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Advances in specification testing

Russell Davidson Department of Economics and CIREQ, McGill
University; AMSE–GREQAM

Victoria Zinde-Walsh Department of Economics and CIREQ,
McGill University

Abstract. Testing the specification of econometric models has come a long way from the t 
tests and F tests of the classical normal linear model. In this paper, we trace the broad 
outlines of the development of specification testing, along the way discussing the role 
of structural versus purely statistical models. Inferential procedures have had to advance 
in tandem with techniques of estimation, and so we discuss the generalized method of 
moments, non parametric inference, empirical likelihood and estimating functions. Men-
tion is made of some recent literature, in particular, of weak instruments, non parametric 
identification and the bootstrap.

Résumé. Avancées dans les tests de spécification. Les tests de spécification des modèles
économétriques ont grandement progressé depuis les tests t et F du modèle linéaire clas-
sique. Dans ce texte, on trace à gros traits le développement du processus de test de 
spécification, et on discute en cours de route le rôle des modèles structurels et purement 
statistiques. Les procédures d’inférence ont dû progresser en tandem avec les techniques 
d’estimation, ce qui fait qu’on est amené à discuter de la méthode généralisée des mo-
ments, de l’inférence non-paramétrique, de la vraisemblance empirique, et des fonctions 
d’estimation. On mentionne certains éléments de la littérature spécialisée récente, en 
particulier à propos des instruments faibles, de l’identification non-paramétrique, et des 
techniques du bootstrap.

JEL classification: B23, C10, C12, C14

1. Introduction

Econometric model specification brings together economic theory, statistical
methodology and data. With the growing complexity of modelling computa-
tional issues and computational power come to the forefront.
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Initial approaches to specification focused on the broad outlines of economic 
theory in combination with simple statistical models, such as linear Gaussian 
regressions; the small data sets available would not have permitted much embel-
lishment, and thus at the start, the issues of heteroskedasticity and autocorrelation 
could be treated only within classes of parsimonious parametric models. Struc-
tural models required the use of instrumental variables, and initially the main 
issue was the need for instruments as opposed to ordinary least squares (OLS).

Sims’s (1980) critique drew attention to the fact that most structural models as-
sociated with economic theory were greatly misspecified, while statistical models, 
for instance, vector auto-regressions (VAR), gave a much better account of the 
properties of the data. Since that time, increasing computing power and greater 
availability of data have led to major developments in testing model specifica-
tion. New conceptual approaches included testing non-nested specifications, the 
generalized method of moments (GMM), extensions of statistical approaches to 
models with general heteroskedastic and autoregressive disturbances via the use 
of heteroskedasticity and autocorrelation consistent covariance matrix estima-
tors, and indirect inference. The use of artificial regressions was instrumental in 
constructing statistics that could be easily computed.

As it became clear that many economic models involve non-stationary vari-
ables with dynamics that could be stochastic rather than deterministic, and that 
neglecting this property could lead to spurious relations, new methodology that 
applied unit-root stochastic modelling and introduced cointegrating relations 
was developed, using non-stationary vector autoregression and error-correction 
models. Unit root and cointegration testing became a standard tool of inference 
in establishing the proper specification of an econometric model.

It was understood that, in many cross-sectional models, the parametric 
assumptions could be too restrictive, and, starting with the 1980s, econometrics 
saw the development of semi- and non-parametric modelling that also extended 
to models with stationary time-series data. One of the important developments 
was testing for validity of parametric specifications. Many different approaches 
were developed in the literature. The non-parametric methodology was recently 
extended to non-stationary time series.

The generalized method of moments provides a useful competitor for the like-
lihood approach, but both have been considerably extended over the years. The 
likelihood approach that relied on the knowledge of the form of the distribution 
can now be applied in a more general setting, thanks to empirical likelihood, 
which permits estimation of the probability weights along with the parameters. 
GMM is utilized in models with weak instruments where the number of instru-
ments could be large, even infinite, with results available for a continuum of 
moments.

As the methodology of inference advances, and ever more complex specifica-
tions are studied, progress on developing meaningful results is of course depen-
dent on the assumptions that restrict the model class. Mathematical tractability 
requires fairly restrictive conditions, many of which may not be supported by an

2



economic model that captures the relevant features of the economic theory. The
most important question is that of identification: which of the features can be
credibly identified by the statistical analysis of the data in a realistic model. Often
one has to contend with partial identification of possibly a subset or a combina-
tion of parameters, or with describing only a set where the parameter may reside.
There is also realisation that, even for identified parameters of interest, statistical
inference could be impossible unless some regularising restrictions are imposed.

With the increases in complexity of statistical approaches, statistics that do
not have analytically tractable finite-sample, or even asymptotic, distributions
are becoming more common; however simulation and bootstrap techniques in
many situations provide the ability to perform accurate inference.

This paper gives a brief discussion of these points. Other important devel-
opments in econometric model specification and testing, such as dealing with
big data, multi-level modelling, network analysis and graphical models, that are
starting to make inroads into econometrics are promising tools for a more re-
alistic analysis of economic theories. A question that often plagues econometric
analysis is whether a statistic that is found to be significant signals a causal effect;
various approaches such as testing for Granger non-causality,1 experiments and
pseudo (or “natural”) experiments provide possible answers, all of which suffer
from strong reliance on assumptions that are typically untestable. These issues
are left outside the discussion of this paper.

Section 2 considers early econometric work on the classical linear regression
with possible autocorrelation, heteroskedasticity and endogeneity. Section 3 in-
troduces specification tests such as the J tests, Durbin–Wu–Hausman tests, or
information matrix tests, and provides a brief discussion of artificial regressions.
Section 4 discusses GMM and inference in the context of GMM as well as indirect
inference and the HAC covariance matrix. Section 5 focuses on unit roots and
cointegration. Section 6 considers non parametric approaches in specification
testing, with emphasis on tests of the parametric form of the regression function;
it also mentions the empirical likelihood approach. Section 7 is devoted to weak
instruments and the issues of identification. The bootstrap method is discussed
in Section 8. Section 9 concludes.

2. Classical statistics and the linear regression model

Classical statistics, and the beginnings of statistical inference, were invented in
the early twentieth century. For an excellent account of these developments, and
of the personalities involved, see the book by Lehmann (2011). It was at this time
that the procedures we now associate with the highly restrictive classical normal
linear model were developed, with the test statistics labelled t and F . These were
the main tools of inference in econometrics until the second half of the century.

1 The use of the term “causality” here may be misleading. Granger causality is a purely statistical
notion, with little or nothing to do with causality as defined by philosophers.

3



Serial correlation
Up through the 1970s, most econometrics textbooks began with the linear regres-
sion model, and then discussed the problems associated with it. Most important 
of these was probably serial correlation. Consider the linear regression model:

y=Xβ +u, (1)

where the n-vector y contains the observations on the dependent variable, the
n × k matrix X those on explanatory variables, and the n-vector u contains
the possibly serially correlated disturbances. The elements of the k-vector β and
the scalar ½ are parameters.

The most commonly used test for detecting serial correlation:

ut =½ut−1 + vt; vt white noise

was the Durbin–Watson test for the null hypothesis H0 :½=0, proposed in Durbin
and Watson (1950) and (1951). This test had many disadvantages. Under the null
hypothesis, the distribution of the test statistic depends on the design matrix X,
and one needs to rely on bounds for critical values which leave an ambiguous
region between rejection and non-rejection, Another major disadvantage is that
there can be no lagged dependent variables in the matrix X.

Durbin’s h test (1970), which allows for lagged dependent variables, was widely
used, but had drawbacks as well. In particular, in some cases, the statistic can-
not be computed, as it would depend on the square root of a negative number.
However, Durbin’s so-called alternative procedure, which gained recognition only
after being rediscovered and extended by Breusch (1978) and Godfrey (1978a) and
(1978b), solved these problems. The statistic is computed by regressing the resid-
uals from the original regression (1) on the X matrix and the lagged residuals:2

ût =Xtb+ rût−1 + residual. (2)

The statistic is the t statistic for the artificial hypothesis that r = 0. Regression
(2) is an example of an artificial regression, a concept that will be discussed in
Section 3.

Heteroskedasticity
Another bugbear for econometricians at this time was heteroskedasticity. Several
tests were used in order to detect it: Goldfeld–Quandt (Goldfeld and Quandt
1965), Glejser (1969), Godfrey (1978c) and Breusch–Pagan (Breusch and Pagan
1979). For Goldfeld–Quandt, the observations are ordered according to the value
of some variable that is thought to be responsible for heteroskedasticity. The
model is then estimated over the first and last thirds of the sample, yielding the
F statistic:

2 Above, and throughout the paper, the notation “+ residual” or “+ residuals” in writing a
regression is used to indicate that the regression is used in order to compute something, usually a
test statistic, and is not supposed to correspond to any statistical model.
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SSR3=(n3 −k)
SSR1=(n1 −k)

,

where SSR1 and SSR3 denote the sums of squared residuals from the first and
last thirds of the sample and n1 and n3 denote the associated sample sizes.

