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Transcriptional explorations of CAPN3
identify novel splicing mutations, a
large-sized genomic deletion and evidence

for messenger RNNA decay

Krahn M, Pécheux C, Chapon F, Béroud C, Drouin-Garraud V, Laforet
P, Romero NB, Penisson-Besnier I, Bernard R, Urtizberea JA, Leturcq
F, Lévy N. Transcriptional explorations of CAPN3 identify novel
splicing mutations, a large-sized genomic deletion and evidence for
messenger RNA decay.

Clin Genet 2007: 72: 582-592. © Blackwell Munksgaard, 2007

Mutations in the gene encoding calpain-3 (CAPN3) cause autosomal
recessive limb-girdle muscular dystrophy type 2A (LGMD2A) and
idiopathic eosinophilic myositis. Accurate diagnosis and genetic
counselling are based on the identification of disease-causing mutations
on both alleles of CAPN3 in the patients. In the present study, we used
transcriptional analysis as a complementary approach for patients
suspected of being affected with LGMD?2A, in whom initial denaturing
high-performance liquid chromatography genomic mutation screening
evidenced no or only one CAPN3 mutation obviously considered as
disease causing. This allowed to identify and characterize cDNA
deletions. Further genomic analysis allowed to determine the origin of
these deletions, either as splicing defects caused by intronic mutations or
as an internal multi-exonic deletion. In particular, we report two novel
CAPN3 mutations (c.1745 + 4 _1745 + 7delAGTG in IVS13 and c.2185-
16A>G in IVS20) and a recurrent large-sized genomic deletion including
exons 2-8 for which genomic breakpoints have been characterized. In
addition, our results indicate nonsense-mediated messenger RNA decay
as a mechanism for under-expression of CAPN3 associated to some
specific variations.
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Introduction

Autosomal recessive limb-girdle muscular dystro-
phy type 2A (LGMD2A, MIM #253600) and
idiopathic eosinophilic myositis are caused by mu-
tations in the gene encoding calpain-3 (CAPN3;
15q15.1-15.3) (1-3). Calpain-3 is a non-lysosomal
protease mainly expressed in skeletal muscle (4),
where it appears to play a central role in sarcomere
remodelling (5, 6).

LGMD2A is the most prevalent autosomal
recessive LGMD (LGMD2; 10-30%) (7-9). As
there is a high clinical variability in patients
affected with LGMD?2A, calpain-3 protein deter-
mination on muscle samples is performed at first
instance to orientate diagnosis. However, CAPN3
mutation analysis is necessary for accurate
diagnosis and genetic counselling. Genomic dena-
turing high-performance liquid chromatography
(DHPLC) analysis is particularly adapted for this
purpose because of the relatively large size of the
gene (24 exons) and the increasing number of
reported allelic variants (more than 350 different
variants collected in the Leiden Muscular Dys-
trophy pages database, www.dmd.nl) (10). Unfor-
tunately, in 20-30% of patients, routine genomic
analysis fails to identify both disease-causing
alleles (10—13). These patients should benefit from
complementary approaches towards completing
the mutation’s identification.

Here, we performed transcriptional analyses in
five patients suspected of being affected with
LGMD2A, in whom initial DHPLC/genomic
mutation screening evidenced no or a single-allele
CAPN3 disease-causing mutation thus not suffi-
cient to firmly confirm diagnosis.

Patients, materials and methods
Patients: inclusion criteria and tissue processing

In the present study, we included five patients for
transcriptional analysis of CAPN3. Inclusion
criteria were (i) diagnosis of LGMD2A suspected
on clinical indications of LGMD?2, together with
a marked decrease or absence of calpain-3 on
muscle Western blot analysis; (ii)) CAPN3 geno-
mic mutational screening, identified only one or
no mutation clearly identifiable as disease causing
(i.e. previously reported as disease causing in the
literature or Leiden Muscular Dystrophy pages
database, Table 1); and (iii) availability of muscle
biopsy samples for transcriptional analysis.

