with typical bilateral bifrontoparietal polymicrogyria and in one foetal case, out of 30 patients with bifrontoparietal polymicrogyria referred for molecular screening. The foetal case, which was terminated at 35 weeks of gestation in view of suspicion of Walker Warburg syndrome, showed a cobblestone-like lissencephaly with a succession of normal, polymicrogyric and 'cobblestone-like' cortex with ectopic neuronal overmigration, agenesis of the cerebellar vermis and hypoplastic cerebellar hemispheres with additional neuronal overmigration in the pons and the cerebellar cortex. The 14 patients with GPR56 mutations (median 8.25 years, range 1.5-33 years) were phenotypically homogeneous with a distinctive clinical course characterized by pseudomyopathic behaviour at onset that subsequently evolved into severe mental and motor retardation. Generalized seizures (12/14) occurred later with onset ranging from 2.5 to 10 years with consistent electroencephalogram findings of predominantly anterior bursts of low amplitude a-like activity. Neuroimaging demonstrated a common phenotype with bilateral frontoparietally predominant polymicrogyria (13/13), cerebellar dysplasia with cysts mainly affecting the superior vermis (11/13) and patchy to diffuse myelination abnormalities (13/13). Additionally, the white matter abnormalities showed a peculiar evolution from severe hypomyelination at 4 months to patchy lesions later in childhood. Taken as a whole, these observations collectively demonstrate that GPR56 bilateral bifrontoparietal polymicrogyria combines all the features of a cobblestone-like lissencephaly and also suggest that GRP56-related defects produce a phenotypic continuum ranging from bilateral bifrontoparietal polymicrogyria to cobblestone-like lissencephaly.

Introduction

Bilateral bifrontoparietal polymicrogyria [BFPP; OMIM Õ (http:// www.ncbi.nlm.nih.gov/omim) 606854] is in most cases a recessively inherited genetic disorder of human cerebral cortical development, characterized by abnormal cortical lamination and gyral organization that is more severe in the frontal and parietal lobes [START_REF] Piao | An autosomal recessive form of bilateral frontoparietal polymicrogyria maps to chromosome 16q12.2-21[END_REF][START_REF] Chang | Bilateral frontoparietal polymicrogyria: clinical and radiological features in 10 families with linkage to chromosome 16[END_REF]. BFPP was initially described by [START_REF] Harbord | Ataxia, developmental delay and an extensive neuronal migration abnormality in 2 siblings[END_REF] as 'an autosomal recessive neuronal migration defect with non-progressive cerebellar ataxia'. BFPP is a radiological diagnosis that consists of polymicrogyria characterized by multiple and fused small gyri, an irregular limit between white and grey matter, white matter abnormalities and cerebellar hypoplasia. Most of these features are also observed in cobblestone complex brain malformations formerly called type II lissencephaly [START_REF] Barkovich | Neuroimaging manifestations and classification of congenital muscular dystrophies[END_REF], such as Fukuyama congenital muscular dystrophy and muscle-eyebrain disease [START_REF] Piao | Genotype-phenotype analysis of human frontoparietal polymicrogyria syndromes[END_REF][START_REF] Jissendi-Tchofo | Midbrain-hindbrain involvement in lissencephalies[END_REF], defined as cerebral cortical dysplasia combined with dysmyelination, severe dysplastic cerebellum with cysts and brainstem hypoplasia [START_REF] Fukuyama | Congenital progressive muscular dystrophy of the Fukuyama type: clinical, genetic and pathological considerations[END_REF][START_REF] Dobyns | Diagnostic criteria for Walker-Warburg syndrome[END_REF][START_REF] Van Der Knaap | Magnetic resonance imaging in classification of congenital muscular dystrophies with brain abnormalities[END_REF][START_REF] Barkovich | A developmental and genetic classification for malformations of cortical development[END_REF][START_REF] Jissendi-Tchofo | Midbrain-hindbrain involvement in lissencephalies[END_REF].

A positional cloning approach localized a BFPP locus on chromosome 16q12.2-21 [START_REF] Piao | An autosomal recessive form of bilateral frontoparietal polymicrogyria maps to chromosome 16q12.2-21[END_REF][START_REF] Chang | Bilateral frontoparietal polymicrogyria: clinical and radiological features in 10 families with linkage to chromosome 16[END_REF] and implicated the GPR56 gene, which encodes an evolutionarily conserved dynamic G-protein-coupled receptor in the BFPP phenotype. Subsequently, [START_REF] Piao | Genotype-phenotype analysis of human frontoparietal polymicrogyria syndromes[END_REF] demonstrated that GPR56 mutations account for the majority of patients with typical BFPP. However, mutations in GPR56 were not found in cases of bilateral frontoparietal polymicrogyria that lacked additional white matter or posterior fossa abnormalities nor in those with a more generalized polymicrogyria, indicating that the imaging changes seen in GRP56-related BFPP are specific [START_REF] Piao | Genotype-phenotype analysis of human frontoparietal polymicrogyria syndromes[END_REF].

To date, 13 independent mutations in GPR56 have been identified in 31 patients from 20 families [START_REF] Piao | G protein-coupled receptor-dependent development of human frontal cortex[END_REF][START_REF] Piao | Genotype-phenotype analysis of human frontoparietal polymicrogyria syndromes[END_REF][START_REF] Parrini | Bilateral frontoparietal polymicrogyria, Lennox-Gastaut syndrome, and GPR56 gene mutations[END_REF]. Functional studies of GPR56 mutations that cause BFPP have suggested that they result in a loss of function attributable to aberrant processing and/or trafficking of the protein [START_REF] Jin | Disease-associated mutations affect GPR56 protein trafficking and cell surface expression[END_REF][START_REF] Ke | Orphan G protein-coupled receptor GPR56 plays a role in cell transformation and tumorigenesis involving the cell adhesion pathway[END_REF]. Interestingly, GPR56 mutations are located in different regions of the protein without any evidence of a relationship between the position of the mutation and phenotypic severity [START_REF] Piao | Genotype-phenotype analysis of human frontoparietal polymicrogyria syndromes[END_REF].