A plausible model of heteroskedasticity is:

E(u2
t )=h(®+Ztγ ), (3)

where h is a possibly nonlinear function that may only take on positive values,
Zt is a k-vector of observations on exogenous or predetermined variables, ® is a
scalar parameter and γ is a k-vector of parameters. The Godfrey and Breusch–
Pagan tests make use of artificial regressions based on (3), which we may write
as

û2
t =a +Ztc+ residual, t =1,…, n, (4)

where the ût are OLS residuals from the original regression. An ordinary F test for
the artificial hypothesis that c=0 can be used, or alternatively nR2 from (4), where
R2 is the centred coefficient of determination. Glejser replaced the regressand û2

by the absolute value of the residual.
If heteroskedasticity was detected, it was sometimes possible to choose a func-

tion h and explanatory variables Zt and to construct a parametric skedastic func-
tion like h(®+Ztc). The skedastic parameters c could be estimated by regressing
the squared residuals on a constant and the Zt, and then the original regression
re-estimated by feasible GLS.

This state of affairs, in which it was necessary to specify a skedastic function,
was vastly improved by Hal White’s (1980) paper, which made it possible to
have asymptotically correct inference in the presence of heteroskedasticity of
unknown form, by use of an HCCME (heteroskedasticity-consistent covariance
matrix estimate). This opened the way for econometricians to conduct tests of
specification or concerning parameters, in a manner robust to the the presence
or absence of heteroskedasticity.

If it is assumed that there is no serial correlation of the disturbances in regres-
sion (1), the HCCME is a sandwich covariance matrix estimate, of the form:

(X�X)−1X��̂X(X�X)−1,

where, in the original form, the elements of the n × n diagonal matrix �̂ are
the squared residuals from the original regression. It has since been seen to be
preferable to adjust the squared residuals in a variety of ways–see MacKinnon
and White (1985). One way is to use as diagonal elements of �̂ the û2

t (n=(n−k)),
thus incorporating a degrees-of-freedom correction. Alternatively, the diagonal
elements can be the û2

t =(1 − ht), or the û2
t =(1 − ht)2, where ht is the tth element

of the orthogonal projection matrix Px = X(X�X)−1X�. It was some time after
the publication of White’s paper that it was noticed that a good deal of White’s
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work had been anticipated in the statistics literature and in a different context by 
Eicker (1963) and (1967).

Instrumental variables
Simultaneous-equation models go back to the early days of econometrics. Rag-
nar Frisch (1934) coined the term “multicollinearity” to describe a set of more 
than one (hence “multi”) relation of collinearity among observable variables and 
a disturbance. For instance, the linear regression (1) states that the vector y, the 
columns of the matrix X and the vector u are linearly dependent. It was under-
stood that some of the variables involved in a multicollinearity3 were endogenous, 
while others were assumed to be exogenous. Thus a multicollinearity in Frisch’s 
sense is, in modern terminology, a system of simultaneous equations.

Even before Frisch’s work, the technique of estimation by instrumental vari-
ables (IV) was invented by Philip Wright—or perhaps his son Sewall Wright. 
See the fascinating story of trying to identify which of them was responsible, or 
mostly responsible, for the invention in Stock and Trebbi (2003). At the end of 
their paper, Stock and Trebbi remark that a remaining mystery is why the in-
vention was forgotten, to be rediscovered only many years later, first by Reiersøl 
(1941), whose work also had little impact at the time, and then by Durbin (1954) 
and Sargan (1958).

Estimation by instrumental variables was found to be necessary for consistent 
estimation not only in the case of endogeneity of one or more of the regressors, 
but also when regressors are measured with error—the famous errors-in-variables 
problem. Since the estimating equations for OLS can be written as:

X�(y−Xβ)=0,

it follows that, if the expectation of the left-hand side, evaluated at the true value
of the vector β, is different from zero, then the OLS estimator is biased. If an
asymptotic construction is used such that the limit of n−1X�(y − Xβ), as the
sample size n tends to infinity, is nonzero, then the estimator is asymptotically
biased and inconsistent. If an n× l matrix W, where l �k, is such that:

E
(
W�(y−Xβ)

)=0,

then the columns of W are valid instruments and can be used in the IV estimating
equations:

X�PW(y−Xβ)=0. (5)

Here PW ≡W(W�W)−1W� is the orthogonal projection matrix on to the span of
the columns of W. Equations (5) also express the first-order conditions for the
minimisation of the IV criterion function, defined as:

Q(β)= (y−Xβ)�PW(y−Xβ).

3 Regrettably, the term is often used to describe a relation of collinearity or near collinearity in just
one regression equation.
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If l =k, the parameters β are just identified. If l>k, then there are more identifying
conditions than parameters to identify. The extra conditions are called over-
identification restrictions and can be tested by use of the minimized value Q(β̂),
where β̂ is the IV estimator. Under the null of correct specification, Q(β̂), divided
by a consistent estimate of the variance of the disturbances, is asymptotically
distributed as Â2

l−k . This test was proposed by Sargan (1958). If it leads to rejection
of the hypothesis of correct specification, the reason may be that the instruments
are not all valid, or that they have explanatory power for y over and above that
of the variables in X. Basmann (1960) considered a somewhat modified version
of the Sargan statistic, which may have better finite-sample properties.

In Durbin (1954), a null of exogeneity of the regressors in X, or at least of the
absence of bias in the OLS estimator, was considered. The test statistic has an
interesting form: it is based on the difference between the OLS and IV estimators.
Under the null, this difference has a covariance matrix that can be estimated in
various ways.

3. Specification tests

Until around 1980, a more or less universal feature of econometric models was
that they were structural, in the sense that they were based on models taken from
economic theory. Except for the potential problems considered in the previous
section, namely serial correlation, heteroskedasticity and endogenous regressors,
there was no serious attempt to test model specification, or the statistical adequacy
of the models used.

In 1980, Sims published a very influential article entitled “Macroeconomics
and Reality,” in which he drew attention to the widespread misspecification of
many macro-models in use at that time and argued in favour of models like
vector auto-regressions (VARs), which could give a much better account of the
properties of the data. The rise of modern specification testing followed naturally
in the wake of Sims’s call to order. There were many fairly new tests introduced,
plus many extensions of existing ones.

Computing hardware slowly rose to the task of implementing econometric
estimation and testing during the late 1950s and 1960s. By the mid 1970s, uni-
versities normally gave access to their mainframe computers to econometricians,
who installed econometric software adapted to their purposes. It is difficult for us
in the 21st century to appreciate how painful econometric computing was, even
in the 1970s, when programs had to be typed on punched cards that were then
submitted as batch jobs at a computing centre sometimes located on the other
side of the campus.

It was, and still is, the case that the output produced by running a regression
contains the value of a t statistic for each estimated parameter, as well as the value
of the F statistic. They can provide evidence of the significance of the variables
in the model.
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The realization came that these t and F tests were meaningless if the model 
was misspecified, and that misspecification could take many forms, not limited 
to those discussed in the previous section. The classical approach to testing is to 
posit a model that corresponds to the alternative hypothesis and to specify the 
null hypothesis by imposing restrictions in the context of the alternative.

Non-nested hypothesis tests
As early as 1961, the well-known statistician D. R. Cox had proposed what would 
now be called a non-nested hypothesis test. See also his 1962 paper. A null hy-
pothesis is specified as a model, by which is now meant a set of data-generating 
processes (DGPs), a set that contains all those DGPs that satisfy the null hypoth-
esis. Instead of embedding this set in a larger set corresponding to the alternative, 
a different model is taken as the alternative. The two models may overlap, but 
each must contain a subset the elements of which do not belong to the other 
model.

Cox’s work was quite general and was set in the framework of likelihood the-
ory. Pesaran and Deaton (1978) specialized Cox’s approach to the case of linear 
regression models. Their paper may be said to have sparked the interest of econo-
metricians in this sort of test. Then Davidson and MacKinnon (1981) devised a 
very simple implementation of a non-nested hypothesis test for both linear and 
nonlinear regressions. For the linear case, suppose that the two hypotheses for 
the test are as follows:

H1 : y=Xβ +u and H2 : y=Zγ +u,

with the first being the null model, the second the alternative, where in either case
the disturbance vector u is white noise. From the second regression, a vector of
fitted values, Zγ̂ , is computed and then introduced as an extra regressor in the
null model:

y=Xβ +®Zγ̂ + residuals. (6)

The test statistic is the t statistic for the artificial hypothesis that ®=0. This test
was called the J test.

Fisher and McAleer (1981) devised a modified test, which they called the JA
test, for which under the null the statistic has exactly Student’s t distribution if
the disturbances are Gaussian. Instead of the test regressor Zγ̂ in (6), the JA
test uses the fitted values of the regression on Z of the fitted values Xβ̂ from the
first regression. For the J test itself, only the asymptotic distribution is available,
as standard normal. Indeed, in finite samples, the null distribution is shifted to
the right relative to standard normal. The advantage of the possibility of exact
inference in finite samples with the JA test is somewhat offset by the fact that the
JA test is often considerably less powerful than the J test, and is never more so.

