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Variational Analysis in Cone Pseudo-Quasimetric
Spaces and Applications to Group Dynamics

Truong Q. Bao1 · Antoine Soubeyran2

Abstract In this paper, we generalize Ekeland’s variational principle in the new con-
text of cone pseudo-quasimetric spaces. We propose this extension for applications 
to group dynamics in behavioral sciences. In this setting, a cone pseudo-quasimetric 
helps to model, in a crude way, multidimensional aspects of resistance to change for 
a group, where each component represents resistance to change of one agent in the 
group. At the behavioral level, our new version of Ekeland’s variational principle 
shows how a group, forming and breaking routines each period by balancing between 
motivations and resistances to change of all members, can improve step by step their 
payoffs to end in a trap worthwhile to approach and reach, but not worthwhile to leave.

Keywords Multiobjective optimization · Variational principles · Variational 
rationality · Pseudo-quasimetric · Cone pseudo-quasimetric · Group dynamics

1 Introduction

The motivation of this paper is to provide a connection between Ekeland’s variational 
principle (EVP) [1] and the existence of traps problem for group dynamics [2,3] in
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behavioral sciences via a recent variational rationality (VR) approach of stay and 
change dynamics [4–6].

The pionner of group dynamic, action research and change processes is the famous 
psychologist Lewin [2,3] who states that human behavior is a function of one person 
in his group environment and that “a group is composed of more than the sum of 
its individual members.” He focuses attention on the way groups and individuals act 
and react to changing circumstances. His main message is the following. First, his 
famous balancing principle between driving and resisting forces views the dynamic 
of a group as a succession of quasiequilibria (statu quo), where driving forces are 
almost equal to resisting forces. A force can be people, resources, attitudes, traditions, 
regulations, values, needs, desires, etc. Second, Lewin advocates that the evolution of 
a group is driven by an “approach-avoidance dynamic” because there will always be 
driving forces that make change attractive to some people of the group and restrain-
ing forces that work to keep things as they are for other (or the same) members of 
the group. Then, a quasiequilibrium can change whenever driving forces are stronger 
than restraining forces. This view gives an informal but powerful model to explain 
how people and groups move through change and why they resist change. For change 
to happen the status quo, or equilibrium must be upset by, either strengthening the 
driving forces favorable to change or weakening the restraining forces. The balancing 
principle had a profound influence in the fields of social science, psychology, social 
psychology, organizational development, process management and change manage-
ment. In this context, Lewin [2,3] emphasizes the major role of resistance to change 
using, for a typical unit change, a three stage model of change. The first stage, named 
“unfreezing,” involves overcoming inertia, dismantling the existing “mind set,” and 
bypassing defense mechanisms. In this initial stage, agents have to unfreeze the driving 
and restraining forces that hold the initial situation in a state of quasiequilibrium. The 
second stage is called “change.” This is a transition stage of confusion where “the 
old ways are being challenged but we do not have a clear picture as to what we are 
replacing them with yet” [2]. To be able to change requires to create an imbalance 
between forces, i.e., to increase the drivers and to reduce the restraints. The third and 
final stage is “freezing.” The new mindset is crystallizing, and one’s comfort level 
is returning to previous levels. It is important to emphasize that to our knowledge 
the long-term Lewin’s theory of group approach-avoidance dynamic has never been 
formalized. His initial formulation mostly uses specific examples, metaphors and no 
precise formalization.

The VR approach [4–6] generalizes this point of view in many different directions, 
providing an explicit and general model for approach-avoidance dynamics. For exam-
ple driving and resisting forces refer to personal motivations and resistances to change 
for all agents of the group, which appear in the left-hand side and right-hand side of 
a worthwhile to change condition. See [7] for a well-known and short-term (but not 
long-term) very different formalization of approach-avoidance dynamics.

This paper, focusing explicitly the mathematical analysis on vectorial (and not 
scalar) worthwhile to change conditions, allows to give a crude but general model of 
approach-avoidance group dynamic and to give precise conditions under which the 
group will stop to change, reaching a variational trap, which generalizes the concept 
of quasiequilibrium. To achieve this aim, we develop a new version of Ekeland’s



variational principle in the setting of cone pseudo-quasimetric spaces since a cone
pseudo-quasimetric can be used to measure resistance to change of a group, which
is not necessarily the same for a change from x to y and the reverse change from y
to x and could be zero for a real change. A challenging topological property of these
spaces is that a Cauchy sequence has either no limit or more than one limit.

It is important to emphasize that a majority of generalizations of EVP have been
established in a less general context of conemetric spaces, where the symmetric axiom
is preserved and no more real justification is presented (see, among others, [8–12]),
and that the case of cone metric spaces does not offer a true generalization of metric
spaceswhen the cone enjoys some good properties [13–18]. The newversion of EVP in
cone pseudo-quasimetric established in Theorem 3.1 and its Corollary 3.1 is far-going
extensions of EVP presented in [12,13] in cone metric spaces. As a consequence, the
fixed-point results equivalent to Theorem 3.1 general than the corresponding results
in [11,13,16] in cone quasimetrics and metrics. Theorem 3.1 can be viewed as an
extension of versions ofEVP in [19–21] fromafixeddirectional pertured termq(x, y)ξ
to a full variable one qΘ(x, y). Furthermore, the scalar version of Theorem 3.1 refines
the original EVP by relaxing the lower semicontinuity assumption.

The rest of the paper is organized as follow. Section 2 presents basic definitions
and preliminary results in pseudo-quasimetric spaces and cone pseudo-quasimetric
spaces. In Sect. 3, we establish enhanced versions of EVP in cone pseudo-quasimetric
spaces which may fail to be complete and whose limit might not be unique. The final
Sect. 4 gives an application to group dynamics.

2 Basic Definitions and Preliminaries

2.1 Pseudo-Quasimetric Spaces

We use the definitions of pseudo-quasimetric spaces and the corresponding notions in
these spaces such as closedness, compactness and completeness in the recent publica-
tions [22,23], where the reader can find more details, discussions and references; cf.
[24–27].