Although GPR56 ligands and downstream signalling pathways remain mostly unknown, studies of a GPR56 knockout mouse model have shed light on the function of GPR56 and the cellular defects underlying BFPP. The GPR56 À/À phenotypes in the developing forebrain and rostral cerebellum share significant features, including abnormal neuronal positioning, rupture of the pial basement membrane and disorganization of the glial scaffold [START_REF] Li | GPR56 regulates pial basement membrane integrity and cortical lamination[END_REF]. At the forebrain level, loss of GPR56 leads to a dysregulation of the maintenance of the pial basement membrane integrity that results in cortical lamination defects with overmigration through a defective basement membrane into the pial layer [START_REF] Li | GPR56 regulates pial basement membrane integrity and cortical lamination[END_REF]. More recently, analysis of the cerebellum of GPR56 À/À mice showed that they display a severe malformation of the rostral cerebellum, reminiscent of cerebellar polymicrogyria, including the presence of ectopic granule cells, fusion of adjacent folia, disrupted layering of neurons and fragmentation of the pial membrane. These observations demonstrate that GPR56 is also essential for normal morphogenesis of the rostral cerebellum [START_REF] Koirala | GPR56-regulated granule cell adhesion is essential for rostral cerebellar development[END_REF]. Altogether, studies of the GPR56 knockout mouse model suggest that BFPP shares some features of the cobblestone brain malformation, but so far no human histopathological data have been documented.

To our knowledge, 31 patients with BFPP, aged from 13 months to 32 years, harbouring GPR56 mutations have been described, mostly originating from the Middle East or Indian subcontinent [START_REF] Chang | Bilateral frontoparietal polymicrogyria: clinical and radiological features in 10 families with linkage to chromosome 16[END_REF][START_REF] Piao | G protein-coupled receptor-dependent development of human frontal cortex[END_REF][START_REF] Piao | Genotype-phenotype analysis of human frontoparietal polymicrogyria syndromes[END_REF][START_REF] Parrini | Bilateral frontoparietal polymicrogyria, Lennox-Gastaut syndrome, and GPR56 gene mutations[END_REF]. Given the rarity of this malformation of cortical development, these patients were reported in three different series (of 12, 6 and 3 patients, respectively), making it difficult to compare phenotypes and to establish a comprehensive clinical spectrum that is representative of the phenotypic variability of GPR56 BFPP. Reported clinical hallmarks consist of global developmental delay, abnormal eye movements with both strabismus and nystagmus, seizures and bilateral pyramidal and cerebellar signs [START_REF] Piao | G protein-coupled receptor-dependent development of human frontal cortex[END_REF][START_REF] Piao | Genotype-phenotype analysis of human frontoparietal polymicrogyria syndromes[END_REF][START_REF] Parrini | Bilateral frontoparietal polymicrogyria, Lennox-Gastaut syndrome, and GPR56 gene mutations[END_REF]. Similarly, imaging studies emphasize a common and distinctive phenotype with bilateral symmetrical polymicrogyria most prominent in the frontoparietal regions with a decreasing antero-posterior gradient of severity, white matter signal changes and brainstem and cerebellar hypoplasia with little interindividual variability [START_REF] Piao | G protein-coupled receptor-dependent development of human frontal cortex[END_REF][START_REF] Piao | Genotype-phenotype analysis of human frontoparietal polymicrogyria syndromes[END_REF][START_REF] Parrini | Bilateral frontoparietal polymicrogyria, Lennox-Gastaut syndrome, and GPR56 gene mutations[END_REF]. From the seminal description, bilateral patchy white matter signal changes were reported to be non-specific, but they could be considered a distinctive feature, given the lack of white matter changes reported in other polymicrogyria syndromes [START_REF] Chang | Bilateral frontoparietal polymicrogyria: clinical and radiological features in 10 families with linkage to chromosome 16[END_REF]. However, reports of the early clinical presentation and natural history, as well as age-related evolution of white matter changes, specifically MRI features at an early age, are scarce.

In light of the recent findings based on GPR56 À/À animal model studies and the highlighted unanswered questions, the aim of this study is to provide a comprehensive overview of GPR56-related clinical and imaging phenotypes and their cobblestone-like features using a thorough analysis of a cohort of 14 patients, from eight different families with GPR56 mutations that have not been previously described. Additionally, we report here the first description of a foetopathological case harbouring a GPR56 mutation, further supporting the fact that GPR56 BFPP is a 'cobblestone-like cerebral dysgenesis'. Finally, we searched for potential genotypephenotype correlations and indicators that might predict the severity of the disorder.

Patients and methods

Patients

Thirty patients with bifrontoparietal polymicrogyria were referred to one of the two participating laboratories for molecular screening (APHP-Cochin Hospital and APHP Marseille). Of these, 20 were from consanguineous families with more than one family member affected and 10 were born to non-consanguineous families.

Informed consent was obtained from all patients according to national guidelines (Necker Enfants Malades University Hospital or local institutions). Patients were assessed clinically by at least one of the co-authors.

DNA mutation analysis

DNA was extracted from peripheral blood with the use of standard methods. All blood samples were obtained after confirmation of informed consent. DNA samples were screened for mutations in the 14 exons of the GPR56 gene representing a coding region of 2079 bp (GenBank accession number AF 106858) from exon 2 to 14, using polymerase chain reaction amplification and direct sequencing. Primer sequences and polymerase chain reaction conditions are available upon request to the corresponding author. Sequencing reactions were carried out with the BigDye Terminator v1.1 Cycle Sequencing Kit (Applied Biosystems, Courtaboeuf, France) and loaded onto the ABI 3100 genetic analyser (PE Applied Biosystems, Foster City, USA). MRI scans of the patients with GPR56 mutations were retrospectively reviewed. After reviewing the images, the cases were classified according to the extent of polymicrogyria-predominantly frontoparietal or diffuse with an antero-posterior gradient. The degree of myelination of each patient was reviewed and compared with standards for the patient's age [START_REF] Barkovich | Congenital malformations of the brain and skull[END_REF]. White matter changes were classified according to the type of signal abnormality (i.e. patchy or diffuse) and the maximal location (periventricular or subcortical and anteriorly or posteriorly predominant). Ventriculomegaly was also noted.

Clinical information, brain magnetic resonance imaging analysis and grading of severity

The posterior fossa in each case was carefully reviewed with separate attention to the shape and size of the brainstem and pons. Cerebellar abnormalities were also noted, including vermian or hemispheric involvement, overall size, number of fissures and presence of cysts and their location, as previously described [START_REF] Jissendi-Tchofo | Midbrain-hindbrain involvement in lissencephalies[END_REF]. 'Hypoplasia' refers to a small vermis showing few or no fissures and no identifiable prepyramidal fissure, and 'dysplasia' refers to abnormal foliation or disorientation of fissures. The degree of involvement was further characterized as mild or severe based on consensus by the authors. According to the previous definition [START_REF] Piao | Genotype-phenotype analysis of human frontoparietal polymicrogyria syndromes[END_REF], this analysis allowed us to define BFPP1 as typical bifrontoparietal polymicrogyria, with bilateral white matter signal changes, brainstem and cerebellar hypoplasia, and BFPP2 when these additional features were absent.