A quite general idea that arose out of the non-nested hypothesis testing liter-
ature is that of encompassing. If a model corresponding to a hypothesis H1, say,
is correctly specified, then, asymptotically, it is said to encompass another model
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H2, which may be nested in H1 or not, and in which H1 may be nested or not,
if assuming that H1 is well specified accounts for the results of estimating H2.
Specifically, in the non-nested linear regression case, this is interpreted to mean
that the fitted values Zγ̂ obtained by estimating H2 directly should not be signif-
icantly different from the fitted values Zγ̃ from the regression of Xβ̂ on Z, and
that the probability limits as the sample size tends to infinity of γ̂ and γ̃ should be
the same. An encompassing test can therefore be based on the difference between
γ̂ and γ̃ . Such a test was proposed by Dastoor (1983) and developed further by
Mizon (1984) and Mizon and Richard (1986).

Artificial regressions
A suitable notation for a nonlinear regression is:

y=x(β)+u, (7)

where the n-vector x(β) is the vector of regression functions, which are in general
nonlinear functions of the parameter k-vector β, and of explanatory variables.
An exceedingly useful tool in the estimation of nonlinear regression models is
the Gauss–Newton regression (GNR). The GNR that corresponds to (7) can be
written as:

y−x(β)=X(β)b+ residuals, (8)

with the regressand and regressor matrix functions of β. The regressor matrix
X(β) is the n × k Jacobian matrix of x(β) with respect to β—its (t, i) element is
the partial derivative of xt(β), component t of x(β), with respect to ¯i , component
i of β.

The GNR is the archetype of the class of artificial regressions. If the vari-
ables in (8) are evaluated at the nonlinear least squares (NLS) estimator β̂, which
minimizes the sum of squared residuals from (7), then the OLS estimate of the ar-
tificial parameter vector b is identically zero. Further, the OLS covariance matrix
estimator from the GNR (8) is equal to the conventional NLS covariance matrix
estimator. If the variables in (8) are evaluated at any ´̌ in a root-n neighbourhood
of β̂, then the GNR covariance matrix estimate is asymptotically equivalent to the
NLS estimate. In this case, the vector b́ estimated by OLS is not zero in general,
but it can be interpreted as a vector of correction terms, in the sense that the one-
step estimator given by β + b is asymptotically equivalent to the NLS estimator
β̂. Much further information on the GNR can be found in the (1993) textbook
of Davidson and MacKinnon. The methodology of artificial regressions in much
more general contexts is laid out in Davidson and MacKinnon (2001).

The GNR makes it simple to implement hypothesis tests, including specifica-
tion tests, with test statistics that are t statistics or F statistics based on the GNRs
that correspond to the null and alternative models. For instance, if the parameter
vector β is partitioned as [ ], and one wishes to test the hypothesis that β2 =0,
the two GNRs are formulated as:
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GNR0 : y−x(β1, 0)=X1(β1, 0)b1 + residuals, and

GNR1 : y−x(β1, 0)=X1(β1, 0)b1 +X2(β1, 0)b2 + residuals,

where X1 and X2 are Jacobian matrices of X with respect to β1 and β2 respectively,
and where β1 is evaluated at either the constrained or the unconstrained estimate,
or indeed anything in a root-n neighbourhood of these. The test statistic is the
ordinary F statistic for the artificial hypothesis that b2 = 0. Different choices of
β1 lead to numerically different statistics, but all are asymptotically equivalent to
a Wald test of the restriction β2 =0 computed using the nonlinear regression (7).
In finite samples, simulation experiments suggest that the best choice of β1 is the
constrained estimate. In that case, the test is a version of the Lagrange multiplier
test. If β2 has only one component, it is not necessary to formulate GNR0, as a
suitable statistic is the t statistic for the single component of β2 in GNR1.

By use of the GNR, it is easy to extend the J and JA tests to the case of
non-nested nonlinear regressions. For a nonlinear J test of the hypotheses:

H1 : y=x(β)+u and H2 : y= z(γ )+u,

the testing regression is:

y−x(β̂)=X(β̂)b+®z(γ̂ )+ residuals.

An example of an artificial regression outside the context of regression models
is the BRMR (binary response model regression), developed independently by
Davidson and MacKinnon (1984) and Engle (1984). Although the most com-
monly used binary response models are probit and logit, the artificial regression
can be applied to any model with a binary dependent variable that can take on
only the values of 0 and 1, of the form:

Pr(yt =1)=F (Xtβ),

where F is an absolutely continuous cumulative distribution function defined on
the whole real axis. As usual, Xt is a vector of explanatory variables for obser-
vation t and β is a parameter vector, usually estimated by maximum likelihood.
Observation t of the BRMR is written as:

yt −F (Xtβ)(
F (Xtβ)(1−F (Xtβ))

)1=2 = Xtf (Xtβ)(
F (Xtβ)(1−F (Xtβ))

)1=2 b + residual, (9)

where f =F ′ is the density corresponding to F . It is easy to see that the artificial
regression (9) shares the properties of the GNR: if the variables are evaluated
at the ML estimates β̂, the OLS estimate of the artificial parameter vector b is
zero; the OLS covariance matrix estimate from (9) is a consistent estimate of the
inverse of the information matrix when the variables are evaluated at some β in
a root-n neighbourhood of β̂, and the one-step property holds. This implies that
the BRMR can be used for hypothesis testing in just the same way as the GNR.
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From Hausman to DWH
As mentioned above, as early as 1954, Durbin based a test for the null of exoge-
nous regressors in a linear regression on the difference between the OLS and IV
estimators. In a very influential paper, Hausman (1978) proposed a specification
test of a very general nature. The test can be used whenever two estimators of a
parameter or vector of parameters are available—one consistent under an alter-
native hypothesis, but inefficient under the null, the other efficient under the null,
but inconsistent under the alternative. The test statistic is based on the difference
between the two estimators.

Hausman also showed that, asymptotically, the covariance matrix of the differ-
ence is the difference between the covariance matrices of the estimator consistent
under the alternative and the estimator efficient under the null. Let θ̂ denote the
former estimator, and θ̃ the latter. The difference vector is represented asymptot-
ically by:

n1=2(θ̂ − θ̃ )=n1=2(θ̂ − θ0)−n1=2(θ̃ − θ0). (10)

For ease of notation, let s(θ̂ )=n1=2(θ̂ −θ ), s(θ̃ )=n1=2(θ̃ −θ0), and t=n1=2(θ̂ − θ̃ ),
so that (10) can be written as:

s(θ̂ )= s(θ̃ )+ t. (11)

The limiting distributions of all three terms in (10) or in (11) are normal with
zero expectation under standard regularity conditions. Now t and s(θ̃ ) are un-
correlated, since otherwise θ̃ could not be efficient under the null. Indeed, if the
matrix of covariances of the elements of s(θ̃ ) and t is nonzero, one can readily
construct a linear combination of the two with smaller variance than that of s(θ̃ ).
If we now take the variance of each side of (11), we see that:

var
(
s(θ̂ )

)=var
(
s(θ̃ )

)+var(t).

Thus the covariance matrix of t is equal to the difference between those of s(θ̂ )
and s(θ̃ ), which proves Hausman’s claim. This result can also be shown directly
for Durbin’s test.

As was acknowledged later, in a (1973) paper Wu, too, had a version of the
result of Durbin and Hausman. The specification test, whether in the context of
linear regressions or more generally, is now commonly referred to as the DWH
test. It can almost always be readily implemented by a suitable choice of artificial
regression.

The information matrix test
Somewhat in the same spirit as tests based on the difference between two esti-
mators is the information matrix test. More than any of the other tests so far
considered here, the information matrix test was conceived as a pure specifica-
tion test, that is, without a formally specified alternative hypothesis. It can be
applied to models estimated by maximum likelihood (ML), where, if a model is
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well specified, there are at least two asymptotically equivalent estimators of the 
information matrix.

The log likelihood of a model can be expressed as a sum, one term for each 
observation in the sample. If the term from observation t, t = 1,…, n, is denoted 
as `t(yt, θ ), where θ is a k-vector of model parameters, the loglikelinood of the 
entire sample is the sum of the `t(yt, θ ), where, in the time-series context, `t(yt, θ ) 
would be the log of the density of yt conditional on exogenous variables and past 
observations.

The exponential of a term `t(yt, θ ) is a conditional density, and so it integrates 
to one: the relation∫ ∞

−∞
exp

(
`t(yt, θ )

)
dyt =1

holds identically in θ . Differentiating this identity with respect to μi , component
i of θ , gives∫ ∞

−∞
@`t

@μi
(yt, θ )exp

(
`t(yt, θ )

)
dyt =0,

which expresses the fact that the expectation of the score vector, evaluated at the
true parameters, is zero.

Differentiating again, now with respect to μj , gives:∫ ∞

−∞

[ @2`t

@μi@μj
(yt, θ )+ @`t

@μi
(yt, θ )

@`t

@μj
(yt, θ )

]
exp

(
`t(yt, θ )

)
dyt =0. (12)

The identity (12), summed over t, is the information matrix equality. It is a stan-
dard result of maximum likelihood theory. It says that the expection of the Hes-
sian (the matrix of cross-partial derivatives) of `t with respect to the parameters
is equal to the negative of the expectation of the outer product of the gradient,
that is, the k ×k matrix with typical element @`t=@μi(yt, θ ) @`t=@μj(yt, θ ).