Definition 2.1 (Pseudo-quasimetric spaces)

(i) A bifunction q : X × X → R on a nonempty set X is called a pseudo-
quasimetric, if for all x, y, z ∈ X the following hold: (Q1) q(x, x) ≥ 0
(nonnegativity); (Q2) x = y �⇒ q(x, y) = 0 (equality implies indistancy);
and (Q3) q(x, z) ≤ q(x, y) + q(y, z) (triangle inequality). The pair (X, q) is
called a pseudo- quasimetric space.

(ii) A pseudo-quasimetric q is called a quasimetric, if it satisfies the identity of
indiscernible axiom: (Q2′) x = y ⇐⇒ q(x, y) = 0.

(iii) A quasimetric q is called a metric, if it satisfies the symmetry axiom: (Q4)
q(x, y) = q(y, x).

It is known that every pseudo-quasimetric space (X, q) can be considered as a
topological space in which a ball of radius r > 0 centered at x is defined by
Bq(x, r) := {u ∈ X : q(x, u) < r}, and the conjugate q of a pseudo-quasimetric



q defined by q(x, y) = q(y, x) for all x, y ∈ X is also a pseudo-quasimetric. Kelly
[25] called the triple (X, q, q) a bitopological space. In this paper and others, we try
to present definitions and results in terms of q only since q(x, y) and q(y, x) refer to
inconveniences to change from x to y and from y to x in behavioral applications.

Due to the lack of the symmetry axiom in pseudo-quasimetric spaces, each concept
in metric spaces has several variants, only which needed in this paper are presented.

Definition 2.2 (Basic forward-concepts in pseudo-quasimetric spaces, [22,23]) Let
{xn} be a sequence in a pseudo-quasimetric (X, q). We say that:

(i) the sequence {xn} is forward- convergent to x∗, if lim
n→∞ q(xn, x∗) = 0;

(ii) the sequence {xn} is forward- Cauchy, if

∀ε > 0, ∃Nε ∈ N : q(xn, xn+k) < ε, ∀n ≥ Nε, k ∈ N;

(iii) the space is forward- - forward- complete, if every forward-Cauchy
sequence is forward-convergent to some forward limit.

The reader is referred to [22,23] for backward- and biconcepts. Note that biconcepts
seem to be too restrictive in pseudo-quasimetric spaces. Indeed, it was proved by
Wilson in [24, Theorems I and II] that if {xn} is both forward- and backward-convergent
to x∗ in a quasimetric space (X, q), then x∗ is the only limit point of {xn} of any kind,
and thus, {xn} is bi-Cauchy. Many examples in [26] showed that the forward and
backward notions are distinct in (asymmetric) pseudo-quasimetrics.

2.2 Cone Pseudo-Quasimetric Spaces

Let Z be a topological vector space and Θ be an ordering cone of Z . Assume through
out the paper that Θ is a proper (Θ �= 0 and Θ �= Z ), solid (intΘ �= ∅), closed
(Θ = clΘ) and convex cone (Θ + Θ = Θ). We do not require that the cone Θ is
either pointed (Θ ∩ (−Θ) = {0}) or normal ((B+Θ)∩ (B−Θ) ⊂ MB, where B is a
unit ball and M is a positive number). The Pareto order ≤Θ and its weak version <Θ

are defined by x ≤Θ y iff x ∈ y − Θ and x <Θ y iff x ∈ y − int Θ , respectively.
When Θ is not pointed, ≤Θ does not enjoy the antisymmetry axiom of a partial order
since there exists θ such that 0 ≤Θ θ and θ ≤Θ 0.

Definition 2.3 (Cone pseudo-quasimetrics) Let X be a nonempty set, Z be topological
vector space and Θ be an ordering cone of Z . Then:

(i) A vectorial function qΘ : X × X → Z is called a cone pseudo- quasimetric,
if for any x, y, z ∈ X the following conditions hold: (Q1) 0 ≤Θ qΘ(x, y);
(Q2) qΘ(x, x) = 0; and (Q3) qΘ(x, y) ≤Θ qΘ(x, z) + qΘ(z, y). The quadruple
(X, Z ,Θ, qΘ) is called a cone pseudo- quasimetric space.

(ii) If a cone pseudo-quasimetric qΘ satisfies the coincidence axiom (Q2′) x = y if
and only if qΘ(x, y) = 0, then it is called a cone quasimetric.

(iii) If a cone quasimetric qΘ enjoys the symmetry axiom (Q4) qΘ(x, y) = qΘ(y, x),
then it is called a cone metric.



Note that a cone pseudo-quasimetric space (X, R, R+, q) is nothing but a (scalar)
pseudo-quasimetric space (X, q) defined in Definition 2.1.

Example 2.1 (Some cone pseudo-quasimetrics) The reader is referred to [18, pp.853-
854] and [16] for examples on cone metric spaces and cone quasimetric spaces,
respectively.

(i) Let X = R
2, Z = R

2, Θ = R
2+, where R

2+ = {(θ1, θ2) ∈ R
2 : θ1 ≥ 0, θ2 ≥ 0}.

Define qΘ : X×X → Θ by qΘ(x, y) = (max{y1−x1, 0},max{y2−x2, 0})with
x = (x1, x2) and y = (y1, y2). Obviously, (R2, R

2, R
2+, qΘ) is a cone pseudo-

quasimetric space, but not a cone quasimetric since qΘ((1,−1), (0,−1)) =
(0, 0).

(ii) Let X = R, Z = R
2 and Θ = R

2+. Define qΘ : X × X → Θ by qΘ(x, y) =
(|x − y|,max{y − x, 0}). Then, (R, R

2, R
2+, qΘ) is a cone quasimetric space.

(iii) Let X = R, Z = R
2, Θ = R

2+. Define qΘ : X × X → Θ by qΘ(x, y) =
(|x − y|, λ|x − y|) with λ ≥ 0. Then, (R, R

2, R
2+, qΘ) is a cone metric space.

Recently, many authors have generalized notions in metric spaces to a “more gen-
eral” cone metric setting such that principal results that are well known in metric
spaces still hold. We adopt them to cone pseudo-quasimetric spaces.