To assess the radiological differences between two possible locations of the mutation (extracellular domain versus transmembrane region), non-parametric statistical tests were used: the Wilcoxon test for continuous variables and the Fisher exact test for categorical variables (R software, http://www.R-project.org.).

Foetal case

A GPR56 mutation was identified in a foetus presenting with an 'atypical lissencephaly with cerebellar hypoplasia', diagnosed prenatally at 35 weeks gestation, on ultrasonography and foetal MRI. In this case, the pregnancy was terminated for medical reasons at 35 weeks gestation, in accordance with French laws. Written consent for post-mortem and diagnostic studies was obtained from the parents. Neuropathological analysis was performed after fixation in a 10% formaldehyde solution containing NaCl (9 g/l) and ZnSO 4 (3 g/l) for six weeks. The brain was cut in a coronal plane and sections involving both hemispheres were embedded in paraffin. Paraffin blocks were cut at 8 mm. Sections were stained with haemalun-phloxin and cresyl violet-luxol-fast-blue (Klu ¨ver-Barrera). Immunohistochemical procedures were performed in areas selected after conventional histological study. Paraffin sections were immunostained for glial fibrillary acidic protein with a polyclonal antibody (1:200-1:400, DAKO, USA), MAP2 (1:100, HM2, SIGMA) and NeuN (1:500, MAB377, CHEMICON). The Universal Immunostaining System Streptavidin-Peroxydase Kit (Coulter) was used to reveal the reaction. Slides were incubated in citrate buffer at 98 C, placed in a microwave for 30 min, rinsed in distilled water, incubated in a 3% H 2 O 2 solution for 5 min and then rinsed again in distilled water. After washing with phosphate buffered saline, they were treated with protein blocking agent for 5 min (100 ml/slide) at room temperature, without rinsing. The slides were then incubated with primary antibodies, diluted as specified above at room temperature for 60 min, and washed with phosphate buffered saline twice for 5 min each. Subsequently, they were incubated with biotinylated secondary antibody for 30 min at room temperature, washed with phosphate buffered saline twice for 5 min each and incubated in streptavidin-peroxidase complex for 45 min. After washing twice for 5 min in phosphate buffered saline, each slide was entirely covered with a freshly prepared 3,3 0 -diaminobenzidinechromogen solution (100 ml/slide) for 5 min and finally rinsed with distilled water for 5 min. Haematoxylin was used to counterstain the brain sections. All sections were examined under a light microscope (Eclipse 800 NIKON) and some were selected for photographic documentation.

Results

From the 30 patients with bifrontoparietal polymicrogyria referred for molecular screening, 14 living patients and one foetal case were diagnosed as GPR56-related BFPP. There were six females and eight males, all from eight consanguineous families of Caucasian (four families), Middle Eastern (one family), Arab Mediterranean (one family), Iraqi (one family) and Turkish (one family) origin. The eight GPR56 mutations identified in this study were novel and disrupted the protein at different levels, namely in the N-terminal domain: a frameshift mutation (p.E56RfsX24) and a missense mutation (p.C91Y), and in the mucin rich domain: one non-sense (p.Q123X) and one frameshift mutation (p.D224WfsX96). Additionally, two missense mutations were found in the transmembrane domain, TM1 (p.C418W) and TM3 (p.S485P), respectively, one frame deletion in TM2 (p.L449del) and one frameshift in TM2 (p.L406S406fsX41), but no mutation in the G-protein-coupled receptor proteolytic site cleavage site was found (Fig. 1).

For the 15 patients in whom no GPR56 mutation was found, 10 were from non-consanguineous families. All were severely mentally impaired, but none had a pseudomyopathic presentation at onset. Three had microcephaly. All had spastic tetraplegia without cerebellar signs. All patients had a phenotype consistent with BFPP2 on MRI, with bilateral polymicrogyria that predominated in both frontal lobes (n = 7) or a more diffuse picture with an antero-posterior gradient (n = 3). None of them had white matter or posterior fossa abnormalities.

Notably, half of the patients were tested for cytomegalovirus by analysis of urine and serology. The remaining patients were not tested, either because other siblings were similarly affected and harboured GPR56 mutations (11/15 in patients with GPR56 mutations, and 4/15 in patients without mutations) or because of the absence of clinical suspicion of cytomegalovirus, namely microcephaly (2/15 in patients with GPR56 mutations and 3/15 in patients without mutations) and lack of intracranial calcification on CT scan.

Family V: from a foetal case with cobblestone lissencephaly to bifrontoparietal polymicrogyria Among the mutations described above, one was identified in Family V, initially referred for genetic screening for unexplained cobblestone lissencephaly (Fig. 2A). The foetal case investigated was the 7th pregnancy (V/3) of a 40-year-old female who already had a healthy child. The parents were first cousin parents of Pakistani origin and had two children (V/1 and V/2), both affected by frontoparietal polymicrogyria. The mother had also had one previous miscarriage in Pakistan and two medical terminations of pregnancy. In two analysed cases, neuropathological studies showed diffuse cortical lesions associated with brain stem and cerebellar lesions characteristic of 'cobblestone' lissencephaly. No biological material was available for further molecular studies on these three foetuses. In view of the family history and imaging findings (cortical and cerebellar malformations), the pregnancy (V/3) was terminated at 35 weeks. Foetopathological examination showed no gross visceral, skeletal or ophthalmological malformations and normal brain biometric parameters. Macroscopic analysis of the brain showed complete agyria with cobblestone-like features on the cortical surface and vermian hypoplasia. At a microscopic level, coronal sections further disclosed disorganized cortical layers with a succession of normal, polymicrogyric and 'cobblestone-like' cortex (Fig. 2A-C). In addition to the cortical disorganization, immunohistochemical staining with NeuN and MAP2 antibodies showed ectopic neuronal overmigration through the pial basement membrane into the leptomeningeal space in unlayered regions (Fig. 2D). The corpus callosum and hippocampus were present and unaffected (Fig. 2E). There was agenesis of the cerebellar vermis and the cerebellar hemispheres were hypoplastic (Fig. 2F). Additionally, massive neuronal overmigration through the pial basement membrane was observed diffusely in the pons and focally in the cerebellar cortex (Fig. 2G). Muscle histopathology was normal and included a-dystroglycan analysis by immunostaining and western blot. In view of the suggestion of a cobblestone lissencephaly, mutational screening in POMT1 and POMT2 originally identified in the Walker-Warburg syndrome phenotype, was performed and was negative (Beltran-Valero de [START_REF] De Bernabe | Mutations in the O-mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker-Warburg syndrome[END_REF][START_REF] Van Reeuwijk | POMT2 mutations cause a-dystroglycan hypoglycosylation and Walker-Warburg syndrome[END_REF]. Additional genetic testing of POMGnT1, LARGE and Fukutin genes was also negative.