After informed consent, genomic DNA and total
RNA were extracted, respectively, from peripheral
blood and from frozen muscle tissue obtained from
all patients. Approval was obtained from the ethics
committees of the institutions involved.

Transcriptional explorations of CAPN3

Genomic mutation screening

The 24 exons and flanking intronic boundaries of
CAPN3 were polymerase chain reaction (PCR)
amplified, and then analysed using DHPLC as
previously described (3, 10).

RNA isolation, complementary DNA preparation,
RT-PCR and long-range RT-PCR

Total RNA was extracted from frozen muscle
samples with TriPure Isolation Reagent® (Roche,
Indianapolis, IN) and reverse transcribed using
Superscript 1I® reverse-transcriptase (Invitrogen,
Carlsbad, CA) according to the manufacturer’s
recommendations. The CAPN3 complementary
DNA (cDNA) coding region was PCR amplified
in five overlapping fragments using specifically
designed primer pairs (Table S1, conditions and
primer sequences available as supplementary
material online). Long-range reverse transcrip-
tase—polymerase chain reaction (RT-PCR), cover-
ing the coding sequence of exons 1-10, was
performed for patient CTS5 using primer pairs for-
ward 5'-GCATGCTGCTGGTAGGAGAC-3'/
reverse 5'-CTGAGGGTTGGTCCAGAAAG-3’
(respectively RT1F and RT3R, supplementary
material online), with the Expand Long Template
PCR System® (Roche) according to the manufac-
turer’s recommendations. RT-PCR products were
separated and visualized under ultraviolet light by
electrophoresis on 1% agarose gels stained with
ethidium bromide.

Bio-informatic analysis

Possible deleterious effects of the identified
intronic variants on acceptor splice sites, donor
splice sites or splicing branch points were analysed
using the Splice Site Finder prediction algorithm
(www.UMD.be/SSF). Sorting intolerant from
tolerant (SIFT) analysis was done to assess the
pathogenicity of the novel missense mutation
identified in patient CT1, as described (blocks.
fhere.org/sift/SIFT.html).

Real-time quantitative RT-PCR

An expression study was performed for patients
CT3 and CT4, using two TaqMan~ Gene
Expression Assays (Applied Biosystems, Foster
City, CA): CAPN3 (Assay ID: Hs 00181057_m1)
and GAPDH (Assay ID: 99999905 ml) as
endogenous expression control. A relative quan-
tification plate was loaded in triplicate with
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patient cDNA samples, a normal muscle cDNA
sample and a no-template control following the
manufacturer’s recommendations, and run on
a ABI 7500 Real Time PCR System® (Applied
Biosystems). Expression levels were obtained by
the quantification relative study method, using the
normal muscle cDNA sample as calibrator.

DNA and cDNA sequencing

PCR and RT-PCR products were purified using
Montage PCR purification Kit® (Millipore, Bedford,
MA). For patient CTS5, individual long-range
RT-PCR bands were gel purlﬁed using DNA gel
extraction Kit® (Millipore).

PCR and RT-PCR products were sequenced on
both strands by use of a terminator %rocedure
loading on ABI 3130x1 Genetic Analyzer (Apphed
Biosystems), and analysis using the SEQUENCHER ®
software (Geno Codes Corporation, Ann Arbor,
MI) with comparison to the human CAPN3 gene
sequence (g.DNA # AF209502.1, c¢DNA #
NM_000070).

Real-time quantitative PCR

A TagMan® assay (Applied Biosystems) including
5'FAM-TGACATGTACAAGATCAT-3' MGB-
NFQ as a probe, forward primer 5 -TTTTGA-
GATCAGGGATGCTCCTA-3' and reverse primer
5'-AGCCTCTCTCGATGGCTTTCTT-3" was
designed with PRIMER EXPRESS® software (Ap-
plied Biosystems) to amplify a 65 bp amplicon
and analyse a target sequence within exon 5 of
CAPN3. The human serum albumin gene (4LB)
was used as an internal reference for genomic gene
dosage (14).