The information matrix for the sample is defined as follows:

Iij(θ )=Eθ

n∑
t=1

[
@`t

@μi
(yt, θ )

@`t

@μj
(yt, θ )

]

The notation Eθ denotes an expectation taken using the probability distribution
defined by θ . Given the information matrix equality, it follows that two different
estimators of Iij(θ ), both of them consistent, are the outer product of the gradient
and the empirical Hessian:

n∑
t=1

[@`t

@μi
(yt, θ )

@`t

@μj
(yt, θ )

]
and −

n∑
t=1

@2`t

@μi@μj
(yt, θ ),

respectively.
There are various ways, some easier than others, to estimate the covariance,

under the null of correct specification, of the difference between the two esti-
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mators with the non-redundant elements stacked into a vector. This allows the
econometrician to construct a test with k(k +1)=2 degrees of freedom.

Since the test is apparently constructed with no specific alternative in view, it
is not obvious how to interpret a rejection of the null. However, Davidson and
MacKinnon (1987) had shown that even tests with no explicit alternative have
an implicit alternative, and so it was of interest to see what that implicit alter-
native might be for the information matrix test. In Davidson and MacKinnon
(1992), the implicit alternatives, plural since the test has more than one degree
of freedom, were elucidated for regression models. Tests of the elements of the
information matrix corresponding to the regression parameters are implicitly
against alternatives of heteroskedasticity of the disturbances, those correspond-
ing to a regression parameter and the variance parameter are against alternatives
of skewness, and the test corresponding to the diagonal element for the vari-
ance parameter is against an alternative of kurtosis. This paper also proposed
a double-length artificial regression for the implementation of the information
matrix test, and showed that it had better properties than implementations based
on other artificial regressions. This was an example of something that econome-
tricians were becoming aware of, namely that not all artificial regressions gave
reliable inference in finite samples. For instance, the so-called outer-product-of-
the-gradient (OPG) regression is both simple to implement and applicable quite
generally to models estimated by ML. A vector of ones is regressed on the matrix
with typical element @`t=@μi(yt, θ ). Unfortunately, this simple artificial regression
is particularly unreliable.

4. The generalized method of moments

The generalized method of moments (GMM) burst upon the world of econo-
metrics with the seminal papers of Hansen (1982) and Hansen and Singleton
(1982). According to the (ordinary) method of moments, if one has a sample of
independent drawings from some distribution, one can estimate any moment of
the distribution by the corresponding sample moment. When one speaks of the
generalized method of moments, several generalizations are in fact implied. Some
involve no more than relaxing regularity conditions, for instance, the assumption
of IID observations. But the essential generalizations follow from three things.
The first is that conditional moments may be used as well as unconditional ones,
the second that moments may depend on unknown parameters, and the third
that there may be more moments than parameters to estimate.

The GMM setup can be written very generally as follows. Let mj(y, θ ), j =1,…, l
be a set of functions of observed data y, and a k-vector of parameters θ , k � l,
such that:

Eθ

(
mj(y, θ )

)=0. (13)

As in the ML context, we denote by Eθ an expectation computed using a
DGP for which the true parameter vector is θ . The relations (13) are called
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moment conditions. Sometimes the model specifies that a set of conditional mo-
ments have zero expectation, in which case we have conditional moment condi-
tions. GMM estimation with unconditional moment conditions replaces (13) by 
sample analogues. But, just as with over-identified estimation by IV, there may 
be more moment conditions than parameters to estimate, if l > k. In such cases, 
one uses a positive-definite weighting matrix A and seeks to minimize the GMM 
criterion function:

Q(θ )=m�(y, θ )Am(y, θ ) (14)

with respect to θ . Here, m(y, θ ) is the l-vector of the mj(y, θ ). Different choices of
A lead to different estimators, which are not in general asymptotically equivalent.
It can be seen that, if, A is asymptotically proportional to the inverse of the covari-
ance matrix of m(y, θ ), then the asymptotic variance of the estimator is minimized.

One of the advantages of GMM as an estimation method is that it permits
models which consist of a very large set of DGPs. In striking contrast to ML
estimation, where the model must be completely specified, any DGP is admissible
if it satisfies a relatively small number of restrictions or regularity conditions.
However, these restrictions must go beyond the mere existence of the moments
or conditional moments in the model. This is a consequence of the theorem of
Bahadur and Savage (1956), which shows that, even for a problem as simple as
estimating the expectation of a distribution from which one has an IID sample,
the mere existence of the expectation is not enough for any statistical inference
to be possible without further more restrictive assumptions.

Despite this limitation, it appears that the task of specification testing is con-
siderably lightened when GMM is used rather than ML. Testable parametric
restrictions may of course be of interest. But the chief specification test used with
GMM estimation is a test of the over-identifying restrictions. This test can be im-
plemented in a manner very much like the Sargan test used with IV estimation.
If the weighting matrix A is not only asymptotically proportional to the inverse
of the covariance matrix of m(y, θ )—usually it would be a consistent estimate
of that matrix—but asymptotically equal to it, then the minimized value of the
GMM criterion function (14) has an asymptotic distribution of Â2

l−k if the model
is well specified. The test based on this statistic is called the Hansen–Sargan test,
or sometimes, unfortunately, the J test, in conflict with the non-nested hypothesis
test of Davidson and MacKinnon (1981).

If the Hansen–Sargan test rejects the null of correct specification, that is, the
correctness of the relations (13), even if the test has a formal implicit alternative,
it can be difficult to interpret a rejection, for the same reason as with the Sargan
test, namely that various misspecifications may lead to a failure of (13).

GMM, instrumental variables and estimating functions
The moments mj(y, θ ), or generalized moments as it is useful to call them, are often
sums of contributions from the individual observations of the sample. Consider
the example of a linear regression. Generalized moments can be constructed

14



as linear combinations of the residuals. The OLS estimator of the regression
y=Xβ +u is a GMM estimator, with moments the components of X�(y−Xβ).
Setting them equal to zero gives the OLS estimating equations.

As with Eicker and White, it took some time before econometricians (and
statisticians) realized that GMM was a different way of looking at a problem that
had been studied in the statistics literature. The concept of estimating functions
was put forward in Godambe (1960), but better developed for the purposes of
econometrics in Godambe and Thompson (1978). A quasi-likelihood approach
is found in Godambe and Thompson (1989).

For the OLS example above, the estimating functions are just the left-hand
sides of the estimating equations. They are also called zero functions, that is, func-
tions of data and parameters that have expectation zero when the true parameters
are used. We can think of the residuals as elementary zero functions, correspond-
ing to a single observation. They are combined into estimating functions by taking
linear combinations of them with weights which come from instrumental variables
that in the OLS setting are just the regressors, but, if these are endogenous or mea-
sured with error, as we saw earlier, we must replace them with valid instruments.

HAC covariance matrix estimators
Because GMM seeks as great generality as possible, it is contrary to its spirit to
suppose that observations are IID. Although, as we saw earlier, use of an HCCME
allows a researcher to be agnostic about whether there is heteroskedasticity; a
similar approach allows for serial correlation by means of a heteroskedasticity
and autocorrelation consistent (HAC) covariance matrix estimator. Let � be the
n×n covariance matrix of a vector of disturbances, or, more generally, of a vector
u(y, θ ) of elementary zero functions, and let W be an n× l matrix of instrumental
variables that are, asymptotically at least, uncorrelated with the zero functions.
The aim is to be able to estimate the l × l matrix n−1W��W consistently. If this
can be done, then asymptotically valid inference is possible for quite general sorts
of GMM models.

Analogously to the HCCME, a double sum could allow us to take account
of covariances, but it is necessary to downplay or eliminate from the double
sum terms for which the indices t and s are too far apart. First, define the auto-
covariance matrices:

�(j)≡

⎧⎪⎪⎨
⎪⎪⎩

1
n

n∑
t=j+1

E(utut−j)W�
t Wt−j for j �0,

1
n

n∑
t=−j+1

E(ut+jut)W�
t+jWt for j < 0,

where the expectations are taken conditional on the instruments. It is easy to
check that �(j)=��(−j), and that:

n−1W��W=
n−1∑

j=−n+1
�(j).
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Estimates �̂(j) are obtained by replacing E(utut−j) by ûtût−j and similarly for 
E(ut+j ut), where ût = u(yt, θ̂ ), with θ̂  a preliminary estimate of θ , found, for 
instance, by minimizing the criterion function (14) with an identity weighting 
matrix.

The estimator known as the Hansen–White estimator was proposed in Hansen 
(1982) and White and Domowitz (1984). It can be written as

�̂(0)+
p∑

j=1

(
�̂(j)+ �̂

�
(j)

)
. (15)

It makes use of a lag truncation parameter 0 � p < n, and thus takes account
only of covariances between observations separated by no more than p periods.
Unfortunately the result is not guaranteed to be positive definite.