We subsequently examined the two affected siblings (V/1 and V/2) with frontoparietal polymicrogyria, who presented with congenital hypotonia, cerebellar signs, strabismus and late onset generalized epilepsy. Since their clinical pattern was suggestive of GPR56 BFPP, GPR56 screening was performed and revealed a homozygous p.C418W mutation. This pathogenic mutation was also found in the foetus (V/3), demonstrating an association with the cobblestone complex (see also the 'Discussion' section).

Natural history of bilateral bifrontoparietal polymicrogyria: clinical features and clinical course

Detailed clinical information was available for eight males and six females (Table 1). Most patients presented before one year of age with severe hypotonia, pseudomyopathic behaviour and strabismus. Serum creatine kinase levels were normal in all cases.

Four patients had a muscle biopsy prior to the diagnosis of BFPP and histochemistry was normal. All patients made motor progress. At the last evaluation (age ranging from 1.5 to 33 years, median 8.25 years), all patients except one (an 18-month-old male IV/3) were able to walk unaided but with moderate to severe ataxia. Age of ambulation ranged from 1.5 to 5 years (median 2.5 years).

All patients had severe mental retardation and communication skills limited to eye contact and a few isolated words. Head circumference was normal in 11/14 patients. The two oldest patients were microcephalic (I/1 and I/2) and Patient VII/1 had macrocephaly in association with hydrocephalus. All patients had pyramidal signs with brisk deep tendon reflex but without spasticity. Abnormal eye movements were also found in all cases consisting of nystagmus or strabismus but no other ocular abnormalities were detected.

Epilepsy affected 12/14 patients with onset ranging from 2.5 to 10 years of life (median 4.65 years) and mainly consisted of generalized seizures, either tonic clonic or atypical absences. The two unaffected patients were younger, aged 18 months and 5 years at the time of evaluation. Two patients presented with partial status epilepticus. Six patients had a few seizures initially, but were then seizure-free for 2 years following antiepileptic drug adjustments. Six patients had medically refractory seizures.

None of the patients had normal EEG background activity or normal posterior a-rhythms on eye closure. Only interictal EEG recordings were obtained. The most common EEG pattern consisted either of bursts of fast activity in the frontocentral regions (n = 5) (Fig. 3) or more diffuse notched y sharp waves and spikes and waves discharges. In four cases, there were subclinical runs of high amplitude sharp and slow wave complexes mixed with high amplitude a-activity. This activity was more prominent over bilateral frontal and temporal areas.

Altogether, this follow-up study indicates that the 14 patients with GPR56 mutations were phenotypically homogeneous with pronounced early central hypotonia and cerebellar signs, later evolving to share common clinical features with some variability in the epilepsy phenotype but similar interictal EEG abnormalities.

Neuroimaging findings

Neuroimaging features of the 14 patients with GPR56 mutations were re-examined. In total, 13 MRIs were analysed and consecutive images were obtained for two patients. Magnetic resonance data are detailed in Table 2.

First, we examined the hallmark of BFPP, i.e. bilateral polymicrogyria with anterior to posterior gradient. The characteristic pattern of bilateral and symmetrical polymicrogyria with a slightly thickened cortex with shallow sulci and irregular grey-white matter interface was observed in all cases. We further classified the extent of the symmetrical polymicrogyria into two categories, involving the fronto-parietal lobes (n = 4) or generalized with an anterior to posterior gradient (n = 9) (Fig. 4).

To further assess the presence of cobblestone-like signs (Jissendi-Tchofo et al., 2009), we examined the cerebellum, the brainstem and white matter evolution. Interestingly, all 13 patients showed moderate to severe cerebellar dysplasia with subpial and cortical cysts and vermian disorganization affecting the superior vermis (11/13) or involving the whole vermis (2/13). Additionally, 5/14 patients also demonstrated hemispheric cerebellar dysplasia with surrounding cysts closely located in the peripheral hemispheres (Fig. 5). There was no obvious relationship between the extent and type of cerebral and cerebellar abnormalities. At the brainstem level, hypoplasia with flattening of the ventral portion of the pons at the level of the middle cerebellar peduncle was detected in all patients (Fig. 6). In the most abnormal scans (Table 2, Patients IV/3, V/1, V/2 and VII/1), the brainstem had an unusual posterior concavity to the posterior aspect. Of note, none of these patients had evidence of severe brainstem dysplasia, which is one of the characteristic features of cobblestone complex lissencephaly. Moreover, all patients with GPR56 mutations exhibited patchy T 2 high signal white matter signal abnormalities to a greater or lesser extent, suggestive of dysmyelination and reminiscent of cobblestone-like lissencephalies (Fig. 7). In two patients (IV/3 and V/2), successive MRIs allowed us to follow the progression of myelination. In both, the white matter abnormalities showed a peculiar pattern of evolution with a severe hypomyelination pattern at four months that evolved into patchy white matter signal abnormalities later in childhood (Fig. 8). Strikingly, the evolution of the abnormal white matter signal began in the parieto-occipital subcortical region, which is in contrast to the normal centrifugal pattern of myelination.

Additional significant magnetic resonance changes in patients with GPR56 mutations consisted of a thin corpus callosum with absent rostrum, often with a smoothly arched callosal body and an enlarged subarachnoid space with ventriculomegaly (n = 8).

Taken as a whole, these observations collectively demonstrate that GPR56-related BFPP is a cobblestone-like 'polymicrogyria' that combines anteriorly predominant polymicrogyria and cerebellar vermian dysplasia with subpial and cortical cysts, and to a lesser extent cerebellar hemispheric dysplasia with cysts.

GPR56 mutations: influence of mutation on the severity of GPR56 bilateral bifrontoparietal polymicrogyria

Based on previous functional studies demonstrating that BFPPcausing mutations impair protein trafficking and cell surface expression to varying degrees according to their location [START_REF] Jin | Disease-associated mutations affect GPR56 protein trafficking and cell surface expression[END_REF], and in light of the interindividual variability observed in our study, we analysed the influence of the position of the mutation and type of substitution on the clinical and radiological features (Table 3). Although some discrepancies were observed between patients with mutations in the N-terminal domain (i.e. extracellular domain) and transmembrane spanning domains, notably on the severity of epilepsy (age of seizure onset and drug resistance), as well as the extent of polymicrogyria and white matter abnormalities, no statistical differences were found. The less severely affected patients harboured mutations in the N-terminal domain, which is of interest because biochemical results suggest that these mutations result in more drastic functional consequences on GPR56 function, i.e. reduced intracellular trafficking and poor cell surface expression [START_REF] Jin | Disease-associated mutations affect GPR56 protein trafficking and cell surface expression[END_REF].