Definition 2.4 ([16, Definition 8], cf. [17,18]) Let (X, Z ,Θ, qΘ) be a cone pseudo-
quasimetric space and {xn} be a sequence in X . Then:

(i) the sequence {xn} is forward- convergent to x∗, if

∀c <Θ 0, ∃Nc ∈ N : qΘ(xn, x∗) <Θ c, ∀n ≥ Nc;

(ii) the sequence {xn} is forward- Cauchy, if

∀c <Θ 0, ∃Nc ∈ N : qΘ(xn, xn+k) <Θ c, ∀n ≥ Nc, k ∈ N;

(iii) a sequence is bi- Cauchy (or Cauchy), if

∀c <Θ 0, ∃Nc ∈ N : qΘ(xn, xm) <Θ c, ∀n,m ≥ Nc;

(iv) the space (X, Z ,Θ, qΘ) is forward- - forward- complete, if every forward-
Cauchy sequence is forward-convergent to some forward limit in X .

In [16], Shaddad and Noorani used the adjective “left” instead of “forward.”
In [17], Jankovich et al. presented a brief reviews on cone metric spaces. It is

important to emphasize that they used the completeness concept of cone metric spaces
in the sense that every bi-Cauchy sequence is forward-convergent to some forward
limit.

It is known from [17,18] that the topological cone metric space (X, Z ,Θ, dΘ) is
equivalent to some topological metric space (X, d) provided that Z is a Banach space



and Θ is a proper, solid, pointed, closed and convex cone. Let us list several known
forms for d:

d1(x, y) = inf{‖u‖ : u ∈ Θ and dΘ(x, y) <Θ u},
d2(x, y) = se,Θ ◦ dΘ(x, y) with sΘ,e(z) := inf{t ∈ R| z ∈ te − Θ},
d3(x, y) = ‖dΘ(x, y)‖ provided that Θ is a normal cone.

In this paper, we strive to establish a new and efficient vector version of EVP in cone
pseudo-quasimetric spaces by constructing a forward-convergent forward-Cauchy
sequence whose forward limit is a desired point of EVP. Among the aforementioned
equivalent metrics, d2(x, y) = se,Θ ◦ dΘ(x, y) seems to be the best fit to our goal
because of Propositions 1–4 given just later.

Let us recall several important properties of the nonlinear scalarization function
sΘ,e introduced by Tammer and Weidner [29].

Let A be a nonempty subset of Z and e �= 0 be an element of Z . The function
sA,e : Z → R ∪ {±∞} defined by

sA,e(z) := inf{t ∈ R | z ∈ te − A} (1)

is called a nonlinear (separating) scalarization function (with respect to the
set A and the direction e).

Lemma 2.1 ([30, Theorem 2.3.1]) Let Z be a real topological linear space, Θ be a
solid, closed, convex cone in Z and e ∈ intΘ . Then, the following hold:

(a) sΘ,e(z + te) = sΘ,e(z) + t , ∀ z ∈ Z and ∀ t ∈ R.
(b) sΘ,e(z) ≤ r if and only if z ∈ re − Θ .
(c) sΘ,e(z) < r if and only if z ∈ re − int Θ .
(d) sΘ,e is positive homogeneous and continuous on Z.
(e) sΘ,e is subadditive, i.e., sΘ,e(z1 + z2) ≤ sΘ,e(z1) + sΘ,e(z2) for all z1, z2 ∈ Z.
(f) sΘ,e is strictly Θ-monotone, i.e.,

[
a ≤Θ b ∧ a �= b �⇒ sΘ,e(a) < sΘ,e(b)

]
.

Below are some known results in cone metric spaces which are still valid in cone
pseudo-quasimetric spaces.

Proposition 2.1 (The equivalence of scalar and cone pseudo-quasimetrics)

(i) Let (X, Z ,Θ, qΘ) be a cone pseudo-quasimetric space, and let s := sΘ,e be
defined in (1). Then, the scalarized function q = s ◦ qΘ : X × X → R+ is a
pseudo-quasimetric in X.

(ii) Let (X, q) be a pseudo-quasimetric space, let Z be a real topological space, letΘ
be a solid, convex, pointed cone of Z, and let e ∈ int Θ be a positive direction of
Z. Then, the bifunction qΘ : X × X → Z, whose value qΘ(x, y) is an arbitrary
point in the set

(
q(x, y)e − bd Θ

)
, is a cone pseudo-quasimetric; in particular

we can have, qΘ(x, y) = q(x, y)e for all x, y ∈ X.

Proof The proof of (i) is simple and omitted. To prove (ii), we check the validness of 
conditions (Q1)–(Q3) in Definition 2.1. (Q1) and (Q2) are obvious from the definition



of qΘ and the pointedness of Θ . To verify (Q3) fix arbitrary x, y, z ∈ Z . By the
definition of qΘ , there exist θ1, θ2, θ3 ∈ Θ such that qΘ(x, y) = q(x, y)e − θ1,
qΘ(y, z) = q(y, z)e − θ2 and qΘ(x, z) = q(x, z)e − θ3. Taking into account the
triangle inequality of the pseudo-quasimetric q (q(x, z) ≤ q(x, y) + q(y, z)) and the
convexity of the cone Θ (Θ + Θ = Θ), we have

q(x, z)e − θ3 ∈ q(x, y)e − θ1 + q(y, z)e − θ2 − Θ

clearly verifying that qΘ(x, z) ≤Θ qΘ(x, y)+qΘ(y, z) and the validity of the triangle
inequality of the cone pseudo-quasimetric. ��
Proposition 2.2 (Equivalence between forward-convergence concepts) Let (X, Z ,

Θ, qΘ) be a cone pseudo-quasimetric space and q = s ◦ qΘ : X × X → R be
a scalarized pseudo-quasimetric of qΘ . Then, a sequence {xn} is forward-convergent
to x∗ in (X, Z ,Θ, qΘ) if and only if it is forward-convergent to x∗ in (X, q).

Proof Assume that {xn} is forward-convergent to x∗ in (X, Z ,Θ, qΘ). By definition,
for each c >Θ 0, there exists Nc ∈ N such that qΘ(xn, x∗) <Θ c for all n ≥ Nc.
Then, for every ε > 0, there exists Nε = Nεe such that for every n ≥ Nε one has

qΘ(xn, x∗) <Θ εe Lem. 2.1�⇒ q(xn, x∗) = s(qΘ(xn, x∗)) < s(εe) = ε. This means
that {xn} is forward-convergent to x∗ in (X, q).