By far the most frequently used HAC estimator is the Newey–West estimator;
Newey and West (1987). It also uses a lag truncation parameter, but the terms in
(15) are multiplied by weights that decline linearly from 1 for the term �̂(0) to 0
for the term with j =p+1:

�̂(0)+
p∑

j=1

(
1− j

p+1

)(
�̂(j)+ �̂

�
(j)

)
. (16)

This estimator is guaranteed to be at least positive semi-definite.
Although Andrews and Monahan (1992) derived the most efficient positive

semi-definite HAC estimator, it is seldom used, since it is more complicated than
the Newey–West estimator, and is inclined in computation not to be positive
semi-definite when p is large, on account of rounding errors in floating-point
arithmetic.

In this setup, the vector m(y, θ ) in (14) is W�u(y, θ ) and the criterion function
to be minimized with respect to θ is:

u�(y, θ )W(W��̂W)−1W�u(y, θ ), (17)

where W��̂W is given by (16). The covariance matrix of the estimator θ̂ obtained
by minimizing (17) can be estimated by:

v̂ar(θ̂ )= Û
�

W(W��̂W)−1W�Û,

where the n×k matrix Û has typical element @ut=@μi(yt, θ̂ ).

Indirect inference
The method of indirect inference was developed by Smith (1993), and Gouriéroux
et al. (1993). The idea is that, when a model is difficult to estimate, there may
be an auxiliary model that is not too different from the model of interest but
is much easier to estimate. For any two such models, there must exist so-called
binding functions that relate the parameters of the model of interest to those of
the auxiliary model. The idea of indirect inference is to estimate the parameters
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of interest from the parameter estimates of the auxiliary model by using the
relationships given by the binding functions.

A good example is using an auxiliary AR model to estimate an MA model.
Durbin (1959) based his estimator for the parameters of a zero-mean MA(q)
model on a system of equations linking the MA parameters to the coefficients of
a truncated AR(∞) representation; here the use of binding functions predates the
formal introduction of the method of indirect inference. Several estimators can
be constructed from these binding functions. Galbraith and Zinde-Walsh (1994)
and (1997) evaluated MA estimators and then extended this approach to ARMA
models where the binding function equations can be represented in the form:

Bc−a=0,

where is the vector of the parameters of the ARMA(p, q) model,
the vector a is formed by the first p+q coefficients of the auxiliary AR, and the
(p+q)× (p+q) matrix B is partitioned as:

B=
[

Ip B12
Oq×p B22

]
,

with the B.. submatrices having the coefficients of the AR as the non-zero entries.
The q ×q matrix B22 plays a special role, as it is identical to the resultant of the
AR(p) and MA(q) polynomials in the ARMA(p, q) model. This makes it possible
to test the specification of ARMA, since the hypothesis that there are common
roots in the AR and MA parts can be formally stated as testing the restriction
g(a)=det B22 =0. The test uses the Wald statistic:

g(â)2

G�(â)V(â)G(â)
,

where â is the vector of estimated truncated AR parameters, G(â) is the vector
of derivatives (@g=@a)(â). and V(â) is the covariance matrix of the AR estimated
coefficients. Another application of indirect inference to the estimation of MA
models is found in Ghysels et al. (2003).

This illustrates the typical set-up for indirect inference: restrictions on the
parameters of interest are expressed through the auxiliary model parameters
using the binding function, then the estimators and the estimated variance from
the auxiliary model is used in forming the statistics, whether they be likelihood
ratio type statistics, or Wald.

Indirect inference is applied in complex situations where direct inference may
simply be difficult (as in the ARMA example), but could also be impossible. A
current literature extends this methodology to dynamic stochastic general equi-
librium models where it may well be argued that complete specification may not
be achievable, see for instance the discussion of the difficulties and pitfalls in
Dridi et al. (2007) where nevertheless a partial indirect inference approach is
successfully explored.
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In summary, the GMM methodology has proved to be very useful in paramet-
ric models. Extensions of GMM to wider model classes, for instance for functions 
in Hilbert space that require a continuum of moment conditions, were developed 
in Carrasco and Florens (2000) and subsequent literature.

5. Unit roots and cointegration

The phenomenon of spurious regressions was brought to the attention of econo-
metricians by Granger and Newbold (1974), who used simulation methods that 
were very crude by today’s standards. If xt and yt are time series that are en-
tirely independent of each other, we might hope that running the simple linear 
regression:

yt =¯1 +¯2xt + vt (18)

would usually produce an insignificant estimate of ¯2 and an R2 near 0. However,
this is so only under quite restrictive conditions on the nature of the xt and
yt. In particular, if xt and yt are independent random walks, the t statistic for
¯2 = 0 does not follow Student’s t or the standard normal distribution, even
asymptotically. Instead, its absolute value tends to become larger and larger as
the sample size n increases. Ultimately, as n →∞, it rejects the null hypothesis
that ¯2 =0 with probability 1. Moreover, the R2 does not converge to 0 but to a
random, positive number that varies from sample to sample. When a regression
model like (18) appears to find relationships that do not really exist, it is called a
spurious regression.

Spurious regressions are obviously traps for valid, or asymptotically valid,
inference. They can arise more generally than in the case of independent random
walks, in particular with series which, although asymptotically stationary, are
strongly serially correlated. Despite this, many econometricians thought that the
most probable danger was when time series had a unit root. Consider an ARMA
process yt generated from a white-noise process ut:(

1−A(L)
)
yt =

(
1+B(L)

)
ut. (19)

Here A(L) and B(L) are lag polynomials with no constant term. If all the roots
of the polynomial 1−A(z) are outside the unit circle in the complex plane, yt is
stationary,4 or, as we prefer to say, I(0)—integrated to order 0. If it has one or
more roots on the unit circle, these are unit roots, and if there is one or more root
inside the unit circle, the process is explosive.

Although many tests of the null hypothesis that a given series has a unit root
have been proposed, the simplest and most widely-used tests for unit roots are
variants of ones developed by Dickey and Fuller (1979). Consider the AR(1)
model:

4 Strictly speaking, yt is not stationary unless it is initialized from the stationary distribution. It is
merely asymptotically stationary. But here we follow the usual convention of ignoring this
distinction, which in any case has no bearing on what follows.
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yt =½yt−1 +ut, t =1,…, n, (20)

where ut is white noise. When ½ = 1, this model has a unit root and is in fact a
random walk process. A testing regression for the null of a unit root can be based
on (20), transforming the regressand to 1yt:

1yt =®yt−1 + residual, (21)

where ®=½−1. A statistic to test the null of a unit root is n times the OLS estimate
of coefficient of yt−1. Another is the t statistic. Distributions of these statistics
are valid only under very restrictive conditions. Other testing regressions include
more regressors than just the lagged dependent variable:

1yt =°0 +®yt−1 + residual,

1yt =°0 +°1t +®yt−1 + residual,

1yt =°0 +°1t +°2t2 +®yt−1 + residual.

(22)

The presence of the additional regressors leads to greater robustness against the
presence of deterministic time trends, but also to lower power. Again, possible
test statistics are n times the OLS estimate of ®, known as the z statistic, and the
t statistic for ®, known as the ¿ statistic.

There is no obvious way to choose between the z and ¿ statistics, and they have
non-standard asymptotic distributions, different both for the two versions, and
different also for each of the testing regressions in (21) and (22). They are usually
expressed as distributions of functionals of Brownian motion—see for instance
Phillips (1987)—and are numerically simulated.

If the process yt is a more general ARMA process than AR(1), as in (19), the
residuals in the testing regressions are serially correlated. Account can be taken
of this by including one or more lags of the regressand in the testing regression.
If this succeeds in making the residuals look like white noise, then fortunately the
asymptotic distributions are unchanged. Tests involving the lagged regressand
are called augmented Dickey–Fuller (ADF) tests. There is no uniformly most
powerful statistic against the alternative that ½ <1 or ®<0. Instead, point-optimal
tests have been devised—see Elliott et al. (1996).

The literature on unit-root testing is vast, and here only the basic notions have
been treated. Other forms of non-stationarity, such as structural breaks as well
as fractional unit roots or near-unit roots, can also be damaging for inference.

Cointegration
Economic theory often suggests that certain pairs of economic variables should
be linked by a long-run equilibrium relationship. Although the variables may drift
away from equilibrium for a while, economic forces may be expected to act so as
to restore equilibrium. But, if these variables are I(1), they either diverge from
one another, like the variables in a spurious regression, or else they co-move; that
is, they diverge together. This can happen if there is a linear combination of the
I(1) variables that is I(0), in which case they are said to be cointegrated.
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The earliest reference to cointegration appears to be Granger (1981). The best-
known paper is Engle and Granger (1987), and two relatively accessible articles 
are Hendry (1986) and Stock and Watson (1988).

When testing for cointegration, it is important to note that the null hypothesis 
is that of no cointegration. If two variables, each I(1), are not cointegrated, there 
are two unit root processes involved, whereas when they are cointegrated, only 
one unit root process drives both variables. The null of no cointegration postulates 
that there are two.