Discussion

The aim of our analysis was to provide new insights into the phenotype of GPR56 BFPP (OMIM Õ 606854) in light of recent data from animal studies demonstrating that loss of GPR56 results in cobblestone cortex and leads to rostral cerebellar dysplasia. Combined with the first foetopathological case with a GPR56 mutation, our study examined the clinical and brain MRI characteristics of 14 individuals with BFPP from eight families harbouring eight novel mutations in the GPR56 gene. The overall information that can be drawn from this study is that the range of central nervous system involvement is wider than originally described and that cortical, white matter as well as cerebellar involvement occurs in BFPP and is highly reminiscent of cobblestone complex lissencephaly [START_REF] Barkovich | Neuroimaging manifestations and classification of congenital muscular dystrophies[END_REF].

Taken together, the clinical and radiological findings described in our study in combination with previously reported data, suggest that GRP56 defects produce a 'cobblestone-like cortical dysgenesis'.

GPR56 bilateral bifrontoparietal polymicrogyria: a peculiar course with a pseudomyopathic presentation that subsequently evolves into severe mental and motor retardation with generalized epilepsy

The overwhelming majority of patients presented in the first months of life with severe hypotonia and a pseudomyopathic presentation. At first, clinicians suspected congenital muscular dystrophies and performed muscle biopsies that were normal. Subsequently, central hypotonia became more obvious. Later in infancy, patients exhibited clinical features consistent with a developmental brain malformation including severe mental and motor retardation and pyramidal signs, and in addition developed cerebellar signs and eye movement abnormalities. This clinical presentation appears to be specific to GPR56-related BFPP and should lead clinicians who initially suspect congenital muscular dystrophy [START_REF] Piao | An autosomal recessive form of bilateral frontoparietal polymicrogyria maps to chromosome 16q12.2-21[END_REF][START_REF] Piao | Genotype-phenotype analysis of human frontoparietal polymicrogyria syndromes[END_REF][START_REF] Chang | Bilateral frontoparietal polymicrogyria: clinical and radiological features in 10 families with linkage to chromosome 16[END_REF] to also consider the diagnosis of a GPR56-related disorder.

Epilepsy is a consistent feature in GPR56 BFPP and mainly consists of generalized seizures, either tonic clonic or atypical absences with an EEG pattern highly reminiscent of those with lissencephaly [START_REF] Piao | Genotype-phenotype analysis of human frontoparietal polymicrogyria syndromes[END_REF][START_REF] Parrini | Bilateral frontoparietal polymicrogyria, Lennox-Gastaut syndrome, and GPR56 gene mutations[END_REF]. Notably we provide the first detailed description of the interictal EEG pattern in GPR56 BFPP and highlight the similarity with the pattern seen in diffuse cortical malformations typically described in type I lissencephaly [START_REF] Gastaut | Lissencephaly (agyria-pachygyria): clinical findings and serial EEG studies[END_REF][START_REF] De Rijk-Van Andel | EEG in type I lissencephaly[END_REF][START_REF] Santanelli | EEG fast activities in lissencephaly[END_REF][START_REF] Mori | Serial EEG and sleep polygraphic studies on lissencephaly (agyriapachygyria)[END_REF][START_REF] Raymond | Cortical dysgenesis: serial EEG findings in children and adults[END_REF]. This consists of unusual a-like activity of low amplitude and is not modified by eye opening or closure. The unusual fast activity often persists as the child gets older and is later associated with high amplitude sharp and slow wave complexes mainly in the frontal and temporal regions bilaterally [START_REF] Parrini | Bilateral frontoparietal polymicrogyria, Lennox-Gastaut syndrome, and GPR56 gene mutations[END_REF]. This pattern is helpful in detecting neuronal migration disorders and, in some cases, may contribute to predicting the timing of seizure onset in the first few years of life. According to Dalla Bernardina and colleagues (1996), the earlier both the high amplitude and fast activity appear, combined with their generalized appearance, the greater the probability of early seizure onset. In our series, EEGs were performed at the age of seizure onset and further studies are therefore needed to evaluate the predictive value of early seizure onset in GPR56 BFPP.

Further evidence suggesting that GPR56 bilateral bifrontoparietal polymicrogyria is a 'cobblestone-like cortical dysgenesis'

Previous studies have highlighted the occurrence of white matter lesions combined with polymicrogyria in GPR56 BFPP. White matter changes are rare in other polymicrogyria syndromes i.e. frontal, perisylvian or generalized polymicrogyria [START_REF] Jansen | Genetics of the polymicrogyria syndromes[END_REF][START_REF] Piao | Genotype-phenotype analysis of human frontoparietal polymicrogyria syndromes[END_REF]. By contrast, they are common findings in cobblestone complex lissencephalies [START_REF] Barkovich | Neuroimaging manifestations and classification of congenital muscular dystrophies[END_REF]. Thus it is not surprising that BFPP had previously been termed 'cobblestone lissencephaly with normal eyes and muscle' (Barkovich, 1996).

Cobblestone lissencephaly encompasses a large group of neuronal migration disorders resulting from overmigration of neurons beyond the developing cerebral cortex, passing through defects of the glia limitans into the subarachnoid space. This aberrant migration produces irregular neuronal 'cobblestones' (ectopia) on the surface of the brain and is a feature of three distinct human disorders of varying severity: Walker-Warburg syndrome (most severe); muscle-eye-brain disease and Fukuyama congenital muscular dystrophy (least severe) [START_REF] Brockington | Localization and functional analysis of the LARGE family of glycosyltransferases: significance for muscular dystrophy[END_REF][START_REF] Mercuri | Spectrum of brain changes in patients with congenital muscular dystrophy and FKRP gene mutations[END_REF][START_REF] Mercuri | Congenital muscular dystrophies with defective glycosylation of dystroglycan: a population study[END_REF][START_REF] Godfrey | Refining genotype phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan[END_REF]. These three disorders are characterized by cerebral cortical dysplasia that ranges from pachygyria to agyria, combined with dysmyelination, severe dysplastic cerebellum with cysts and brainstem hypoplasia [START_REF] Fukuyama | Congenital progressive muscular dystrophy of the Fukuyama type: clinical, genetic and pathological considerations[END_REF][START_REF] Dobyns | Diagnostic criteria for Walker-Warburg syndrome[END_REF][START_REF] Van Der Knaap | Magnetic resonance imaging in classification of congenital muscular dystrophies with brain abnormalities[END_REF][START_REF] Barkovich | A developmental and genetic classification for malformations of cortical development[END_REF][START_REF] Jissendi-Tchofo | Midbrain-hindbrain involvement in lissencephalies[END_REF]. This is the first study to our knowledge, which provides evidence that GPR56-related BFPP and cobblestone lissencephaly share additional specific features, which consist of cerebellar dysplasia with cysts and severe hypomyelination that subsequently evolves to patchy dysmyelination, and overmigration of neuronal cells in the leptomeningeal space.