Assume now that {xn} is forward-convergent to x∗ in (X, q). By definition, for
every ε > 0, there exists Nε ∈ N such that q(xn, x∗) < ε for all n ≥ Nε. Taking into
account the properties of s, we get from the last inequality that

qΘ(xm, xm+n) ∈ εe − int Θ.

For each c >Θ 0 ⇐⇒ 0 ∈ c− int Θ , since the latter set is open, we could find some
ε > 0 such that εe ∈ c − int Θ . By chosing Nc = Nε, one has

qΘ(xm, xm+n) ∈ εe − int Θ ⊂ c − int Θ,

i.e., qΘ(xm, xm+n) <Θ c for all n ≥ Nc clearly justifying that {xn} is forward-
convergent to x∗ in (X, Z ,Θ, qΘ). The proof is complete. ��
Proposition 2.3 (Equivalence between forward-Cauchy sequences) Let (X, Z ,

Θ, qΘ) be a cone pseudo-quasimetric space and q = s ◦ qΘ : X × X → R be
the scalarized pseudo-quasimetric of qΘ . Then, a sequence {xn} is forward-Cauchy
in (X, Z ,Θ, qΘ) if and only if it is forward-Cauchy in (X, q).

Proof Proceed as in Proposition 2.2. ��
Proposition 2.4 (Equivalence between completeness concepts) A cone pseudo-
quasimetric space (X, Z ,Θ, qΘ) is forward–forward-complete if and only if its
scalarized pseudo-quasimetric space (X, q) is forward–forward-complete, where
q = s ◦ qΘ is the scalarized pseudo-quasimetric of qΘ .

Proof It is immediate from Propositions 2.2 and 2.3. ��



3 Ekeland’s Variational Principle in Cone Pseudo-Quasimetrics

This section is devoted to a newversion ofEVP in cone pseudo-quasimetric spaces.Our
approach needs not only a scalarization function to convert a vector-valued function
into an extended real-valued function but also some variational techniques used in
[19–21]. First, let us briefly explain why the scalarization function itself is not enough
in our setting.

Let us consider a given f : X → Z and a cone pseudo-quasimetric qΘ : X × X →
Z . Assume that the scalarized cost function ϕ := sΘ,e ◦ f and the scalarized pseudo-
quasimetric q := sΘ,e ◦qΘ satisfy all hypothesis of the original EVP. Then, it ensures
the existence of x∗ for each x0 ∈ X such that

(i) (sΘ,e ◦ f )(x∗) + λ(sΘ,e ◦ qΘ)(x0, x∗) ≤ (sΘ,e ◦ f )(x0);

(ii) (sΘ,e ◦ f )(x) + λ(sΘ,e ◦ qΘ)(x∗, x) > (sΘ,e ◦ f )(x∗), ∀ x �= x∗.

When qΘ(x, y) = q(x, y)e for some scalar pseudo-quasimetric q(x, y), we have

(sΘ,e ◦ f )(x∗) + λ(sΘ,e ◦ qΘ)(x0, x∗) = sΘ,e
(
f (x∗) + λqΘ(x0, x∗)

)

and (sΘ,e ◦ f )(x) + λ(sΘ,e ◦ qΘ)(x∗, x) = sΘ,e
(
f (x) + λqΘ(x∗, x)

)
.

These nice properties do not hold for general cone pseudo-quasimetrics, and thus, it
is impossible to formulate (i) and (ii) in terms of f and qΘ only.

To formulate and justify our version of EVP, we use the so-called dynamic system
of f and qΘ with respect to λ > 0 denoted by S : X →→ X and defined by

S f,λ(x) := {u ∈ X : f (u) + λqΘ(x, u) ≤Θ f (x)}, ∀ x ∈ X. (2)

Definition 3.1 (Generalized-Picard sequences) We say that a sequence {xn} in X is
a generalized- Picard sequence of S f,λ, if xn+1 ∈ S f,λ(xn) for all n ∈ N. It
is called strictly-Θ-decreasing forward- Cauchy generalized- Picard, if
{xn} is forward-Cauchy and generalized-Picard and { f (xn)} is strictly Θ-decreasing,
i.e., f (xn+1) <Θ f (xn) for all n ∈ N.

Theorem 3.1 (A cone pseudo-quasimetric version of EVP) Let (X, Z, Θ , qΘ) be
a cone pseudo-quasimetric space, where Θ is a closed, solid, convex cone in the
topological vector space Z. Let s := sΘ,e be the nonlinear scalarization function of
the ordering cone Θ along the positive direction e ∈ int Θ defined in (1), and let
q := s ◦ qΘ be the scalarized pseudo-quasimetric. For f : X → Z and λ > 0, let
S f,λ : X →→ X be the set-valued mapping defined in (2). For a given point x0 ∈ X,
assume that the following condition holds:

(H1) (Boundedness) f is bounded from below over the set S f,λ(x0); i.e., there is some
element z ∈ Z such that z ≤Θ f (x) for all x ∈ S f,λ(x0);

(H2) (Nonempty intersection) for any strictly Θ-decreasing forward-Cauchy
generalized-Picard sequence {xn}∞n=0 of S f,λ, there exists y ∈ X such that
S f,λ(y) ⊂ S f,λ(xn) for all n ∈ N;



(H3) (Scalarized convergence) for any Θ-decreasing generalized-Picard sequence
{xn}∞n=0 of S f,λ, if the series

∑∞
n=1 qΘ(xn, xn+1) is convergent in Z; i.e., there

is z ∈ Z such that
∑∞

n=1 qΘ(xn, xn+1) ≤Θ z; then, the scalarized distances
q(xn, xn+1) tend to zero as n → ∞.

Then, there is a Θ-decreasing forward-Cauchy generalized-Picard sequence {xn}
starting from x0 and converging to a forward limit x∗ such that

(i) f (x∗) + λqΘ(x0, x∗) ≤Θ f (x0) and
(ii) f (x) + λqΘ(x∗, x) �Θ f (x∗), ∀ x ∈ X\{x∗},
where {x∗} = {u ∈ X | q(x∗, u) = 0} = {u ∈ X | qΘ(x∗, u) = 0}.

Furthermore, (ii) becomes (ii′) f (x)+λqΘ(x∗, x) �Θ f (x∗), ∀x �= x∗ provided

(H4) (Limit uniqueness) for any strictly Θ-decreasing forward-Cauchy generalized-
Picard sequence {xn}∞n=0 of S f,λ, it has at most one forward limit.

