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CONVERGENCE IN A SEQUENTIAL TWO STAGE

DECISION MAKING PROCESS

J. E. MARTÍNEZ-LEGAZ∗ AND A. SOUBEYRAN

(Communicated by Dinh The Luc)

Abstract. We analyze a sequential decision making process, in which at

each step the decision is made in two stages. In the first stage a partially

optimal action is chosen, which allows the decision maker to learn how
to improve it under the new environment. We show how inertia (cost of

changing) may lead the process to converge to a routine where no further

changes are made. We illustrate our scheme with some economic models.
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1. Introduction

There are many sequential decision making processes in which, at each step,
the decision is made in two stages. In the first stage, the decision maker
chooses a partially optimal solution, after the implementation of which she
learns about the new environment and uses this learning to improve the current
solution. After presenting our mathematical model in the next section, we will
give several examples in which this situation occurs and fits our model very
well. Here, we focus on the interlinked dynamic effects arising in this type of
processes, an essential ingredient in our model being the inertia effects (costs
to change). We present simple conditions under which the process converges,
leading to a routine action choice in the limit. We also discuss some real world
situations to which our model applies.

The rest of the paper is organized as follows. Section 2 presents the model
and illustrates it by means of some examples. Section 3 presents a conver-
gence theorem. In Section 4, we summarize our conclusions. Our convergence
theorem relies upon a new Caristi type lemma.
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2. The model

We consider a decision maker who wants to maximize a utility function U :
X −→ R over a decision space X. We assume that X ⊆ X1×X2, with the sets
X1 and X2 consisting of partial decisions belonging to two different categories.
Each decision x = (x1,x2) has two components; the first one, x1 ∈ X1, can be
implemented at no cost, whereas to implement the second component, x2 ∈
X2, one incurs a cost which depends on the amount of change imposed on
this variable relative to the preceding decision. We assume that, for every
given x1 ∈ X1, the problem of maximizing U(x1,x2) over the set F (x1) :=
{x2 ∈ X2 : (x1,x2) ∈ X} is (relatively) easy to solve. Thus, what makes the
decision problem difficult is the choice of x1 ∈ X1, and we assume that there
is a nonnegative cost C(x1, x

′
1) of changing from a given x1 ∈ X to a new

x′1 ∈ X. We assume that the costs are measured in the same units as the utility
function.

Notice that the decision maker may be an individual or some relatively
complex organization. In the latter case, the tasks of choosing x1 ∈ X1 and
x2 ∈ X2 may be made by different parts within the organization.

We consider the following sequential decision making process. Given an ini-
tial x1 ∈ X1, the decision maker makes an optimal (relative to x1) decision by
maximizing U (x1, x2) over F (x1) . Let x2 ∈ X2 be an optimal solution to this
maximization problem. The decision maker will search for the optimal x1 ∈ X1

relative to x2 taking into account the costs to change, that is, she will maxi-
mize U(x′1, x2)− C(x1, x

′
1) over the set F−1 (x2) := {x′1 ∈ X1 : (x′1, x2) ∈ X} .

She will then change x1 accordingly, after which she will proceed to the next
iteration, choosing an optimal x2 ∈ X2 relative to the new x1, etc..

We devote the rest of this section to describe a few real world situations
which fit into our model.

Consider first a consumer who first chooses a store x1 from a set X1 of
available stores and then a commodity (say, a computer) x2 from a set X2 of
commodities of the same type offered by the chosen store. The initial store
may be the one closest to her home, and she will choose the optimal computer
available at the store. After having decided which computer she wants to buy,
she will search for the same computer in other stores, in order to find the store
that offers the best conditions (cheaper price, better technical service, etc.).
The choice of a new store involves costs of change, including, for instance, the
ones incurred by traveling from the current store to the new one. Once an
optimal store is chosen, the consumer will search for the optimal computer
offered by the store; then she will search for the optimal store where this new
computer is available, and so on.

As another example, consider an individual who has a job. Given this job
and its associated income, the individual chooses an optimal standard of living.
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Once this choice is made, she searches for the most convenient job that is com-
patible with her chosen way of life (a job closer to her home, a less demanding
job, etc.). Changing the job entails some costs, like, for instance, adaptation
costs. After changing her job, the individual aims at improving her standard
of living relative to the new job, etc..

Another illustration comes from production theory. Let X1 be a collec-
tion of technologies or production sets. We define the set X2 as the union
of all technologies, so that an element x2 ∈ X2 is a feasible production plan
(u, v) ∈ x1, for some x1 ∈ X1. The decision space is X := {(x1, (u, v)) ∈
X1 × X2 : (u, v) ∈ x1}. Given a technology x1 ∈ X1, the producer chooses a
production plan (u, v) ∈ x1 so as to maximize its net profit over x1. After this
choice is made, she aims at improving the technology while keeping the chosen
production plan feasible. Choosing a new technology is an innovation choice
involving some costs of change. But this innovation allows for new production
plans, so the producer then chooses the optimal production plan compatible
with the new technology. This procedure can repeat indefinitely.

In our last example, the decision maker is a pair consisting of an organization
and a set of individuals. The organization and the individuals share a common
goal, specified by a utility function. The organization sets an environment x1

(e.g., a rule), under which the individuals choose an optimal profile of actions
x2. After observing the chosen profile of actions, the organization improves
the environment subject to the constraint that the chosen profile of actions
be still feasible, taking into account the costs it will incur by changing the
environment. Once a new environment is established, the individuals adapt to
the new situation by choosing an optimal profile of actions compatible with the
new environment. We thus have an iterative process fitting our scheme.