First, we show that hind and midbrain abnormalities are consistent key features in GPR56 BFPP. While previous reports described only cerebellar hypoplasia [START_REF] Piao | Genotype-phenotype analysis of human frontoparietal polymicrogyria syndromes[END_REF], we found a high rate of cerebellar dysplasia with microcysts. Vermian dysplasia and cysts strongly predominate in the superior vermis and are observed in 490% of patients in this study, regardless of age. Of note, the dysplasia can be more diffuse involving the whole vermis and the hemisphere. However, no obvious relationship between the extent or type of cerebral and cerebellar abnormalities were found. Hence, cerebellar vermian dysplasia with accompanying cysts is an important finding in BFPP, since it can be recognized more readily than cortical polymicrogyria in a young infant and should prompt a careful search for GPR56 mutations.

Second, combined with previous reports that highlighted the importance of white matter abnormalities in GPR56 BFPP, our observations have allowed us to demonstrate that the myelination process is also impaired in GPR56 BFPP. White matter abnormalities are maximal at a young age and consist of severe and diffuse hypomyelination, but myelination does progress, albeit in an unusual manner proceeding from the peripheral subcortical region centrally, which is the reverse of normal myelination process. These changes are strikingly similar to those seen in Fukuyama congenital muscular dystrophy [START_REF] Dobyns | Diagnostic criteria for Walker-Warburg syndrome[END_REF][START_REF] Aihara | Serial MRI in Fukuyama type congenital muscular dystrophy[END_REF][START_REF] Valanne | MRI of the brain in muscle-eye-brain (MEB) disease[END_REF][START_REF] Barkovich | Neuroimaging manifestations and classification of congenital muscular dystrophies[END_REF]. Their exact nature is unknown but abnormal production or migration of oligodendrocytes in GPR56 BFPP cannot be excluded. This raises the possibility that delayed myelination and dysmyelination in GPR56 mutations might result in abnormal axonal pathfinding. Thirdly, foetopathological features reported here, demonstrate that GPR56 mutations lead to a cobblestone-like brain malformation with succession of normal, polymicrogyric and 'cobblestonelike' cortex, with focuses of ectopic neuronal overmigration through the pial basement membrane into the leptomeningeal space in unlayered regions, combined with massive neuronal overmigration in the pons and focally in the cerebellar cortex.

In view of these findings and to further investigate whether cobblestone lissencephaly and GPR56 BFPP share additional features, we compared other brain structures (Table 4). At the forebrain level, the main difference is the primary location and the gradient of cortical dysplasia that predominates in the temporo-occipital region in Fukuyama congenital muscular dystrophy compared with the frontoparietal gradient seen in GPR56 BFPP. In the midbrain and hindbrain, the cerebellum is more severely hypoplastic in cobblestone lissencephaly than in BFPP, where the cerebellar hemisphere is dysplastic and combined with cysts. In the brainstem, pontine midline cleft and deformity of the mid-hindbrain junction (pontomedullary 'kink'), which is a hallmark of cobblestone lissencephaly, was not observed in GPR56 BFPP. These features are remarkably predominant in the cobblestone lissencephaly groups, differentiating them from patients with GPR56 BFPP. These differences might reflect the distinctive pathophysiological mechanisms of both conditions.

GPR56 bilateral bifrontoparietal polymicrogyria a 'cobblestone-like cortical dysgenesis': pathophysiological similarities with cobblestone lissencephalies

Neuronal migration disorders are related to the impairment of several genetically determined processes that act either at the beginning of migration, during migration and/or towards the end of migration [START_REF] Gleeson | Neuronal migration disorders: from genetic diseases to developmental mechanisms[END_REF]. Of these, classical lissencephaly, also referred to as the agyria-pachygyria spectrum, is caused by a defect during migration that leads to abnormal lamination and a thickened cortex that is characterized by a more-or-less four-layered cortex. Cobblestone lissencephalies are disorders of migration caused by a defect in the integrity of the pial membrane that leads to the formation of breaches during rapid cortical expansion with a disorganization of radial glia end feet and fibres. This results in a massive overmigration of neuroglial cells in the leptomeningeal spaces surrounding the cerebral cortex and in the cerebellum [START_REF] Moore | Deletion of brain dystroglycan recapitulates aspects of congenital muscular dystrophy[END_REF][START_REF] Montanaro | Targeting dystroglycan in the brain[END_REF]. On the other hand, polymicrogyria is aetiologically and histologically heterogeneous and its pathogenesis remains poorly understood. In polymicrogyria, the normal folding of the cerebral cortex is disrupted, resulting in an irregular surface with numerous smaller and irregular folds (gyri) and shallow, partly fused intervening grooves (sulci). Classically, polymicrogyria is thought to be a disorder of late migration or cortical organization, and supposed to reflect a disruption of normal neuronal migration with subsequent disordered cortical organization [START_REF] Barkovich | A developmental and genetic classification for malformations of cortical development[END_REF].

Interestingly, the foetopathological brain features (i.e. neuronal overmigration, rupture of the pial basement membrane and dysplasic rostral cerebellum) reported in this study are consistent with those described in the developing forebrain and rostral cerebellum of the GPR56 À/À mouse model [START_REF] Li | GPR56 regulates pial basement membrane integrity and cortical lamination[END_REF][START_REF] Koirala | GPR56-regulated granule cell adhesion is essential for rostral cerebellar development[END_REF]. They are also reminiscent of those reported in recent studies on b-tubulin 2B-related polymicrogyria [START_REF] Jaglin | Tubulin-related cortical dysgeneses: microtubule dysfunction underlying neuronal migration defects[END_REF][START_REF] Jaglin | Tubulin-related cortical dysgeneses: microtubule dysfunction underlying neuronal migration defects[END_REF][START_REF] Jackson | Diversifying microtubules in brain development[END_REF].