Proof Starting from the given element x0 ∈ X , we construct a forward-Cauchy
generalized-Picard sequence of S f,λ which converges to some forward limit x∗ and its
limit satisfies both (i) and (ii).

Given xn . Since xn ∈ S f,λ(xn), S f,λ(xn) �= ∅. If supx∈S f,λ(xn) q(xn, x) = 0, then
xn+1 = xn ; otherwise, xn+1 ∈ S f,λ(xn) such that

q(xn, xn+1) ≥ sup
x∈S f,λ(xn)

q(xn, x) − 2−n, ∀n ∈ N0 := N ∪ {0}. (3)

Consider two cases:
Case 1. The sequence {xn} is eventually constant; i.e., there is n∗ ∈ N such that xn = x∗
for all n ≥ n∗. In this case, x∗ ∈ S f,λ(x0), sup

x∈S f,λ(x∗)
q(x∗, x) = 0 and S f,λ(x∗) ⊂ {x∗}.

Obviously, (i) and (ii) are satisfied by x∗.
Case 2. All the (scalarized) forward distances of the sequence xn are nonzero, i.e.,
q(xn, xn+1) > 0 for all n ∈ N0. By Lemma 2.1(c), qΘ(xn, xn+1) ∈ intΘ . This
together with xn+1 ∈ S f,λ(xn) yields f (xn+1) <Θ f (xn). Thus, {xn} is a strictly
Θ-decreasing generalized-Picard sequence of S f,λ. It enjoys the following properties:

(a) S f,λ(xn+1) ⊂ S f,λ(xn) for all n ∈ N0. It is straightforward from the definition of
S f,λ and the triangle inequality of q .

(b) lim
n→∞ q(xn, xn+1) = 0 and lim

n→∞ sup
x∈S f,λ(xn)

q(xn, x) = 0.

For any n ∈ N0, xn+1 ∈ S f,λ(xn) yields f (xn+1) + λqΘ(xn, xn+1) ≤Θ f (xn).
Summing up these inequalities from n = 0 to m − 1 gives

λ

m−1∑

n=0

qΘ(xn, xn+1) ≤Θ f (x0) − f (xm) ≤Θ f (x0) − z, (4)

where the last estimate holds due to the boundedness condition (H1). Passing to limit

as m → ∞ ensures the boundedness from above of the series
∑∞

n=0
qΘ(xn, xn+1).



By the convergence condition (H3), the series
∑∞

n=0
q(xn, xn+1) is convergent and

thus limn→∞ q(xn, xn+1) = 0 due to the divergence theorem. Then, we get from the
inequality in (3) that

0 ≤ lim
n→∞ sup

x∈S f,λ(xn)
q(xn, x) ≤ lim

n→∞
(
q(xn, xn+1) + 2−n) = 0.

(c) {xn} is a forward-Cauchy sequence in (X, q). The convergence of the series∑∞
n=0

q(xn, xn+1) says that for every ε > 0, there is Nε ∈ N such that for
all m ≥ Nε and for all k ∈ N we have

q(xm, xm+k) ≤
m+k−1∑

n=m

q(xn, xn+1) ≤
∞∑

n=m

q(xn, xn+1) < ε,

clearly verifying that {xn} is a forward-Cauchy sequence in (X, q).
(d) {xn} has a forward limit which satisfies (i) and (ii).

Employing the nonempty intersection condition (H2) to the chosen strictly Θ-
decreasing forward-Cauchy generalized-Picard sequence {xn}, we obtain the existence
of x∗ ∈ X such that

x∗ ∈ S f,λ(x∗) ⊂ S f,λ(xn), ∀n ∈ N0. (5)

Obviously, (i) holds by taking n = 0 in (5). To justify the validity of (ii), it is sufficient
to check S f,λ(x∗) ⊂ {x∗}. Indeed, for any y∗ ∈ S f,λ(x∗), we get from (5), (a) and (b)
that

0 ≤ q(x∗, y∗) ≤ sup
y∈S f,λ(xn)

q(xn, y) ↓ 0 as n → ∞.

Therefore, q(x∗, y∗) = 0 and y∗ ∈ {x∗}. Since y∗ was arbitrary in S f,λ(x∗), we have
S f,λ(x∗) ⊂ {x∗}.
Since (H4) implies {xn} = {x∗}, (ii) reduces to (ii′). The proof is complete. ��
Proposition 3.1 (Sufficient conditions for (H3))The fulfillment of one of the following
conditions

(H3′) 0 /∈ cl conv(Θ\[0, e)), where [0, e) := (0 + Θ) ∩ (e − int Θ);
(H3′′) ∃z∗ ∈ Z∗, ∃γ > 0 : z∗(z) ≥ γ, ∀ z ∈ Θ\[0, e)
implies the validity of the convergence condition (H3) in Theorem 3.1.

Proof Since (H3′) �⇒ (H3′′) thanks to classical separation theorems, it remains to
justify (H3′′) �⇒ (H3).

Arguing by contradiction, assume that (H3′′) holds, but (H3) does not. Then, there
are z ∈ Z such that

∑∞
n=1

qΘ(xn, xn+1) ≤Θ z, but the quasidistances q(xn, xn+1)



does not converge to zero; i.e., there are a positive number ε and an integer number
Nε such that q(xn, xn+1) = s(qΘ(xn, xn+1)) > ε, ∀ n ≥ Nε.

By Lemma 2.1, for any n ≥ Nε we have

qΘ(xn, xn+1) /∈ εe − int Θ �⇒ 1

ε
qΘ(xn, xn+1) ∈ Θ\[0, e).

This together with the imposed condition (H3′′) implies

1

ε
z∗

⎛

⎝
m∑

n=Nε

qΘ(xn, xn+1)

⎞

⎠ =
m∑

n=Nε

z∗
(
1

ε
qΘ(xn, xn+1)

)
≥ (m − Nδ)γ

for all m ≥ Nε. Passing to limit as m → ∞, we arrive at

z∗
( ∞∑

n=0

qΘ(xn, xn+1)

)

≥ z∗
⎛

⎝
∞∑

n=Nε

qΘ(xn, xn+1)

⎞

⎠ = ∞

contradicting the boundedness of the series z∗(
∑∞

n=1 qΘ(xn, xn+1)) ≤ z∗(z) < ∞.
This contradiction proves the validity of (H3). The proof is complete. ��

Next, we provide an example illustrating that the condition (H3) is satisfied by
closed, solid and convex cones being not pointed (and thus not normal).

