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Abstract 

 Experimental and theoretical investigations of the excited states of protonated 1- and 2-

aminonaphthalene are presented. The electronic spectra are obtained by laser induced 

photofragmentation of the ions captured in a cold ion trap. Using ab-initio calculations, the 

electronic spectra can be assigned to different tautomers which have the proton on the amino 

group or on the naphthalene moiety. It is shown that the tautomer distribution can be varied by 

changing the electrospray source conditions, favoring either the most stable form in solution 

(amino protonation) or that in the gas phase (aromatic ring protonation).  Calculations for larger 

amino-polyaromatics predict that these systems should behave as “proton sponges” i.e. have a 

proton affinity larger than 11 eV. 
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Introduction 

Cold ion traps have become very useful tools to study the properties of protonated 

molecules. In most of the studies published to date, only one tautomer is produced by the 

combination of an electrospray source and ion traps, leading to the investigation of only the 

most stable gas phase conformers1–3. Only in a few cases have several tautomers been observed 

and clearly discriminated by their IR (vibrational)4 or UV (electronic) spectroscopy5,6, or, more 

often, by ion mobility 7,8  or differential ion mobility spectrometry (DIMS)9. In addition, a solvent 

effect on the protonation site has been demonstrated in the case of benzoic acid by a 

combination of IR spectroscopy and ion mobility 10. In recent studies on deprotonated p-

hydroxybenzoic acid produced in an electrospray source, it has been demonstrated that the 

observation of one or the other tautomer depends on source parameters such as the 

temperature of the capillary or the distance between needle and capillary, all these parameters 

being apparatus and experimentalist dependent11,12. Similarly, using DIMS it has recently been 

demonstrated that the structure of the protonated guanine-cytosine complex (Watson-Crick 

versus Hoogsteen) can be easily selected by changing the pH of the solution, which implies that, 

in this case, the solution phase structure is conserved9.  

While IR spectra can easily distinguish between protonation sites on N/O or N/C atoms13–15, 

differentiating protonation sites on different carbon atoms of a substituted polycyclic aromatic 

molecule is much less straightforward. Neither is it evident that traditional ion mobility 

experiments can separate such tautomers, although more recent techniques such as DIMS seem 

to be powerful discriminators9. Electronic spectroscopy is another alternative, coupling recently 

developed cold ion traps with ab-initio packages, which can calculate the excited states with 

reasonable accuracy.  For substituted molecules with a single aromatic ring, like aminophenol or 

purine DNA bases,16 it has been shown that electronic spectroscopy can serve to  convincingly 

assign the experimental spectra to different tautomers. The development of UV/UV hole 

burning spectroscopy in cold traps has added a further tool that can be used to differentiate 

tautomers.17–19 

In the present paper, we have studied protonated 1- and 2-aminonaphthalene with the aim 

of answering the following questions: 
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1) How does the proton affinity of polycyclic aromatic hydrocarbons (PAHs) change when 

a –NH2 substituent is added? In particular, we will compare aminonaphthalene and 

naphthalene20. In previous studies on aniline, competition between protonation on the 

amino group 15,21,22 and on one carbon atom of the ring has been observed. For larger 

PAHs, however, it is reasonable to expect that the proton affinity will increase with the 

size of the molecule, and this will favor protonation on a carbon atom of the aromatic 

moiety. This has been already investigated for aminopyrene23, and the calculations 

tend to show that protonation on a carbon atom of the aromatic skeleton is preferred. 

2) In previous studies, we have shown that the excited states dynamics of many amino 

aromatic systems protonated on the amino group, in particular the amino acids 

tyrosine, tryptophan and phenylalanine, are influenced by a  * state dissociative 

along the NH coordinate24–30. We have recently proposed a simple model to estimate 

the energy of such * states in amino substituted aromatic molecules based on the 

ionization potential of the aromatic moiety and the electronic affinity of the 

protonated amino substituent, which has been shown to remain unchanged as the PAH 

size increases23. Can we evidence the presence of such a state in protonated 

aminonaphthalene and, if so, is its energy in agreement with the model?  We also 

consider whether the proton affinity of the amino group is influenced by the size of the 

nearby aromatic part. 

3) In protonated naphthalene and larger PAHs, the lowering of the excited state energy in 

comparison to that of the neutral molecule was assigned to the presence of charge 

transfer (CT) states31. Are CT states also important in aminonaphthalene protonated on 

a carbon atom of the aromatic skeleton or on the amino group? 

In addition, we present a method that allows modification of the distribution of protonated 

tautomers produced in the electrospray source (ESI), providing an alternative to methods such 

as hole burning spectroscopy in facilitating the assignment of the electronic transitions. 



4 
 

Experimental and computational methods. 

The electronic spectra of protonated 1- and 2-aminonaphthalene (denoted 1-ANpH+ and 2-

ANpH+) were obtained via ion photo-fragmentation spectroscopy in a cryogenically-cooled Paul 

trap. The set-up has been extensively described elsewhere6 and is similar to those developed in 

various research groups19,32–36 based on the original concept of Wang and Wang19,37–39. 