3. Convergence of the iterative process

Let as assume that the set X1 has a metric space structure (X1, d), the set
X2 is a compact topological space, the decision space X is a subset of X1×X2,
the cost to change function C : X1 × X1 −→ R+ is continuous and satisfies
C(x1, x1) = 0, for all x1 ∈ X1, and the utility function U : X −→ R is continous
and bounded from above.

The following technical assumptions will also be needed.
(1) There exists a subadditive, non decreasing, continuous function φ :

R+ −→ R+ satisfying φ(0) = 0, φ(t) > 0, for t > 0, and φ[d(x1, x
′
1)] ≤

C(x1, x
′
1), for all x1, x

′
1 ∈ X1. Note that φ ◦ d is a metric inducing a topology

equivalent to that induced by d.
(2) The correspondencesX1 3 x1 ⇒ F (x1) ⊆ X2 andX2 3 x2 ⇒ F−1 (x2) ⊆

X1 defined by F (x1) := {x2 ∈ X2 : (x1, x2) ∈ X} and F−1(x2) := {x1 ∈ X1 :
(x1, x2) ∈ X}, respectively, are compact-valued and continuous. Note that this
continuity assumption holds, for instance, if x1 ∈ X1 and x2 ∈ X2 are inde-
pendent decisions, that is, if every two such partial decisions are compatible.
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Indeed, this amounts to saying that X = X1×X2, so that F (x1) = X2, for all
x1 ∈ X1 and F−1 (x2) = X1, for all x2 ∈ X2.

(3) For every x1 ∈ X1, the function U(x1, ·) has a unique maximizer Rx1 :=
arg maxx2∈F (x1) U(x1, x2). This hypothesis holds, for example, if X2 is a convex
subset of a topological vector space, for every x1 ∈ X1 the set F (x1) is convex,
and U is strictly quasiconcave in its second argument. By Berge’s maximum
theorem [1], the mapping R : X1 −→ X2 is continuous.

Define G : X1 −→ R by

(3.1) G(x1) := max
x′1∈F−1(Rx1)

{U (x′1, Rx1)− C(x1, x
′
1)} .

This function assigns to each partial decision x1 ∈ X1 the maximum payoff the
decision maker can get by changing it while keeping x2 = Rx1 unchanged, net
of the cost to change.

(4) For every x1 ∈ X1, the maximization problem in (3.1) has a unique
solution Tx1 ∈ X1. This hypothesis holds, for instance, if X1 is a normed vector
space, for every x2 ∈ X2 the set F−1 (x2) is convex, U is strictly quasiconcave
in its first argument, and C is strictly convex in its second argument. By
Berge’s maximum theorem, T : X −→ X is continuous.

The following lemma is similar to the Caristi fixed point theorem [2], but our
assumptions are different: Instead of imposing a semicontinuity assumption on
the function G, we just assume it to be bounded from above, but unlike the
case of Caristi theorem we require the mapping T to be continuous.

Lemma 1. Let (Y, d) be a complete metric space and G : Y −→ R be a
bounded from above function. If T : Y −→ Y is a continuous mapping such
that d(y, Ty) ≤ G(Ty) − G(y), for each y ∈ Y, then, for any y0 ∈ Y , the
sequence {Tny0} converges to a fixed point y of T.

Proof. Since G(Tn+1y) ≥ G(Tny) + d(Tny, Tn+1y) ≥ G(Tny), the sequence
{G(Tny)} is nondecreasing. As it is bounded from above, it is also convergent.
For any m, p ∈ N, one has

d(Tmy, Tm+py) ≤ Σp−1
i=0 d(Tm+iy, Tm+i+1y)

≤ Σp−1
i=0

[
G(Tm+i+1y)−G(Tm+iy)

]
= G(Tm+py)−G(Tmy).

This proves that {Tny} is a Cauchy sequence. By the completeness of Y, this
sequence converges to some point y ∈ Y, which, as T is continuous, is a fixed
point of T. �

Theorem 2. For every x0
1 ∈ X1, the sequence

{(
Tnx0

1, RT
nx0

1

)}
converges to

(x1, Rx1), for some fixed point x1 ∈ X1 of T.

Proof. Since U is bounded from above and C is nonnegative, G is bounded
from above, too. For each x1 ∈ X1, using that Tx1 ∈ F−1 (Rx1) and RTx1 ∈
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F (Tx1) , that is, Rx1 ∈ F (Tx1) and Tx1 ∈ F−1 (RTx1) , respectively, and
that C (Tx1, Tx1) = 0, one sees that

φ (d(x1, Tx1)) ≤ C(x1, Tx1) + max
x2∈F (Tx1)

U(Tx1, x2)− U(Tx1, Rx1)

= U(Tx1, RTx1)−G(x1)

≤ max
x′1∈F−1(RTx1)

{
U(x′1, RTx1)− C(Tx1, x

′
1)
}
−G(x1)

= G(Tx1)−G(x1).

Hence, by Lemma 1 applied to the metric space (X1, φ ◦ d), the sequence{
Tnx0

1

}
converges to some fixed point x1 ∈ X1 of T. Since R is continu-

ous, it follows that the sequence
{
RTnx0

1

}
converges to Rx1. Consequently,{(

Tnx0
1, RT

nx0
1

)}
converges to (x1, Rx1) . �

4. Conclusion

We examined a sequential two stages decision making process where the de-
cision maker first makes a costly partial decision and then completes it in a
costless optimal way. Our model took into account inertia, that is, costs to
change, and was shown to converge to a stable decision under suitable assump-
tions. The main result essentially showed that high costs to change or, more
specifically, costs which increase with the distance between partial decisions
were enough to have convergence.
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Mathématiques, 3, Dunod, Paris, 1959.
[2] J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans.

Amer. Math. Soc. 215 (1976) 241–251.

(Juan Enrique Mart́ınez-Legaz) Departament d’Economia i d’Història Econòmica,
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