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Summary

Acidithiobacillus ferrooxidans is a strict acidophilic
chemolithoautotrophic bacterium that obtains its
energy from reduced inorganic sulfur species or fer-
rous iron oxidation under aerobic conditions. Carbon
felt electrodes were pre-colonized by A. ferrooxidans
ATCC 23270" using ferrous iron or sulfur as electron
donors, via the addition (or not) of a mixture of C14
acyl-homoserine lactones (C14-AHLs). Electrode cov-
erage during pre-colonization was sparse regardless
of the electron donor source, whereas activation of
quorum sensing significantly enhanced it. Microbial
fuel cells (MFCs) inoculated with pre-colonized elec-
trodes (which behaved as biocathodes) were more
efficient in terms of current production when iron
was used as an electron donor. Biocathode coverage
and current output were remarkably increased to
—0.56 Am 2 by concomitantly using iron-based
metabolism and C14-AHLs. Cyclic voltammetry
displayed different electrochemical reactions in
relation to the nature of the electron donor, underly-
ing the implication of different electron transfer
mechanisms.
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Introduction

Microbial fuel cells (MFCs) are devices that convert
chemical energy into electricity via the extracellular
transfer of electrons by selected bacteria. While a wide
range of natural environments (and therefore bacteria)
can act as catalysts for anodic reactions (Chabert et al.,
2015), only a limited number of species are known to
catalyse cathodic oxygen reduction.

The extracellular electron transfer that allows bacteria
to exchange electrons with an electrode is a natural phe-
nomenon observed with conductive minerals (Shi et al.,
2016). Indeed, bacteria such as Geobacter and Schewa-
nella are known to catalyse anodic respiration. This abil-
ity relies on their capacity to reduce heavy metals when
growing under anaerobic conditions. Therefore, it is
expected that metal-oxidizing bacteria could play a sig-
nificant role in the construction of efficient biocathodes.

Ferrous iron oxidation occurs spontaneously in circum-
neutral aerobic environments (Roekens and Van Grie-
ken, 1983), and iron-oxidizing bacteria can be
categorized into four physiological groups (Hedrich et al.,
2011). Only one of these groups includes bacteria that
are able to oxidize ferrous iron under high oxygen level
conditions. Indeed, the spontaneous iron oxidation rate
decreases under acidic conditions, indicating that aci-
dophilic bacteria such as Acidithiobacillus ferrooxidans
can oxidize iron under strict aerobic conditions. More-
over, as electrocatalytic reduction in O, to H,O is kineti-
cally limited by the availability of protons (Erable et al.,
2009), A. ferrooxidans offers a great prospect for air bio-
cathode design (Ter Heijne et al., 2007; Carbajosa et al.,
2010; Rodrigues and Rosenbaum, 2014; Ishii et al.,
2015).

Acidithiobacillus ferrooxidans is a strict acidophilic (pH
2) chemolithoautotrophic bacterium that obtains its
energy from ferrous iron or reduced inorganic sulfur spe-
cies oxidation under oxygenic conditions (Kelly and
Wood, 2000). This bacterium is highly involved in bio-
mining (Rawlings, 2002), and additional studies have
thus been conducted on biofilm formation and quorum
sensing in A. ferrooxidans and related species. Many
biomining bacteria demonstrate acyl-homoserine lactone
(AHLs) communication (Ruiz et al, 2008; Bellenberg
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et al., 2014), and biofilm formation in the A. ferrooxidans
strain ATCC 23270 is more efficient on pyrite and sulfur
coupons in the presence of added large acyl chains
AHLs (Gonzalez et al., 2013; Mamani et al., 2016).

In the present study, we compared the impact of sulfur
and ferrous iron oxidative pathways on the construction
of efficient biocathodes with A. ferrooxidans ATCC
23270". Furthermore, we have investigated the effect of
C14-AHLs on inert carbon electrode biofilm formation as
well as current output. These results demonstrate that
A. ferrooxidans ATCC 232707 electroactivity could be
effectively improved upon iron metabolism activation and
by quorum sensing.