Example 3.1 Let Z = R
2 and Θ = R+ × R. The cone Θ is not pointed since

Θ ∩ (−Θ) = {0} × R. By chosing e = (1, 0) ∈ intΘ , we have

(0, 0) /∈ cl conv(Θ\[0, e)) = [1,+∞) × (−∞,+∞)

and thus the validity of (H3′).
Take z∗ = (1, 0). For any z = (z1, z2) ∈ cl conv(Θ\[0, e)) = [1,+∞)×(−∞,+∞),
z1 ≥ 1, z2 ∈ R and z∗(z) = z1 ≥ 1 justifying the validity of (H3′′).

The next proposition provides a cone pseudo-quasimetrics which unconditionally
satisfy the convergence condition (H3).

Proposition 3.2 Let q be a pseudo-quasimetric on a nonempty set X, and Θ be a
convex ordering cone (which is not necessarily solid) of a topological vector space Z.
Then, the cone pseudo-quasimetric defined by qΘ(x, y) := q(x, y)e for some element
e ∈ Θ satisfies the scalarized convergence condition (H3).

Proof It is immediate from the structure of the metric. ��
Next, we provide a sufficient condition for (H2) in terms of lower semicontinuity.

Definition 3.2 (Strictly Θ-decreasing forward-lower semicontinuity) Let (X, Z ,
Θ, qΘ) be a cone pseudo-quasimetric space. The function f : X → Z is said to



be strictly Θ-decreasing forward- lower semicontinuous on X if, for any
sequence {xn} in X such that it is forward-convergent to x∗ and its image sequence
{ f (xn)} is strictly Θ-decreasing, the validity of f (xn) ≤Θ c for some c ∈ Z and for
all n ∈ N implies f (x∗) ≤Θ c.

Proposition 3.3 (A sufficient condition for (H2))Let (X, Z ,Θ, qΘ)be a cone pseudo-
quasimetric space and q = s◦qΘ be the scalarized pseudo-quasimetric of qΘ . Assume
that (X, q) is forward–forward-complete and that the vectorial function f : X → Z
is strictly Θ-decreasing forward-lower-semicontinuous on S f,λ(x0), where S f,λ is
defined by (2). Then, the condition (H2) in Theorem 3.1 holds.

Proof Fix an arbitrary strictly Θ-decreasing forward-Cauchy generalized-Picard
sequence {xn}∞n=0 of S f,λ. Since the space (X, q) is complete by Proposition 2.4,
there exists x∗ ∈ X such that q(xn, x∗) → 0 as n → ∞. Since {xn} is a generalized-
Picard sequence of S f,λ, we have xn+1 ∈ S(xn) for all n ∈ N0. By the definition of
S f,λ, we have

f (xn+1) + λqΘ(xn, xn+1) ≤Θ f (xn), ∀n ∈ N0.

Summing up these inequalities and using the triangle inequality of qΘ , we have

f (xm+k+l) + λqΘ(xm, xm+k) ≤Θ f (xm+k+l) + λ

m+k+l−1∑

n=m

qΘ(xn, xn+1) ≤Θ f (xm)

for all m, k, l ∈ N, which leads to

f (xm+k+l ) ≤Θ f (xm ) − λqΘ (xm , xm+k ), ∀l ∈ N.

By the assumed strict-Θ-decreasing forward-lower semicontinuity of f , we have

f (x∗) ≤Θ f (xm ) − λqΘ (xm , xm+k ).

By the triangle inequality of qΘ , we get from the last inequality that

f (x∗) + λ
(
qΘ (xm , x∗) − q(xm+k , x∗)

) ≤Θ f (x∗) + λqΘ (xm , xm+k ) ≤Θ f (xm ). 

Since k was arbitrary and Θ is a closed set, passing to limit we get

f (x∗) + λqΘ (xm , x∗) ≤Θ f (x∗),

i.e., x∗ ∈ S f,λ(xm ). Since m was arbitrary, (H2) holds. The proof is complete. �� 

It is easy for us to formulate a simple vectorial version of EVP in cone 

pseudo-quasimetric spaces (X, Z ,Θ, qΘ ) which reduces to the original one when 
(X, Z ,Θ, qΘ ) = (X, R, R+, | · |).



Corollary 3.1 (An enhanced version of EVP for cone pseudo-quasimetrics) Let
(X, Z ,Θ, qΘ), f , Θ , e, s = sΘ,e, q = s ◦ qΘ and S f,λ as in Theorem 3.1. Given
x0 ∈ X and λ > 0. Assume that the following conditions hold:

(H1) f is Θ-bounded from below over S f,λ(x0);
(H2′) (X, Z ,Θ, qΘ) is forward–forward-complete and f is strictly Θ-decreasing

forward-lower-semicontinuous on S f,λ(x0);
(H3′) 0 /∈ cl conv

(
Θ\[0, e)) with [0, e) = (0 + Θ) ∩ (e − intΘ).

Then, there is x∗ ∈ X such that

(i) f (x∗) + λqΘ(x0, x∗) ≤Θ f (x0) and
(ii) f (x) + λqΘ(x∗, x) �Θ f (x∗), ∀ x /∈ {x∗},
where {x∗} = {u ∈ X : q(x∗, u) = 0}.
Proof It is immediate from Theorem 3.1, and Propositions 3.1 and 3.3. ��
Corollary 3.2 (A forward version of EVP) Let (X, q) be a pseudo-quasimetric space
and let ϕ : X → R ∪ {+∞} be a proper extended real-valued function. Assume that
the space (X, q) is strictly ϕ-decreasing forward-complete, the function ϕ is proper,
bounded from below, and strictly decreasing forward-lower-semicontinuous. Given
x0 ∈ dom ϕ and λ > 0, consider a set-valued mapping Sϕ,λ : X →→ X defined by (2)
with f = ϕ and ≤Θ=≤. Then, there is x∗ ∈ X such that

(i) ϕ(x∗) + λq(x0, x∗) ≤ ϕ(x0);
(ii) ϕ(x) + λq(x∗, x) > ϕ(x∗), ∀ x ∈ X\{x∗},
where {y∗} = {u ∈ X : q(y∗, u) = 0}.
Proof It is straightforward from Corollary 3.1 in the space (X, R, R+, q), Θ = R+,
e = 1, and se,Θ(t) = t for all t ∈ R. ��

Let us conclude this section and the paper with some comparisons and remarks.