Given these findings, we are tempted to propose that the pathophysiological processes underlying GPR56-related BFPP could result from a combined effect of alterations of pial basement membrane integrity, radial glial organization and neuronal overmigration during critical stages of brain development.

At the molecular level, hypotheses based on insights provided by advances in the understanding of the pathogenesis of cobblestone lissencephalies, which are known to be associated with hypoglycosylation and dysfunction of a-dystroglycan [START_REF] Henry | A role for dystroglycan in basement membrane assembly[END_REF][START_REF] Hewitt | Abnormal glycosylation of dystroglycan in human genetic disease[END_REF], should be considered. Indeed, the fact that GPR56 encodes a G-protein-coupled receptor expressed in radial glia endfeet suggests that loss of function of GPR56, or its altered subcellular localization or glycosylation, is likely to have a deleterious effect on the interaction between the pial basement membrane and radial glial endfeet. This results in a disruption of pial membrane basement integrity, radial glia disorganization and subsequently produces abnormalities of cortical organization and folding.

Taken as a whole, the data reported here open new and exciting insights into the pathophysiology of polymicrogyria, and give further evidence of a continuum of cortical dysgenesis from unlayered polymicrogyria at the less severe end of the spectrum to the cobblestone lissencephalies. They suggest that alterations of the regulation of pial basement membrane integrity during development and overmigration of neuronal cells, characteristics reminiscent of cobblestone lissencephaly [START_REF] Li | GPR56 regulates pial basement membrane integrity and cortical lamination[END_REF], should be taken into consideration when attempting to define the pathophysiological mechanisms underlying polymicrogyria.

  Clinical information and brain MRI features of the 30 patients with BFPP were either collected directly at the Neuropaediatric unit of Necker Enfants Malades Hospital, Paris Descartes University, obtained from the referring physicians or sent by one of the authors and reviewed by N.B.B. and N.B.

  at most recent follow-up. Abs = atypical absence; At = atonic seizures; CBZ = Carbamazepine; F = female; FS = focal seizures; GTCS = generalized tonic clonic seizures; GTS = generalized tonic seizures; LTG = Lamotrigine; M = male; NA = information not available. PHT = Phenytoine; PMG = polymicrogyria; TPM = Topiramate; VPA = Valproate.

Figure 1

 1 Figure 1 Schematic representation of the GPR56 protein and mutations in patients with BFPP. Identified mutations correspond to (i) three missense mutations: one at the tip of the N-terminus (p.C91Y), one in the first transmembrane domain (p.C418W) and one in the third transmembrane domain (p.S485P); (ii) one non-sense mutation, located in the mucin-rich domain (p.Q123X); (iii) two frameshift mutations located in the N-terminal domain (p.E59rfsX24) and in the mucin-rich domain (p.D224WfsX96) and (iv) one inframe deletion domain (p.L449del) and one frameshift mutation (p.M447X) in the second transmembrane domain. GPS = G protein-coupled receptor proteolytic site domain; EC = extracellular loop; IC = intracellular loop; TM = transmembrane domain.

Figure 2

 2 Figure 2 (A) Pedigree of the family carrying the p.C418W GPR56 mutation reported in this study. Square = male; round = female; diamond = foetus. Black square or round = affected person. (B) Neuropathological analysis of foetus V/3 that carried a p.C418W GPR56 mutation. (a) Coronal section of the left cortical hemisphere revealed the succession of cobblestone-like (*), polymicrogyric (**) and normal cortex (***) in a same brain section. (b and c) Details of the cobblestone and polymicrogyric unlayered cortex are illustrated in b and c, respectively. (d) Neurospecific MAP2 immunostaining on the cortical section of the foetus at 35 weeks of gestation showed the presence of numerous neuronal cells clusters beyond the basement membranes, in the meninges. (e) The folding and architecture of the hippocampus stained by Nissl is normal. (f) Microscopic analyses of the cerebellum revealed a simplification of the cerebellar lobules and a vermian agenesis. (g) The same overmigration though the pial basement membrane were observed focally in the cerebellar cortex.

  matter signal changes were determined in T 2 /fluid attenuation inversion recovery sequence, and classified as patchy when confluent signal changes, or diffuse. + = present; À = absent; NA = not-assessed when images were insufficient for reviewing; sup = superior.

Figure 3

 3 Figure 3 Representative interictal electroencephalogram pattern in patients with GPR56 BFPP. (A) Theta activity with medium amplitude and rare and brief spike and wave discharges with predominance in both frontal and temporal areas (Patient II/1 aged 9 years) (Patient V/2 aged 8 years). (B) Runs of fast activity in frontocentral regions resembling a-like activity with high amplitude theta activity maximal in frontal and central regions (Patient II/1 aged 9 years). (C) Diffuse delta waves (2-3 Hz) intermixed with a-like activity and high voltage with paroxysmal discharges of spike and waves, maximal in both frontal and temporal areas (Patient VIII/2 aged 5 years). (D) Unusual a-like activity over both frontal regions (Patient V/1 aged 10 years). No physiological sleep pattern. Amplitude 10 mV/mm. Speed 15 mm/s.

Figure 4

 4 Figure 4 Representative brain magnetic resonance images of patients with GPR56 BFPP. T 1 -weighted axial section of Patient II/1 (8 years at MRI, A), Patient II/2 (5 years at MRI, B), Patient III/1 (3 years at MRI, C), Patient VIII/1 (7 years at MRI, E), Patient V/1 (8 years at MRI, F), Patient V/2 at 7 years (11 years at MRI, G) and T1-weighted coronal section of Patient II/2 (5 years at MRI, D) and Patient IV/1 (10 years at MRI, H). These images demonstrate different degrees and extent of polymicrogyria involving the frontoparietal regions bilaterally (A-C), or more generalized polymicrogyria with frontoparietal predominance (E-G). Coronal sections (D and H) at the level of the hippocampus show the parietal predominance of polymicrogyria and the relative preservation of the temporal lobes. Note the ventricular size that is either not (C), moderately (A and B) or severely enlarged (E-H). Note also the right sided lentiform nucleus infarct in Patient IV/1 (H).