Results and discussion
C14-AHLs improve biofilm formation

Acidithiobacillus ferrooxidans is well known for its ability
to colonize substrates such as pyrite, from which it
obtains its energy by oxidizing iron or sulfur. Imaging col-
onized carbon felt electrodes revealed a low bacterial
coverage (Fig. 1) when bacteria were cultivated for
1 week with ferrous iron (0.1 M) or sulfur (~2% m/v) as
the energy source. Under these conditions, bacteria pre-
sumably favoured a planktonic lifestyle, because electron
donors may not bind the unpolarized carbon felt elec-
trode. As described by Gonzalez et al. (2013) for sulfur

Ferrous Iron Sulfur

With 5 uM C14-AHLs

Without C14-AHLs

Fig. 1. Confocal microscopy imaging of a carbon felt electrode after
7 days of culture. Cells labelled green using Syto®9 were imaged
using an excitation at 489 nm and an emission at 510 nm. Carbon
fibres were red-imaged using an excitation at 645 nm and emission
at 620 nm, in accordance with Rousseau et al., 2016. Electrode bio-
films were formed by using ferrous iron (left column) or sulfur (right
column) as energy sources, either with C14-AHLs (lower panels) or
without C14-AHLs (upper panels).
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coupons and pyrite, A. ferrooxidans biofilm formation
was highly improved by C14-AHLs mixture containing
C14-AHL, 3-hydroxy-C14-AHL and 3-oxo-C14-AHL.
When 5 uM of C14-AHLs was added to cell culture on
ferrous iron or on sulfur medium, A. ferrooxidans cells
almost covered the whole electrode surface after 1 week
(Fig. 1). Electrode colonization resulted in the adhesion
of disparate cells to the carbon fibre in the form of a
monolayer. No thick biofilms have ever been observed
on pyrite with A. ferrooxidans (Vera et al., 2013).

C14-AHLs-mediated biofilms improve current output

Several different mechanisms exist to produce electricity
within MFCs. As current output involves a direct electron
transfer resulting in a contact between the bacteria and
the electrode, one of these mechanisms could potentially
be biofilm-dependent. To focus on this type of electron
transfer with A. ferrooxidans, electricity production was
monitored with ferrous iron or sulfur as the primary elec-
tron donor, with or without C14-AHLs. When electrode
pre-colonization was performed with sulfur as the pri-
mary source of energy, current output only reached
0.05 A m~2 within 1 week (Fig. 2A). On the other hand,
when electrode pre-colonization occurred on ferrous iron,
current output increased by approximately sixfold, with
an intensity reaching —0.31 A m™2 (Fig. 2B) within
1 week. Our results show that C14-AHLs increase elec-
trode colonization, indicating the possibility of a better
current output. Chronoamperometry (CA) data confirmed
the current output increase using a higher electrode cov-
erage: when 5 uM of C14-AHLs was added during elec-
trode colonization, the current intensity reached —0.12
(Fig. 2A) and —0.56 A m~2 (Fig. 2B) for sulfur and fer-
rous iron as the primary energy sources respectively.

Subsequently, cyclic voltammetry (CV) was performed
after CA to determine how colonization, sulfur-based or
iron-based cell metabolism, and C14-AHLs affect elec-
trochemical reactions.

Sulfur-based metabolism

Electrodes colonized with sulfur as the primary energy
source showed slight differences, whether they had been
formed with C14-AHLs or not (Fig. 3A). Indeed, CV with
and without C14-AHLs displayed redox reactions that
occur at a positive potential but disappear after the first
cycle. However, the peak intensities were somewhat
higher when the electrodes were formed with C14-AHLs.
This same pattern was observed for the reaction at
—0.44 V versus the reference. Specifically, after the first
cycle, the intensity decreased but remained slightly
higher than —1.14 Am 2 when the electrode was
formed in the presence of C14-AHLs, whereas the
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Fig. 2. Chronoamperograms of 3 cm? pre-colonized carbon felt bio-
cathodes. Sulfur (A) or ferrous iron (B) was used as the prior energy
source, either with C14-AHLs (red lines) or without C14-AHLs (black
lines). CA was performed on MPG-2 potentiostat (Biologic) at

E = —0.2 V versus Ag/AgCl KCI saturated reference and T = 30°C.
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maximum was —1.04 Am 2 in the absence of C14-

AHLs. Nevertheless, when C14-AHLs were used during
electrode colonization, redox reactions occurring at the
positive potential had a tendency to be driven at a lower
potential. This is presumably linked to the higher cover-
age of the electrode surface.