Remark 3.1 (a) To the best of our knowledge, Theorem 3.1 and Corollary 3.1 are new
in two regards: (1) the results are established for cone pseudo-quasimetric spaces in
which a forward-convergent sequencemayhave twodistinct forward limits; (2) the cost
vector-valued function enjoys the strictlyΘ-decreasing forward-lower semicontinuity
property which is less restrictive than all the existing kinds of lower semicontinuity.
Corollary 3.2 is not as strong as [23,Corollary 3.14] and [28, Theorem2(3)]. Theywere
characterizations for the completeness of pseudo-quasimetric spaces and quasimetric
spaces, respectively.

(b) Although cost functions and cone pseudo-quasimetrics are single-valued, the
obtained results can be extended to set-valued mappings and set-valued cone pseudo-
quasimetrics, respectively. Recall from [21, Definition 5.1] that a mapping D : X ×
X →→ Z is said to be a set-valued Θ-quasimetric, if

(D1) D(x1, x2) ⊂ Θ for all x1, x2 ∈ X ;
(D2) 0 ∈ D(x, x) for all x ∈ X ;
(D3) D(x1, x2) + D(x2, x3) ⊂ D(x1, x3) + Θ for all x1, x2, x3 ∈ X .



(c) The convergence condition (H3) has its root in [31], where one of the first vec-
torial versions of EVP was established in terms of vector-valued distances. Precisely,
consider an ordered space (Z ,�) and a distance d : X × X → Z . The space X is
called to be d-complete if

m∑

n=1

q(xn, qn+1) � z for some z ∈ Z , for all m ∈ N

implies that the sequence {xn} converges to some x∗ ∈ X .
In this direction,Nemeth further developed them in [32] for distancesdΘ : G×G →

Θ from an ordered topological Abelian groupG with closed positive quasiwegdeΘ in
G. A similar condition of (H3)-type is that there exists a neighborhood U of the zero
element such that any sequence {xn} with the property dΘ(xn, xn+1) ∈ Θ\U implies
that the set

{
m∑

n=1

dΘ(xn, xn+1), n ∈ N

}

cannot be Θ-bounded from above.
(d) In contrast to our approach, the authors in [21,33–35] worked with two given

spaces: a pseudo-quasimetric (X, q)with q : X×X → R+ and a cone quasimetric D :
X×X → Θ defined in (a), whereΘ is an ordering cone of some normed space Z , and
imposed the so-called convergence comparison condition; see [21, Theorem 5.2 (F3)]:
for any Θ-decreasing sequence {xn}, the upper bound of the series

∞∑

n=1

D(xn, xn+1) ⊂ M − Θ,

with some bounded set M in Z ensures that q(xn, xn+1) → 0 as n → ∞. Obviously, 
if q happens to be the scalarized pseudo-quasimetric of D, then this condition is 
identical to the condition (H3). It is proved in [21, Theorem 5.3] that the convergence 
comparison condition is satisfied provided that there exist z∗ ∈ Θ+ and η : R+ → R+ 
such that

inf 
{
z∗(z) : z ∈ ∪q(x1,x2)≥δ D(x1, x2)

} 
≥ η(δ) > 0 for all δ > 0.

It seems to be more complicated than the sufficient conditions presented in Proposi-
tion 3.1.

4 An Application to Group Dynamics

4.1 A Worthwhile Stay or Change Group Dynamic

Let us define the simplest (not hierarchical) worthwhile stay or change group dynamic, 
using the VR concepts and modelization, see [6] for a general formulation. Consider 
a group of agents j ∈ J ⊂ N and its dynamic. In the last and current periods n,



n + 1, each agent j carries out a last action x j
n and a current action x j

n+1. Then, in

the current period n + 1, given their past experiences e = en = (e jn) j∈J , agents

moves from the profile of last actions x = xn = (x j
n ) j∈J to carry out the current

profile of actions y = xn+1 = (x j
n+1) j∈J . The current move x � y is a change

(resp. stay), if y �= x (resp. y = x). The current motivation to change of agent j is
M j

e (x, y) = U j
e
(
A j
e (x, y)

)
, where U j

e
(
A j
e
)
is the utility of his advantages to change

A j
e = A j

e (x, y). His current resistance to change is R j
e (x, y) = D j

e
(
I je (x, y)

)
, where

D j
e
(
I je

)
is the disutility of his inconveniences to change I j = I j (x, y). In the current

period, each agent j will find that such an organizational change is worthwhile if his
current motivation to change is not lower than his current resistance to change, i.e.,
M j

e (x, y) ≥ λ j R j
e (x, y) for all j ∈ J , where the higher is the current individual

worthwhile to change ratio λ j = λ
j
n+1 > 0, the more it is worthwhile to change for

agent j . In this case, no agent will resist to change or block change. Let

We,λ(x) =
{
y ∈ X : M j

e (x, y) ≥ λ j R j
e (x, y), j ∈ J

}

be the worthwhile to change set of the group at x . Our present paper considers a
specific instance of this general model. To see how this is the case, please, see Sect. 4.2
just below. In this case, among other aspects, experience does not matter much and all
worthwhile to change ratios are equal to a constant.Notice that experience have nothing
to dowith the vector e given in Sect. 3. Then, aworthwhile stay and change approach or
avoidance group dynamic is defined by a succession of worthwhile stays and changes
for the group, xn+1 ∈ Wen ,λn+1(xn), for all n ∈ N, where λn+1 = (λ

j
n+1) j∈J .