Figure 5

 5 Figure 5 Representative T 2 -weighted axial sections showing the different features of cerebellar hypoplasia and dysplasia in GPR56 BFPP. These images demonstrate multiple cysts located in dysplasic cerebellar hemispheres (A, C, E and G) and in the cerebellar vermis (B, D, F and H). Different degrees of severity considered as severe cerebellar dysplasia and brainstem hypoplasia in Patient IV/3 (18 months at MRI, A and B) and Patient VII/1 (20 months at MRI, C and D), and milder severity in Patient V/2 (11 years at MRI, E and F) and Patient II/2 (5 years at MRI, G and H). Note the small pons with overmigration (B, Patient IV/3, 18 months at MRI). There is an exaggerated rounded appearance to the high signal myelinated corticospinal tracts (thin black arrows). There are several cerebellar cysts (thick black arrow).

Figure 6

 6 Figure 6 Representative T 1 -weighted midline sagittal images in GPR56 BFPP. In the sagittal plane, the pons is thinned with either a flat aspect (A, Patient II/2), (B, Patient III/1), (D, Patient IV/1) (G, Patient VI/1), and in the most severe form, a concave posterior border (C, Patient IV/3), (E, Patient VIII/1) (F, Patient VII/1), (H, Patient V/2), and the midbrain tectum is abnormally large. Note the different aspect of corpus callosum ranging from normal (B) to hypoplasia thin splenium and arched body (C and H).

Figure 7

 7 Figure 7 Representative axial T 2 images in GPR56 BFPP. These images demonstrate polymicrogyria in the frontoparietal regions bilaterally, as well as patchy bilateral signal change in the white matter, patchy (A, Patient II/1), (D, Patient IV/3), (E, Patient V/1), (F, Patient VI/1) (G, Patient VII/1) or spotty periventricular and frontal (B, Patient III/1), (C, Patient IV/1) (H, Patient V/2).

Figure 8

 8 Figure 8 Axial T 2 images of Patient IV/3 (A, B, E and F) and Patient V/2 (C, D, G and H) showing the appearance of the white matter at 4 months (A-D), highly suggestive of severe hypomyelination and the subsequent evolution to patchy signal changes mostly prominent in subcortical and frontal regions [at the age of 18 months in Patient IV/3 (E and F) and 9 years in Patient V/2 (G and H)].

Table 1

 1 

	GPR56 mutation was identified	
	Clinical characteristics of the 14 individuals from eight families in whom a	Family Gender/Age a

Table 2

 2 

	GPR56 patients	Lateral White matter abnormalities Corpus callosum Cerebellar vermis	ventricles
	Radiological features of our new	Gender/age Polymicrogyria	at MRI distribution
		Family/	case

Table 3

 3 Comparison of clinical and radiological features between patients with GPR56 BFPP with mutations in the extracellular domain and mutations in the transmembrane domain

	Extracellular	Transmembrane	P-value b
	domain a	domain a	

a The denominator indicates the number of patients for whom specific information was available. b To assess the differences between defined groups of patients and to evaluate the correlation with the location of the mutation (extracellular domain versus transmembrane mutation) between the severity of cortical dysgenesis and pontocerebellar abnormalities, non-parametric statistical tests were used [Kruskal-Wallis test for multiple group comparison and 2 McNemar test (Statistica version 7.1, StatSoft France, 2005, www.statsoft.fr)]. P50.05 was considered significant.

Table 4

 4 Characteristics of GPR56 bifrontoparietal polymicrogyria compared with congenital muscular dystrophy

	Ocular anomalies	Abnormal eye	movements								Abnormal eye	movements;	myopia;	cataracts; retinal	'round' lesions				Abnormal eye	movements;	myopia;	glaucoma;	cataracts; retinal	dysplasia;	hypoplastic nerve			Anterior chamber	and iris anoma-	lies; microphthal-	mos; cataracts;	colobomas;	retinal dysplasia	and detachment	None				
	Brainstem	Pontine hypoplasia									Variable pontine	hypoplasia;	variable fused	colliculi					Pontine hypoplasia;	fused colliculi								Severe brainstem	hypoplasia; fused	colliculi;	mid-hindbrain	junction dorsal	kink		Mild pontine	hypoplasia			
	White matter	Delayed myelination	in cerebrum								Delayed myelination	in cerebrum;	peripheral white	matter myelinates	first				Patchy T 1 and T 2	prolongation;	variable callosal	hypogenesis						Leucodystrophy;	variable callosal	hypogenesis					Striking	leucodystrophy	involving U fibres		
	Cerebellar cortex	Polymicrogyria with	or without cysts								Polymicrogyria with	or without cysts							Polymicrogyria with	or without cysts;	vermian	hypogenesis						Polymicrogyria with	or without cysts;	variable	cephalocele				Polymicrogyria with	or without cysts			
	Cerebral cortex	Frontoparietal	polymicrogyria	Diffuse PMG with	antero-posterior	gradient					Frontal	polymicrogyria;	temporo-occipital	cobblestone cortex	with irregular inner	surface and	smooth outer	surface	Diffusely dysplastic,	same features but	intermediate se-	verity between	Fukuyama con-	genital muscular	dystrophy and	Walker-Warburg	syndrome	Diffuse cobblestone	cortex;	hydrocephalus					Occipital agyria	(no cobblestone	cortex)		
	Clinical presentation	Hypotonia; delayed	motor; delayed	cognition; variable	seizures; normal	CK					Hypotonia; delayed	motor; delayed	cognition; variable	hydrocephalus;	variable seizures;	variable CK			Hypotonia; delayed	motor; ocular	anomalies; variable	hydrocephalus;	variable seizures;	normal CK				Hypotonia; no motor	milestones; no	cognition; ocular	anomalies;	hydrocephalus;	variable seizures;	normal CK	Hypotonia; delayed	motor; high CK			
	Disorder Role	GPR56 BFPP GPR56 acts as a	G-protein-coupled receptor	that localizes to radial glial	foot processes directly	adjacent to the pial	basement membrane and	is required to maintain	structural integrity of this	basement membrane	Fukuyama Mutation in the gene	congenital encoding fukutin that	muscular probably participates in the	dystrophy biosynthesis pathway of	(Fukuyama dystroglycan, involved in	type and the binding activity for the	similars) ligand laminin		Muscle-eye-Mutation in O-mannose	brain disease b-1,2-N	acetylglutaminyltransferase	(POMGTnT1) that	participates in O	mannosyl-glycan synthesis,	results in disorder of radial	migration and disruption of	the pial barrier	Walker-Gene encoding O-mannosyl	Warburg transferase (POMT1)	syndrome involved in	O-mannose-linked	glycosylation of proteins	important for the formation	of glia limitans	Congenital Mutation in the laminin	Muscular a2 gene (LAMA2), is a	Dystrophy permissive substrate	Merosin for migration of	deficiency oligodendrocyte precursors	CK = serum creatine kinase.
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