We carried out multiplex runs in quadruplicate
from patient samples, control samples and no-
template controls, together with a diploid control
for calibration and establishing the comparative
threshold cycle curve (ddCT). All reactions were
run in 96-well OptICdl plates on a ABI 7500 Real
Time PCR System (Applied Biosystems), using
the TaqMan Universal PCR Protocol and
Master mix (Applied Biosystems) according to
the manufacturer’s recommendations.

Data were analysed w1th the ABI Prism
sequence detection system (Applied Biosystems)
and Microsoft Excel® software (Microsoft, Red-
monton, WA). We used the comparative cycle
threshold (CT) number method (15) to quanti-
tate the relative copy number (27 (ddCTESD)) of
the genomic target region (CAPN3 exon 5) of
each unknown sample, relative to the known
copy number of the calibrator sample, with
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ddCT = >[dCtALB — dCTCAPN3]uiivrator sample —
[dCtALB — dCTCAPN3] . The ddCT
ratios are expected to be close to' 1.0 for samples
containing two copies of the CAPN3 genomic
target region and close to 0.5 for samples with
a hemizygous CAPN3 allele.

Results and discussion

We used transcriptional analysis in five patients
suspected of being affected with LGMD2A, in
whom initial DHPLC/genomic mutation screen-
ing evidenced no or only one CAPN3 mutation
clearly considered as disease causing. Clinical,
muscle biopsy and genomic mutational findings of
all patients are presented in Table 1.

Molecular findings in patients CT1, CT2, CT3 and CT4:
the intronic variants ¢.2185-16A>G, c.1745 + 4_1745
+ 7delAGTG and ¢.802-9G>A cause abnormal
splicing of the CAPN3 messenger RNA

Patient CT1
Genomic mutation screening identified a novel
missense mutation (c.1259C>A; p.Ala420Asp,
exon 10, not found in 200 control chromosomes),
predicted as non-tolerant substitution using SIFT
analysis (SIFT score 0.01). In addition, a novel
intronic variant, ¢.2185-16A>G (IVS20) (Table 1
and Fig. S1, supplementary material online), was
identified. Both mutations have also been identified
in the two symptomatic sisters of the patient (16).
cDNA analysis confirmed the missense change
(r.1259C>A) and identified a deleterious effect
of ¢.2185-16A>G: a heterozygous in-frame inser-
tion of 15 bp from IVS20 located immediately
5" from the splice acceptor site (Table 2), and
predicted to cause an insertion of five amino
acids (p.GIn728_Lys729insllePheTyrCysGln) in
domain IV of calpain-3 (implicated in calcium
binding and homo-dimerization (17)). In regard to
the complete absence of calpain-3 on Western blot
analysis, we conclude that this amino acid
insertion destabilizes the protein. To our knowl-
edge, this constitutes the first reported case of an
isolated calpain-3 amino acid insertion.

Patient CT2
At the genomic level, a novel 4 bp intronic
deletioninIVS13,¢.1745 + 4 1745 + 7delAGTG,
was found, together with c¢.1746-20C>G (10, 12,
16, 18) (Table 1 and Fig. S1, supplementary
material online).

cDNA analysis evidenced the deleterious effect
of c.1745 + 4 1745 + 7delAGTG as an in-frame
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Transcriptional explorations of CAPN3
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cDNA analysis:
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Global CAPN3 expression level: 43%
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IVS 5: ¢.802-9G>A, heterozygous
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cDNA sequence:
r.801_802ins802-7_802-1, Pseudo-homozygous

Fig. 1. Analysis of the deleterious effect caused by the ¢.802-9G>A mutation evokes nonsense-mediated messenger RNA
decay. (a) Genomic and complementary DNA (cDNA) sequence analysis in patient CT3. (b) Global CAPN3 expression
analysis in patients CT3 and CT4 using quantitative reverse transcriptase—polymerase chain reaction. (¢) Genomic and cDNA
sequence analysis in patient CT4. Forw., forward sequence; Rev., reverse sequence.

deletion, removing 87 bp from the terminal 3’
part of exon 13, possibly by activating a cryptic
splice site. This is predicted to delete 29 amino
acids (p.Tyr554_Glu582del) in domain III of
calpain-3.