Cointegration establishes a long-run relation between variables, but short-
run deviations from the equilibrium path are of interest as well. The error cor-
rection model (ECM) provides a way to take account of I(0) terms, such as 
differenced and lagged differenced variables, as well as terms that reflect the coin-
tegrating relations. These error correction terms may have an important impact, 
and testing for an ECM specification is useful for econometric analysis and fore-
casting.

A considerably more general approach to cointegration testing was developed 
by Johansen (1988) and (1991). It is based on the estimation of a vector autore-
gression (VAR), by Gaussian maximum likelihood. The method allows for sev-
eral possibly cointegrated variables, not just two. Denote this number by m. The 
cointegrating rank, r, is then the number of linearly independent linear combina-
tions of the m variables that are I(0); clearly 0 � r �m. The case with r = 0 implies 
no cointegration at all, while r = m means that all the variables are in fact I(0). 
Between these limiting cases, a set of null hypotheses about the value of r can 
be formulated. As r decreases towards zero, each hypothesis is successively less 
restricted than its predecessor, and so may serve as the alternative hypothesis for 
its predecessor. Alternatively, a hypothesis about r, r >  0, can be tested against 
the alternative that r = 0.

Consider the following VAR in differences of a set of time series

1Y=1Y1�1 +· · ·+1Yp−1�p−1 −Yp�+U. (23)

Here the subscripts 1,…, p denote lags. The lag truncation parameter p is chosen,
as for an ADF test, so as to make the residuals look like white noise. If r = 0,
the matrix � of coefficients of the lagged variables in levels may have rank m;
if there is no cointegration, � must be zero. If the rank of � is r, then r is the
cointegrating rank.

It turns out that maximizing the log likelihood under the different constraints
imposed by fixing r can be performed by solving an eigenvalue-eigenvector prob-
lem for an m×m positive definite matrix A, of which we denote the eigenvalues,
in increasing order, by ¸i , i = 1,…, m. Given a true value of r, the r smallest
eigenvalues should not be significantly different from 0, and the corresponding
eigenvectors span the r-dimensional space of cointegrating vectors, that is, linear
combinations that are I(0).
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Test statistics are conveniently computed as likelihood ratio statistics. To test
the null that r = r1, 0� r1 < m, against the alternative that r = r2, r1 < r2 �m, the
LR test statistic is:

LR =−n
r2∑

i=r1+1
log ¸i .

Johansen’s methodology is commonly used in practice, but, as with unit root
testing, the literature on cointegration is vast.

6. Non parametric approaches in specification testing

It appears that Bierens (1982a) was the first econometrician to make a strong
argument for non parametric model specification in econometrics, and for de-
veloping tests that, by not restricting the model to be parametric, would thus be
consistent. Another paper by Bierens (1982b) is entitled “Tests of model specifica-
tion in the absence of alternative hypotheses,” presumably to indicate a departure
from the approach of Davidson and MacKinnon (1981), the title of whose paper
mentions “…model specification in the presence of alternative hypotheses.”

Of course, earlier it was known that some classical non parametric distribution-
free tests, such as the sign and rank tests are highly effective when applicable;
unfortunately, fairly stringent restrictions such as exchangeability make this type
of test unavailable in various settings. A modern exploration of these classical tests
in time series models can be found in Dufour and Hallin (1987) and Campbell
and Dufour (1995).

There is a vast statistical literature that predates the adoption of the non-
parametric approaches in econometrics; it starts with the use of the empirical dis-
tribution function in the 1930s for Kolmogorov and Smirnov tests—Kolmogorov
(1933) and Smirnov (1948). The introduction of kernel and similar estimators for
density functions, by Parzen (1962) and Rosenblatt (1956), and for the conditional
mean functions, by Nadaraya (1964) and Watson (1964), provided the basis for
testing based on these types of estimators.

Ullah (1985) introduced consistent kernel-based tests of conditional mean
specification; the statistic compared the sums of squared residuals from the para-
metric model and from the model with the conditional mean estimated by a
nonparametric kernel estimator. The asymptotic distribution of the test statistic
was established in the general case by Fan and Li (2002).

The first kernel-based statistic for specification testing in econometric time-
series models was probably by Robinson (1989), who established many of the
fundamental asymptotic results for kernel estimators. He points out that non
parametric methods can achieve efficiency gains relative to an incorrect paramet-
ric specification, but also notes that, if the parametric model is correct, it is always
possible to do better with it relative to the non parametric approach. In view of
the fact that non parametric approaches rely on the selection of bandwidth and

21



lag length the question is raised as to whether a comparable representation could 
be achieved by enriching the specification of a parametric model. The so-called 
semi-non parametric approach pursues this path—see for instance Gallant and 
Nychka (1987).

Of the non parametric and semi-non parametric approaches, the former is 
based on evaluating functionals without explicitly considering the nonpara-
metric function; the latter uses point-wise evaluation of the function. Both were 
explored in the context of testing parametric forms of conditional distributions. 
Andrews (1997) developed a conditional Kolmogorov test that did not require 
any local non parametric modelling. In local approaches to testing the paramet-
ric conditional distribution in the binary index model, Stute and Zhu (2005), 
construct kernel-based statistics, while Tuvaandorj and Zinde-Walsh (2014) pro-
posed statistics that use generalized functions. Rothe and Wied (2013) provide an 
adaptive test and an extensive comparison of statistics. Recent advances on test-
ing the parametric form of the conditional quantile function are in Escanciano 
and Goh (2014).

A non parametric approach that is only starting to make inroads into in econo-
metric practice is based on wavelets, in particular, on wavelet shrinkage. Green-
blatt (1996) outlines this approach. There have been a few applications: Ramsay 
and Lampart (1998), who study the relationship between the money supply and 
output; Davidson, Labys, and Lesourd (1998), who examine the evolution over 
time of commodity prices, and Stengos and Sun (2001), who develop a wavelet-
based specification test for regression functions.

After the initial theoretical advances of the 1980s and the rapidly following 
developments in the 1990s, non parametric specifications and the corresponding 
tests made their way into applied work, although it took some time to con-
vince applied researchers that parametric specifications should not be taken for 
granted. Nowadays it is common practice to plot the distributions or densities 
of data, or residuals, often with multidimensional graphics, in order to judge 
the suitability of a particular parametric approach. However, numerous exam-
ples make it clear that such tools may still fail unless the model is correctly 
specified.

A very striking example is provided in Horowitz and Härdle (1996), where 
the model for technology adoption in German manufacturing was estimated 
by probit and produced results fairly plausible at first glance. However, the 
non parametric specification revealed that the true probability distribution was 
bimodal. Consequently, little value could be attached to parametric characteris-
tics of the technology choice.

Tests for the conditional mean
The problem most often tackled in the specification testing literature is to test a 
parametric specification of the regression function in a general model:

Y =g(X )+U , (24)
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where the random variables Y and X are jointly distributed, and the null hy-
pothesis is g(x)=°(x, θ ) for some known function ° and parameter vector θ for
almost all x. The alternative is that there exists no θ such that g(x) =°(x, θ ) for
almost all x in the support of X .

The test statistic first introduced by Bierens (1982a) in the IID case, and later
extended to stationary time series, uses least-squares residuals ûj and weights
w(X , ¿), for instance Fourier transform weights w(X , ¿)= exp(i¿X ) (i2 =−1), or
some transformed version. The integrated conditional moment (ICM) statistic is:

T̂ n =
∫ ∣∣∣∣∣ 1√

n

n∑
j=1

ûjw
(
X , ¿

)∣∣∣∣∣
2

d¿.

Distributional results in Bierens and Ploberger (1997) establish power against
sequences of n−1=2 drifting alternatives. The limit distribution is a mixture of
independent Â2

1, and so simulations are required to control the test size. These
types of statistics, in the terminology of Fan and Li (2000), are of Bierens type.
The book by Bierens (2017) provides an overview; it includes applications to
specification tests in mixed proportional hazard, competing risk models, and
models of auctions.

Kernel-based tests were proposed by Härdle and Mammen (1993) and Hong
and White (1995); a particularly popular test statistic was introduced in Li and
Wang (1998) and Zheng (1996); it is further developed for a novel application to
propensity score testing in Shaikh et al. (2009). The test statistic is:

I a
n = 1

n
(
n−1

) n∑
i=1

n∑
j �=i=1

ûi ûjK
(

Xi −Xj

h

)
, (25)

with the ûj residuals from the parametric model, h a bandwidth, and K a kernel
function. The local tests have power against alternatives only at a nonparametric
rate, like

(
1=(nhd )

)1=2 for instance. The asymptotic distribution is Gaussian; this
follows as a result of the slower convergence rate, since then the estimation error in
the parameter is negligible asymptotically, and the estimated parametric function
is treated as the true parametric function. The derivation of the limit distribution
relies on the asymptotics for degenerate U statistics—see Hall (1984).

Fan and Li (2000) show that if the bandwidth h is fixed, the kernel-based
statistic can be interpreted as being of the Bierens type, with the corresponding
asymptotic power properties. In a finite sample, of necessity the bandwidth is
finite. The properties of the test can then be interpreted according to the behaviour
of the bandwidth as the sample size goes to infinity. Fan and Li demonstrate
that, despite the asymptotic superiority of the

√
n Bierens-type tests, the kernel-

based tests may enjoy better power when the alternative exhibits spikes; the power
comparisons will depend on whether we are more concerned with low or high
frequency functional alternatives.