In this general (VR) context, a worthwhile stay and change group dynamic can end
in a variational trap, before being able to reach a desired end for the group. The (VR)
approach defines variational traps x∗ ∈ X for a group as, both,

(i) aspiration points, worthwhile to approach, xn+1 ∈ Wen ,λn+1(xn),∀n ∈ N, xn →
x∗, n → ∞ and reach x∗ ∈ Wen ,λn+1(xn), ∀n ∈ N, from any or some successive
position of the group and,

(ii) stationary traps, not worthwhile to leave to any member of the group, i.e.,
We∗,λ∗(x∗) = {x∗}, where e∗ and λ∗ are the current experiences and worthwhile
to change ratio at x∗.

4.2 A Benchmark Behavioral Context

Let us show how our extension of EVP gives sufficient conditions for the existence of
variational traps for a group which can meet desires or not, depending of the context.
The present mathematical extension of EVP considers a specific but very important
benchmark version of the previous general (VR)model of human behavior. It supposes
that,

(i) experience does notmattermuch, i.e.,M j
e (x, y) = U j

[
A j (x, y)

]
for all possible

experience e and each period n + 1,



(ii) motivation and resistance to change are identified to advantages and inconve-
niences to change, i.e., U j

(
A j

) = A j and D j
(
I j

) = I j ,
(iii) advantages to change are separable, i.e.,

A j (x, y) = g j (y) − g j (x) = f j (x) − f j (y), ∀ j ∈ J,

(iv) inconveniences to change are separable and nonnegative, i.e.,

I j (x, y) = C j (x, y) − C j (x, x) ≥ 0, ∀ j ∈ J,

(v) worthwhile to change ratios are the same for each agent, and do not change from
period to period, i.e., λ j

n+1 = λ for all j ∈ J and all n ∈ N.

Let us explain a little more point (iii) and (iv). For much more explanations and
examples, see [6]. Individual advantages to change A j (x, y) refer, each period, for
each agent j , to the difference between his “to be increased” payoff g j (y) when all
agents move and his to be increased “payoff g j (x) when all agents stay (repeat their
last action). For example, g j (x) can be a profit. Let g j = sup

{
g j (z), z ∈ X

}
< +∞

be the highest payoff agent j can get within the group. Then, f j (y) = g j − g j (y)
defines his degree of unsatisfaction (a “to be decreased” payoff) and A j (x, y) =
g j (y) − g j (x) = f j (x) − f j (y). When they are nonnegative, inconveniences to
change I j (x, y) ≥ 0 refer, each period, for each agent j , to the difference between his
costs to be able to change C j (x, y) ≥ 0 and his costs to be able to stay C j (x, x) ≥ 0.
The (VR) approach has shown, very carefully, how each individual inconveniences
to change function I j (x, y) = C j (x, y) − C j (x, x) ≥ 0 can be modeled as a scalar
pseudo-quasidistance, which is zero for a stay and is nonnegative for a change, with
the possibility that I j (x, y) = 0 when y �= x . Hence, if we want to model group
dynamics, the space of actions or situations X must be endowed with a cone pseudo-
quasimetric qΘ(x, y) = I (x, y) = (I j (x, y)) j∈J = C(x, y)−C(x, x), whichmodels
vectors of inconveniences to change, where C(x, y) = (C j (x, y)) j∈J and C(x, x) =
(C j (x, x)) j∈J refer to vectorial costs to be able to change and to stay. The cone puts
weights on the vector of motivations and resistances to change and helps to say when
the vector of motivations to change is not lower than the vector of resistance to change
with respect to some order relation.

Let g(x) = (g j (x)) j∈J , f (x) = ( f j (x)) j∈J , be “to be increased” and “to be
decreased” vectorial payoffs, and A(x, y) = g(y)− g(x) = f (x)− f (y) be vectorial
advantages to change. Then, it is easy to see that our extension of EVP to cone pseudo-
quasimetric spaces gives sufficient conditions for the existence of variational traps.
More precisely, Theorem 3.1 shows that,

(i) f (x0) − f (x∗) ≥Θ λqΘ(x0, x∗) i.e., A(x0, x∗) ≥Θ λI (x0, x∗) ⇐⇒ x∗ ∈
S f,λ(x0). This means that it is worthwhile to move from x0 to x∗. The proof
of Theorem 3.1 shows more: x∗ ∈ S f,λ(xn) for all n ∈ N, i.e., x∗ is an aspiration
point,

(ii) f (x∗) − f (x) �Θ λqΘ(x∗, x) i.e., A(x∗, x) �Θ λI (x∗, x) ⇐⇒ x /∈ S f,λ(x∗)
for all x ∈ X\{xn}. Then, it is not worthwhile to leave x∗, except to move to {xn}
with a zero cost.

Then, x∗ is a variational trap.



5 Conclusions

The cone pseudo-quasimetric versions of EVPobtained in this paper aremotivated by a
wide range of applications in group dynamics. They reduce to the corresponding results
in [23] when the cone pseudo-quasimetric in question is (X, R, R+, q). Note that since
the (scalar) pseudo-quasimetric versions of EVP were proved as characterizations of
completeness of (scalar) pseudo-quasimetric spaces, a similar result could be verified
in cone pseudo-quasimetric spaces. Note also that our results can give immediate
extensions of fixed-point theorems in cone pseudo-quasimetric spaces.

Althoughwe do not require that the ordering cone is normal or pointed, it is assumed
to be solid. In future research, we would study the possibility of dropping this require-
ment since many versions of EVP in [19–21] were formulated for nonsolid ordering
cones by using a variational approach.
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34. Tammer, C., Zălinescu, C.: Vector variational principles for set-valued functions. Optimization 60,

839–857 (2011)
35. Qiu, J.H.: Set-valued quasimetrics and a general Ekeland’s variational principle in vector optimization.

SIAM J. Control Optim. 51, 1350–1371 (2013)

http://dx.doi.org/10.1186/1687-1812-2012-87
http://dx.doi.org/10.1080/02331934.2015.1113533

	Variational Analysis in Cone Pseudo-Quasimetric Spaces and Applications to Group Dynamics
	Abstract
	1 Introduction
	2 Basic Definitions and Preliminaries
	2.1 Pseudo-Quasimetric Spaces
	2.2 Cone Pseudo-Quasimetric Spaces

	3 Ekeland's Variational Principle in Cone Pseudo-Quasimetrics
	4 An Application to Group Dynamics
	4.1 A Worthwhile Stay or Change Group Dynamic
	4.2 A Benchmark Behavioral Context

	5 Conclusions
	Acknowledgments
	References