A possible deleterious effect of ¢.1746-20C>G
has been initially evoked (12, 16). In patient CT2,
cDNA analysis did not show any sequence
variation in the region of exon 14 (i.e. insertions
and/or deletions), which could have resulted from
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abnormal splicing possibly caused by this variant
(data not shown). This is concordant with recent
data (18) and argues against a deleterious effect.

Patients CT3 and CT4

In both patients CT3 and CT4, genomic analysis
identified the mutation ¢.802-9G>A (IVS5) at
a heterozygous state (Table 2).

In patient CT3, a missense mutation (exon 13:
c.1714C>T; p.Arg572Trp) (9, 11, 12, 16, 19, 20)
was identified in frans. Whereas patient CT3
is compound heterozygous [c.802-9G>A] +
[c.1714C>T] at the genomic level, cDNA analysis
retrieved only the ¢.1714C>T mutation (pseudo-
homozygous state) (Fig. 1a). Therefore, ¢.802-
9G>A may cause nonsense-mediated messenger
(mRNA) decay (NMD) or a linked phenomenon
in this patient because pseudo-homozygous mu-
tations at the mRNA level as compared with the
genomic findings may evoke this mechanism (21).
According to a mono-allelic expression, quanti-
tative reverse transcrlptase—polymerase chain
reaction (QRT-PCR) with a quMdn probe
showed a global level of expression of 43%
(Fig. 1b). NMD has recently been shown to occur
for nonsense and frameshift C4APN3 mutations
(18). We here show the possible existence of NMD
caused by an intronic variant, most likely by
causing abnormal splicing and subsequent intro-
duction of a premature termination codon.

In patient CT4, the ¢.802-9G>A mutation was
found heterozygous. In addition, the ¢.2380 + 12
delA variant (16) was found at a homozygous state,
without any qualitative effect at the cDNA level (no
sequence variation in the region of exons 22 and 23).

Surprisingly, the effect of the c.802-9G>A
variant in patient CT4 differed from the findings
in patient CT3: we observed a pseudo-homozy-
gous insertion of 7 bp from IVSS5 located imme-
diately 5’ from the splice acceptor site (Fig. 1c),
most likely because of the activation of a cryptic
splice acceptor site. This causes a frameshift
introducing a premature translation stop codon
>50 nucleotides upstream of the last exon—exon
junction and thus candldate for NMD (22). QRT-
PCR with a TagMan® probe showed a global level
of expression reduced to 1% (Fig. 1b). Therefore,
the pseudo-homozygous r.801_802in3802-7_802-1
insertion in patient CT4 could be related to a
non-identified mutation in trans, leading to a
‘complete’ absence of the resulting mRNA (i.e.
a non-identified large genomic rearrangement,
mutations in the promoter region, etc.). This
would explain that, even if the majority of mRNA
originating from the ¢.802-9G>A allele is subject
to NMD, a residual amount of r.801 802ins
802-7_802-1 mRNA is observed in this patient.
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In addition, the different findings in patients
CT3 and CT4 could be partially caused by inter-
individual variation in NMD efficiency (23, 24),
related to yet unexplained genetic modifying
factors.

Bio-informatic splice site analysis

All intronic variants identified in this study were
analysed using Splice Site Finder, a novel algo-
rithm for the prediction of deleterious effects on
normal splicing. All bio-informatic predictions
are concordant with the results of cDNA analysis
(Table 2 and Fig. 3a).