There are several issues that affect adoption of test statistics based on kernel
and other local estimators. Some of the problems can be solved by improving the
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choices made by the econometrician: the particular form of the statistic, choices 
of bandwidth (number of terms in the series, wavelet scale) and the kernel or 
basis functions (see Ellison and Ellison 2000, Stengos and Sun 2001, Escanciano 
and Goh 2014, and discussions of differing bandwidths and kernels for discrete 
covariates in Li and Racine 2007). Adaptive choices are explored to optimize 
the rate for the testing problem starting with Horowitz and Spokoiny (2001). 
Typically the bootstrap is employed in the testing; Lee and Ullah (2001) and Li 
and Wang (1998) focus on the performance of the bootstrap.

The kernel-based statistics recently were extended to non-stationary regressors. 
Several papers developed the distribution of statistics similar to (25) to test the null 
hypothesis of a parametric conditional regression function, when the regressor 
could be non-stationary. In Wang and Phillips (2012), the statistic is given by:

Sn =
n∑

t=1

n∑
s �=t=1

ût+1ûs+1K
(

Xt −Xs

h

)
,

where the ût are the residuals of the parametric model and K is a kernel function
with bandwidth h.

Gao et al. (2009) looked at testing in a model with martingale difference dis-
turbances and random walk regressors, while Wang and Phillips (2012) consider
a general setting. In particular, they do not require independence of X and the
model disturbances ut. Under the null, the convergence of the standardized statis-
tic to standard normal is established; the non-stationarity requires developing
novel approaches to the limit theory for the U-statistic, in particular reflecting
the self-intersecting properties of the non-stationary X , in order to be able to
capture the distribution of K

(
(Xt − Xs)=h

)
in the sample. The rate for the lo-

cal alternatives in the non-stationary case is not independent of the form of the
alternative and Chen et al (2015) make a study of the importance of the local
deviations from the null.

Empirical likelihood
Maximum likelihood provides a very powerful framework for estimation and
testing, but it is resolutely parametric. Owen (1988) proposed a non parametric
likelihood approach, which he called empirical likelihood. The method is used
both for estimation and inference; the construction of confidence sets as well as
of hypothesis tests.

Empirical likelihood shares a number of optimality properties with paramet-
ric likelihood. In particular, likelihood ratio tests can be carried out in the usual
way, by use of a statistic that is equal to twice the difference between the empirical
log likelihood maximized unconstrained (under the alternative) and maximized
under the constraints of the null hypothesis. Under the null, the asymptotic dis-
tribution of the empirical likelihood ratio (ELR) test is chi-squared with degrees
of freedom equal to the number of constraints.
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For an IID sample of size n, each observation additively contributes to the
empirical log likelihood (EL) the log of a parameter associated with the observa-
tion, and interpreted as a probability. This is analogous to what happens with a
parametric model with a discrete dependent variable. The problem of maximizing
the EL is thus as follows:

max
pi ,i=1,…,n

n∑
i=1

log pi subject to
n∑

i=1
pi =1.

It is easy to see that the solution to this problem is pi =1=n for all i. The maximized
value is then −n log n. The maximizing probabilities are the weights given to the
observations in the empirical distribution function (EDF) of the sample.

To test the hypothesis that the expectation of the underlying distribution is
equal to a given value ¹, the restricted EL requires solving the problem:

max
pi

n∑
i=1

log pi subject to
n∑

i=1
pi =1 and

n∑
i=1

pi(yi −¹)=0, (26)

where the yi are the observations in the sample. The discrete distribution char-
acterised by assigning the maximizing pi for problem (26) to yi does indeed have
expectation ¹ by virtue of the two constraints. The Lagrangian for (26) is:

n∑
i=1

log pi −¸
( n∑

i=1
pi −1

)−°
( n∑

i=1
pi(yi −¹)

)
,

where ¸ and ° are Lagrange multipliers. The first-order conditions for the maxi-
mization are:

pi = 1
¸+°(yi −¹)

,
n∑

i=1
pi =1,

n∑
i=1

pi(yi −¹)=0.

It is not always possible to find a set of probabilities pi that satisfy these conditions
and also the requirement that 0�pi �1—for that, it is necessary that the origin
lies in the convex hull of the yi − ¹. But, if we assume that a feasible solution
exists, then the probabilities are pi =1=

(
n(1+ °̂(yi −¹)

)
where °̂ =°=n. There is

no analytic solution for ° of the first-order conditions, but the solution is easy
to find numerically by a one-dimensional root-finding algorithm, after which the
constrained maximum of the EL can be found.

Owen was primarily interested in constructing confidence intervals for para-
meters, see Owen (1990). This can be done by (numerically) solving for the values
of ¹ for which the ELR statistic is equal to a critical value given, for an asymptotic
confidence interval, by the appropriate quantile of the Â2

1 distribution.
Empirical likelihood emerged as a serious competitor for GMM, both for

estimation and inference, with the work of Qin and Lawless (1994). Suppose
that we have an IID sample, {yi}, i = 1,…, n, and that we wish to estimate a
parameter k-vector θ , having at our disposal l unbiased estimating functions,
l �k, as elements of the l-vector m(y, θ ), such that, for a DGP with true parameter
vector θ , E

(
m(Y , θ )

)=0, where Y denotes a random variable of which the yi are
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realizations. The Lagrangian for the empirical likelihood problem with this set-up 
is:

n∑
i=1

log pi −¸
( n∑

i=1
pi −1

)−nγ � n∑
i=1

pim(yi , θ ).

For a given θ , the probabilities that satisfy the corresponding first-order condi-
tions are:

pi(θ )= 1
n
(
1+γ �(θ )m(yi , θ )

) ,

where γ (θ ) is the vector of Lagrange multipliers that satisfy the first-order con-
ditions. The ELR statistic against an unconstrained alternative is then

ELR(θ )=
n∑

i=1
log

(
1+γ �(θ )m(yi , θ )

)
. (27)

In the just identified case, with l = k, it is readily seen that the estimator θ̂ that
minimises (27) is the solution of the estimating equations

∑n
i=1 m(yi , θ )=0.

The main result of Qin and Lawless is that, for l > k, n1=2(θ̂ − θ ) is asymptot-
ically distributed as N(0,V), where V is an easily estimated sandwich covariance
matrix, n1=2γ (θ̂ ) is asymptotically N(0, U), with U also readily estimated, and
the EDF defined by the estimated probabilities pi(θ̂ ) is consistent under the null.
In order to test a hypothesis like θ = θ0, the ELR statistic is shown by Qin and
Lawless to be 2

(
ELR(θ̂ )−ELR(θ0)

)
, with the function ELR of (27).

The approach of Qin and Lawless was extended to cover conditional moment
conditions, like those used for GMM estimation, by Kitamura et al. (2003) and
Donald et al. (2003). The behaviour of EL, some variants of generalized empirical
likelihood (GEL), along with various versions of GMM, was studied by Newey
and Smith (2004) by means of stochastic expansions. There at least two major
advantages to the EL approach: bias due to a high degree of over-identification is
considerably less than with any version of GMM, and there is no need to estimate
a covariance matrix, as that estimation is done implicitly in the computation of
the ELR statistic.

7. Weak instruments

A call to order not too dissimilar to the one by Sims (1980) was made by Staiger
and Stock (1997). They found a number of papers that in 1997 were recent and that
used IV estimation (two-stage least squares or 2SLS) for estimation and testing,
but where the instruments used were “weak,” in the sense that they were poorly
correlated with the endogenous regressors in the equation being estimated. They
re-analyzed the data used in a paper by Angrist and Krueger (1991) on the returns
to education. Angrist and Krueger had used quarter of birth and its interaction
with covariates as instruments for education in an earnings equation. Staiger
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and Stock found that the F statistic for the first-stage regression in the two-stage
procedure was less than 5 and concluded that this was enough to invalidate the
usual asymptotic inference. They develop a different asymptotic construction,
which holds the first-stage F constant as the sample size tends to infinity, and find
that this alternative asymptotic approach agrees much better with finite-sample
simulation results.

In Stock et al. (2002), the ideas of Staiger and Stock were extended to GMM
estimation, and the adjective “weak” applied to the identification afforded by the
instruments, rather than to the instruments themselves. A considerable literature
followed, in which a rather simple model was treated. It can be written as:

y1 =¯y2 +Zγ +u1 and (28)

y2 =Wπ +u2. (29)

Here y1 and y2 are n–vectors of observations on endogenous variables, Z is an
n × k matrix of observations on exogenous variables and W is an n × l matrix
of instruments such that S(Z)⊂S(W), where the notation S(A) means the linear
span of the columns of the matrix A. The disturbances are assumed to be serially
uncorrelated and, for many of the analytical results, normally distributed. We
assume that l>k, so that the model is either exactly identified or, more commonly,
overidentified. It is desired to perform reliable inference about ¯, the coefficient
of the endogenous regressor in (28).