Iron-based metabolism

When ferrous iron was used as the primary energy
source, significant differences were noticed relative to
the quorum sensing response and the nature of the
primary energy source (Fig. 3B). CV performed on
electrodes formed without C14-AHLs only showed a
reduction at —0.4 V versus the reference, reaching
—0.82 Am™2. In contrast, at least three reactions
occurred upon quorum sensing activation during colo-
nization of the electrode. Two of these reactions were

(A) 1.0

=3.0

Ewe/V versus Ag/Agcl/KCI (saturated)

Fig. 3. Cyclic voltammetry plots for five consecutive cycles of bio-
cathodes. Electrodes were formed by using either sulfur (A) or fer-
rous iron (B) as the prior energy source, either with C14-AHLs (red
lines) or without C14-AHLs (black lines). CV curves were obtained
at a scan rate of 5 mV s~ .

likely the same as those observed on sulfur with an
oxidation at 0.2 V versus the reference, whereas the
third reaction corresponded to a reduction occurring
around 0 V versus the reference. Therefore, the oxida-
tion peak was stable over the five cycles. However,
activation of quorum sensing during colonization with
ferrous iron as the primary energy source affected the
reduction occurring around —0.4 V versus the refer-
ence. Specifically, the reduction intensity ranged from
—0.82 to —1.22 Am 2 and the potential increased
from —0.4 V to —0.34 V versus the reference for pre-
colonized electrodes without and with C14-AHLs
respectively. This emphasizes the effect of electrode
colonization and the potential of A. ferrooxidans ATCC
23270 to drive oxygen reduction using the cathode
as electron donors. These results demonstrate that a
well-colonized electrode tends to decrease the redox
potential of the reaction. Furthermore, when quorum
sensing was activated, the current output was nearly
increased by about twofold, whether the electrode was
formed with sulfur or ferrous iron as the primary
energy source.
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Mechanisms underlying electron transfer

The twofold increase in current output confirms that
extracellular electron transfer of A. ferrooxidans is linked
to cell adhesion on the cathode, because -current
increase was observed when electrodes were formed
with quorum sensing activation. Nonetheless, differences
in current intensity cannot be due exclusively to elec-
trode coverage. When quorum sensing was activated,
electrodes formed with either sulfur or ferrous iron dis-
played a similar colonization. Quorum sensing acts at
the gene level and may activate other genes than those
involved in biofilm formation, resulting in improved cur-
rent output. Moreover, A. ferrooxidans does not utilize
the same metabolic pathway to metabolize sulfur or fer-
rous iron (Quatrini et al., 2009). The main difference
occurs at the beginning of the respiratory chains: elec-
tron uptake occurs at the cytoplasmic membrane for sul-
fur oxidation and at the outer membrane for ferrous iron
oxidation. Indeed, when ferrous iron acts as an electron
donor, a c-type cytochrome (Cyc2) is involved in electron
uptake (Yarzabal et al, 2002). Furthermore, a higher
number of c-type cytochromes are found in A. ferrooxi-
dans when it is cultivated on ferrous iron as opposed to
sulfur (Yarzabal et al., 2002). Finally, it was previously
shown that c-type cytochromes are involved in extracel-
lular electron transfer (Rosenbaum et al.,, 2011; Kumar
et al., 2016), suggesting that Cyc2 may be responsible
for improving the efficiency of electricity production in
A. ferrooxidans ATCC 23270 when the electrodes are
pre-colonized on ferrous iron.

Conclusions

Quorum sensing activation using C14-AHLs remarkably
increased electrode colonization by A. ferrooxidans
ATCC 232707, resulting in a twofold enhancement of
current output. We have shown that prior activation of
iron metabolism leads to a higher electroactivity in this
strain. This phenomenon could be directly linked to the
ability of metal-oxidizing bacteria to take up electrons
from a solid surface, whereas other examples such as
sulfur metabolism occurs internally. Further investiga-
tions, such as the transcriptomic analysis of electrode-
colonizing bacteria, are required to elucidate the extra-
cellular electron transfer pathway involved in the elec-
troactivity of strain ATCC 23270".
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