Molecular findings in patient CT5: characterization of
a large-sized genomic deletion including exons 2-8

Genomic DHPLC screening identified a heterozy-
gous frameshifting mutation in exon 11 (c.1373
delC) (Table 1), but no additional variant. Ac-
cordingly, this mutation was retrieved heterozy-
gous in her mother, whereas no mutation was
identified in her father (non-paternity excluded
using microsatellite analysis). cDNA analysis
retrieved the c¢.1373delC mutation but no addi-
tional sequence variant.

To test the hypothesis of a large-sized deletion or
abnormal splicing pattern, we used long-range
RT-PCR with a set of primers amplifying the
entire cDNA (data not shown) and a set ampli-
fying exons 1-10, which amplified three bands
(Fig. 2a): one of the expected size (~1650 bp) and
two additional bands of ~850 and ~550 bp.
Sequencing of the additional bands after gel
purification (Fig. 2a) showed two abnormal tran-
scripts: (i) one with a deletion from exons 2-8
(r.310_1115del, p.Glul04_Arg372delfsX11, dele-
tion of 806 bp, corresponding to the band of
~850 bp = ~1650 bp — 806 bp)and (ii) a second
with the same deletion and, in addition, a deletion
of 321 bp within exon 1, flanked by a 5'-GT
dinucleotide, a 3'-AG dinucleotide, including
52 bp of the 5’UTR and the initial 269 coding
base pairs of exon 1 ([r.-52_269del; r.310_1115del]
corresponding to the band of ~550 bp = ~1650
bp — 806 bp — 321 bp).

The large-sized genomic deletion including
exons 2-8 (r.310_1115del, Fig. 3b) has been pre-
viously reported (Fig. 3c) (16, 27, 28) but not
characterized at the genomic level.

Therefore, we next used genomic qudntltdtlve
PCR with a TagMan® probe located in exon 5
(Fig. 2b). In a diploid control population of four
healthy male and five healthy female individuals,
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Exon 1 Exon 9
cDNA sequence:r.310_1115del
TTITCCTTG AGAAGTTCCCCATCCAGT TCGTCTG6EAAGAGACCTCCGEGATGGRAAGGAE
T TTCCTTGRAGCCAG ANGTTCCCCATCCAGTTCOTCTGEANGAGACCTCCGATGEAAGEAC
Forward sequenl:e
(

B

8
fo|

:

8
lo |

LY UTR of Exon 1 40 bp of Exon 1

—

- Cal CT5 Mo Fa NTC

Exon 9 Diploid controls

321 bp deletion in exon 1,including 52 bp of the 5'UTR and the initial 269 coding base pairs of exon 1

cDNA sequence: [r.-52_269del;r.310_1115del]

(e)

Genomic sequence:
g.309+4469_c.1116-1204del

Fig. 2. Characterization of a CAPN3 large-sized genomic deletion including exons 2-8. (a) Long-range reverse transcriptase—
polymerase chain reaction using primers RT1F and RT3R, and sequencing of the two additional bands (arrows) in patient
CT5, revealing a deletion of exons 2-8. (b) Genomic quantitative polymerase chain reaction (PCR) with a TagMan® probe
located in CAPN3 exon 5: comparative threshold cycle curve ratios and SD of nine healthy control individuals, patient CT5
and her parents; note the hemizygous state for the patient and her father (arrows). (¢) Identification of a genomic PCR
junction fragment (¥) in patient CT5 and her father, and sequencing of the genomic borders/breakpoints of the deletion. CT5,
patient CTS5; Fa, father of patient CTS; Mo, mother of patient CT5; NI, normal control; M, 100 bp ladder; Cal, calibrator

sample; NTC, no-template control sample.

the ddCT ratio ranged from 0.86 to 1.02. A ddCT
ratio of 1.15 (diploid) was found for the patient’s
mother, whereas the patient and her father were
found hemizygous (respective ddCT values of 0.55
and 0.50), thus confirming the hypothesis of
a large-sized genomic deletion in the patient,
inherited from her father.