An LM test was independently proposed by Kleibergen (2002) and Moreira in
a 2001 working paper, and Moreira (2003) also proposed a conditional likelihood
ratio (CLR) test. It was immediately apparent that these tests gave vastly more
reliable inference than the conventional t test, which of course is a Wald test. More
theoretical work followed, with optimality results in Andrews et al., (2006) and
Hillier (2009a), who gave a complete elucidation of the finite-sample properties
of the Kleibergen–Moreira LM test and the CLR test, including their power
functions, under the assumption of Gaussian disturbances. The CDF of the CLR
test when there are more than one endogenous regressor was obtained in Hillier
(2009b).

Exceedingly useful for the analysis of the system (28) and (29) is a fact that the
2SLS and LIML estimators of ¯ are deterministic functions of just six quadratic
forms—see Mariano and Sawa (1972). They are:

y�
1 P1y1, y�

1 P1y2, y�
2 P1y2, y�

1 MWy1, y�
1 MWy2 and y�

2 MWy2.

Here P1 = PW − PZ, where PW and PZ are the orthogonal projections on to
the spans of the columns of W and Z, respectively and MW = I − PW. Under the
assumption of Gaussian disturbances, Davidson and MacKinnon (2008) showed
that these six quantities can be expressed as deterministic functions of eight mu-
tually independent random variables, four of them standard normal and four Â2,
and the model parameters. As will be seen later, this considerably alleviates the
computational burden of bootstrapping the tests.
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Identification
It was with the turn of the century that econometricians returned their attention 
to structural models, after two decades of focus on specification testing. The 
link with economic theory was again emphasized, but combined with a need for 
statistical adequacy, as Sims’s (1980) admonitions were not forgotten. This in 
turn led to a concern for identification, already evoked by the weak identification 
problem with IV estimation. Some models were found to be unidentified, others 
partially identified, others set-identified, and so on.

A fundamental concept turns out to be non parametric identification, for which 
the best reference is the Handbook chapter by Rosa Matzkin (2007), one of 
the pioneers in this field. Non parametric identification within a class of non 
parametric functions or distributions implies identification of any parametric 
subset of this class, but the reverse is not necessarily true.

The sort of issue to be addressed in discussing non parametric identification 
is illustrated by the model of the previous subsection, (28) and (29). If the matrix
W is not observed, then a sample of just y1 and y2 is enough to identify the joint 
distribution of these two variables. But this is not enough to identify ¯, unless y2 
is not correlated with u1.

Thus even in parametric models, full parameter identification may rely on as-
sumptions that are overly strong and may be especially inappropriate when deal-
ing with missing data or interval data, as well as structural models defined by some 
equilibrium conditions (Manski 2003). A more general specification may permit 
identifying only subsets of parameters, or some combinations of parameters, or 
domains in the space where the parameters may reside (for instance, Manski and 
Tamer 2002). Inference for such specifications can be based on testing moment 
conditions (including inequalities) for the identified set of parameters, possibly 
against a non parametric alternative—see Andrews and Barwick (2012), Bugni 
et al. (2015), among others.

8. The bootstrap

The bootstrap was introduced into the statistical literature by the seminal paper of 
Efron (1979). What Efron proposed would in modern terminology be called the 
resampling bootstrap. A good number of different, simulation-based procedures 
subsequently arose that were either called bootstrap procedures, or recognized as 
similar to the bootstrap. Of these, the parametric bootstrap is the most important 
that does not involve resampling.

It took some years for econometricians to become aware of the bootstrap. At 
the World Congress of the Econometric Society in Tokyo in 1995, Joel Horowitz 
gave an invited talk on the bootstrap in econometrics. The main part of the 
content of his talk can be found in Horowitz (2000). A point he made strongly 
was that, although the bootstrap could be an incredibly powerful tool for reliable 
inference, it was all too easy to use it wrongly and get completely misleading 
“results.”
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Later, econometricians followed the lead of statisticians in making extensive
use of the bootstrap, and misuse became less frequent. The traditional problems
of regression models, heteroskedasticity and serial correlation, were made acces-
sible to bootstrapping. The pairs bootstrap—Freedman (1981)—was designed to
be robust to heteroskedasticity, but the strangely named wild bootstrap—see Wu
(1986), Liu (1988), Mammen (1993) and Davidson and Flachaire (2008)—is also
robust to heteroskedasticity and is now preferred. Serial correlation was and is
a harder nut to crack. The first attempts were various forms of the block boot-
strap—see Künsch (1989), Politis and Romano (1994) and Gonçalves and Kilian
(2004). Another approach is the sieve bootstrap, which is a semi-non parametric
method—see Bühlmann (1997, 2002), Choi and Hall (2000) and Park (2002). An
important step was taken by Park (2003) in showing how to use the bootstrap for
more reliable unit root tests.

Weak instruments also posed a challenge to the bootstrap. Davidson and
MacKinnon (2008, 2010) studied a number of plausible procedures and found
one that not only works well but also is easy to compute, as explained earlier.

The bootstrap is a very general statistical technique. The properties of an
unknown DGP that one wants to study are estimated as the corresponding prop-
erties of the bootstrap DGP, which is an estimate of the unknown DGP. Thus
the bootstrap can be the basis for estimating the bias, the variance, the quantiles,
and so on, of an estimator, test statistic or any other random quantity of interest.
Although the bootstrap is most often implemented by simulation, conceptually
simulation is not an essential element of the bootstrap.

The various sorts of bootstrap in use differ among themselves on account of
the way in which the unknown DGP is estimated, which in turn depends on the
model that represents the null hypothesis. For instance, the DGPs of a model to
which classical maximum likelihood is applied are completely characterized by
their parameter values. It is therefore appropriate to use as a bootstrap DGP an
element of the model, whose parameters are the ML estimates—this is an instance
of a parametric bootstrap. Clearly the optimality properties of ML imply the
optimality of this bootstrap DGP. On the other hand, the much less restrictive
assumptions that econometricians prefer to use nowadays mean that a purely
parametric bootstrap DGP is not suitable, and is certainly not optimal.

The golden rules of bootstrapping
The most straightforward form of bootstrap inference proceeds by the compu-
tation of a bootstrap P value for the null hypothesis under test. Bootstrap confi-
dence sets are not difficult to construct but may impose a heavier computational
burden than a P value. Once the statistic used to test the null has been computed
and the appropriate sort of bootstrap DGP has been determined, and if, as is
almost universally the case, simulation is used to implement the bootstrap prin-
ciple, the procedure for computing the bootstrap P value follows the following
pattern.
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(i) Compute the test statistic from the original sample; call its realized value ¿̂.
(ii) Determine the realizations of all other data-dependent things needed to set

up the bootstrap DGP.
(iii) Generate B bootstrap samples, and for each one, compute a realization of

the bootstrap statistic, ¿*
j , j =1,…B.

(iv) Compute the simulated bootstrap P value as the proportion of bootstrap
statistics ¿Å

j that are more extreme than ¿̂.

The bootstrap test rejects the null hypothesis at significance level ® if the P
value is less than ®.

In Davidson (2007) and (2016), it is proposed that the choice of bootstrap
DGP should be governed by the golden rules of bootstrapping, as follows:

Golden rule 1:
The bootstrap DGP must belong to the model that represents the null hypothesis.

Golden rule 2:
Unless the test statistic is pivotal for the null model, the bootstrap DGP should be
as good an estimate of the true DGP as possible, under the assumption that the true
DGP belongs to the null model.

The point of the first rule is that the property of the unknown DGP that
we wish to estimate is the distribution of the test statistic under the null. The
second rule seems quite innocuous, but many bootstrap DGPs that satisfy the
first rule violate the second, for example by using parameters estimated under
the alternative. In many cases, as with weak instruments, the reliability of the
bootstrap is very sensitive to whether or not the second rule is obeyed.

A statistic is said to be pivotal with respect to a model if its distribution is the
same for all the DGPs in the model. Beran (1988) showed that, in the general case
in which the chosen statistic is not pivotal, the bootstrap performs an operation
of pre-pivoting, whereby the bootstrap P value is closer to being pivotal than the
original non-pivotal statistic. Hall’s 1992 book discusses the asymptotic bootstrap
refinements that arise if a statistic is asymptotically pivotal.

It make intuitive sense, therefore, to consider bootstrap iteration. Beran intro-
duced the double bootstrap, in which the bootstrap P value is itself bootstrapped.
The double bootstrap is much more computationally intensive than the single
bootstrap, and further iterations increase the burden exponentially. However,
bootstrap iteration is feasible in some cases, and it is an open question in what
circumstances the iterative scheme converges and, if so, to what sort of limiting
distribution.

9. Concluding remarks

Appropriate model specification, and the corresponding interpretation of the
results in empirical work, is of paramount importance. The trade-offs between
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parsimony and complexity of econometric specifications, in terms of the ability to
obtain meaningful results, now comes into sharper focus with the availability of
larger data sets and computing capacity. Model specification that makes full use of
these developments and attempts to reduce the number of arbitrary assumptions
now often gives more tenuous results than the more parsimonious specifications
of simpler models. Specification tests provide the necessary guidance about the
reliability of the models used; this paper outlines some widely used methods of
specification testing.
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