We determined the genomic borders/break-
points of this deletion using long-range PCR. A
~6 kbp junction fragment was first obtained in
the father of the patient (with a forward primer
located 5’ of exon 1 and a reverse primer located
3" of exon 9, data not shown). We sequenced
this junction fragment, and then ‘walked’ with
internal primers. One particular reverse primer
(5’ AATGGGTTCTGGACATAGACA3’) in
IVSS8 revealed the genomic junction. This was
further confirmed in the patient with internal/
nested primers (forward 5 GACCAGCA-
CATGGTTGAGTG3’ and reverse 5 GAT-
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GCAGCAAAGGGAATCTC3'), amplifying a
shorter PCR junction fragment (Fig. 2c¢).
Sequencing of this fragment confirmed the geno-
mic junction joining IVS1 to IVS8 (g.309 + 4469
c.1116-1204del) (Fig. 2c).

This deletion was neither retrieved in patients
CT2 and CT4 nor in 18 additional patients
suspected of being affected with LGMD?2A, for
whom only one or no CAPN3 mutation had been
identified and for whom no muscle tissue was
available for cDNA analysis. However, as this
deletion has been previously reported in three
patients (16, 27, 28), it should be interesting to
evaluate whether it constitutes a recurrent
mutation or an ancestral mutated allele.

Some possible LGMD2A patients with only one
or no identified C4A PN3 disease-causing mutation
may carry partial CAPN3 gene deletions or
duplications. In particular, in this study, cDNA
analysis in patients CT2 and CT4 obviated,
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r.310_1115del (exon 2 to 8)
Genomic breakpoints
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1 heterozygous
Hungarian patient(16)
1 homozygous German

study as patient(28)
c.309+4469_c.1116-1204del 2 heterozygous Bulgarian
patients(27)

1 heterozygous French
patient, this study

¢.632+404_1029+ ?del 2 times:
r.633_1029del (exon 5 to 7) 1 heterozygous basque
patient(9)

1 heterozygous patient
recorded by Saenz and
colleagues(16)

Fig. 3. (a) Effect of intronic variants, identified at the complementary DNA (cDNA) level in this study. (b) Consequence of
the large-sized deletion at the genomic level. (¢) Large exonic deletions described in the CAPN3 gene. Representation of
introns is not to scale. *Effects on the amino acid sequence are predicted from the cDNA sequence.

respectively, only one clearly pathogenic muta-
tion. A large genomic rearrangement in frans, but
different from the deletion identified in patient CT5,
is a hypothesis to be further evaluated. To date, no
exonic duplications and only two different exonic
CAPN3 deletions have been identified (Leiden
Muscular Dystrophy pages database (9, 16, 25—
27) (Fig. 3c), probably because routine mutation
detection techniques (i.e. single strand conforma-
tion polymorphism analysis, DHPLC or direct
sequencing) cannot detect large genomic rearrange-
ments. Our report further illustrates the existence of
large exonic CAPN3 deletions. Genomic rearrange-
ments may be identified by cDNA analysis (i.e.
deletions of one or several exons), leading to an
orientated genomic analy31s (9). However, a more
systematic approach using quantitative multlplex
PCR of short fluorescent fragments (28) and/or
multiplex ligation-dependent probe amplification
(29) should be developed for more cost-effective and
routine-based screening.

For exhaustive mutational screening in
LGMD2A patients, a combinatory genomic and
transcriptional approach should ideally be used
and allow for the detection of both disease-causing
mutations in most patients (including novel
intronic mutations and large genomic rearrange-
ments), accurate diagnosis and genetic counselling.

Supplementary material

Table S1. RT-PCR conditions, primer pairs and amplified
regions of the CAPN3 cDNA used in this study.

Fig. S1. CAPN3 muscle cDNA sequencing in patients CT1 and
CT2. Forw, forward sequence; Rev, reverse sequence.
Supplementary materials are available as part of the online
article at http://www.blackwell-synergy.com/.
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