Protonated ions are produced in an electrospray source40, pass through a heated capillary 

followed by a skimmer in a first chamber, and are then trapped in an octopole. The ions are 

extracted in bunches from the octopole but this process does not empty the trap and so the 

ions stay an average of 10 s in the octopole. After extraction from the octopole, the ions are 

accelerated to a third chamber (p = 10-5 mbar) using pulsed voltages (200 V), producing ion 

packets of 0.5 µs to 1 μs temporal width. The ions are guided towards the Paul trap with 

electrostatic lenses and deviation plates and decelerated to 5 eV before entering the trap. 

Under these conditions we do not observe collision-induced fragmentation. The ions are 

trapped for several tens of ms, and during this period they are thermalized to a temperature of 

around 50 K through collisions with cold helium buffer gas, which is constantly removed by 

pumping. The temperature of the ions in a previous study on protonated acridine was estimated 

as  40 ± 10 K using the intensity of some hot bands (see supplementary information in Estevez-

Lòpez et al.41). The major difference compared to previous studies is the development of a 

technique to modify the tautomer distribution in the octopole. The pressure at the exit of the 

capillary (1 mbar) and in the octopole (10-3 mbar) can be increased by a factor of ten by 

changing the pumping speed of the primary pump (pump in standby mode, for example).  

Photodissociation of the trapped ions is accomplished with a tunable OPO laser (EKSPLA), 

which has a 10 Hz repetition rate, 10 ns pulse width, a spectral resolution of ~ 10 cm-1 and a 

minimum scanning step of 0.02 nm. The laser is shaped to a 1 mm2 spot to fit the entrance hole 

of the trap and the laser power is around 2 mJ/pulse in the UV spectral region. The parent and 

fragment ions are extracted after each laser shot. The parent and photofragment ions are 

separated in a 1.5 m time-of-flight mass spectrometer and detected using a microchannel plates 

(MCP) detector. The spectra are recorded by detecting simultaneously all the ion signals as a 

function of the excitation energy. 
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Ab initio calculations were performed with the TURBOMOLE (V6.6) package42, making use 

of the resolution-of-the-identity (RI) approximation for the evaluation of the electron-repulsion 

integrals43–45. The equilibrium geometry of ground state (S0) ANpH+ was determined at the MP2 

and DFT/B3-LYP (density functional theory using the B3-LYP hybrid functional) levels. 

Complementary calculations have been performed with the MP4 and CCSD(T) methods. 

Adiabatic excitation energies of the lowest excited singlet states were determined at the RI-CC2 

and TD-DFT levels. Calculations were performed with the correlation-consistent polarized 

valence double-zeta (cc-pVDZ and aug-cc-pVDZ for * states) basis set46. Ground and excited 

state vibrations were calculated, and the electronic spectrum was simulated using PGOPHER 

software47 for Franck-Condon analysis.  

RESULTS 

ANpH+ photofragmentation spectroscopy 

The full photofragmentation spectra of 1-ANpH+ and 2-ANpH+ recorded over the energy 

range from the visible to the UV are presented in figures 1a and 1b, showing different band 

systems and different fragmentation channels with branching ratios dependent on the 

excitation energy. It should be noted that these complicated spectra originate from the 

presence of several tautomers that will be assigned in the following discussion. 
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Figure 1 : Photofragmentation spectra of a) 1-ANpH+ and b) 2-ANpH+ over the 22000-44440 cm-1 energy 
region. The different band systems are marked by letters. The 1- and 2-ANp molecules are depicted on 
the right side with the carbon atom numbering.  

The four fragment ion channels presented are those of m/z 143, 127, 117 and 115. H and 

NH3 loss channels, corresponding to m/z 143 and m/z 127 fragment ions, are usual 

fragmentation channels for protonated aromatic amines. The fragment at m/z 117 corresponds 

to the  HCN loss channel and is not present in monocyclic amines but is observed in low energy 

collision experiments of protonated aminopyridine48 and diazine49, where a proton transfer 

reaction to a carbon atom of the aromatic ring is the rate limiting step of the HCN loss . The m/z 
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115 fragment is the major fragment from the radical cation (m/z 143)50 and it seems to follow 

the same trends as the H loss channel. The m/z 103 fragment ion, which is a secondary fragment 

of the m/z 127 ion (see below) has not been plotted in figure 1. 

One can see that the fragment yield changes with the photon energy, in particular in the 

higher energy region, where the H loss channel becomes the most prominent channel.  For each 

species, six band systems (labeled A-F) are identified in the photofragmentation spectrum. 

 

Lower energy region (visible) 

The low energy parts of the spectra are presented in figure 2. No signal was observed for 

lower photon energies. 
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Figure 2 : Photofragmentation spectra over the 23000-32000 cm-1 (3-4 eV) energy region: 1-ANpH+ (upper 

panel) and 2-ANpH+ (lower panel).  The different band systems are labeled by letters. Each color 

corresponds to a specific fragment as indicated in the figure. In the insert the band origins of the first 

systems are magnified.  
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1-ANpH+ 

In the lower energy region, between 22500 and 31800 cm-1 (2.8-3.94 eV), the 

photofragmentation spectrum of 1-ANpH+ shows three band systems (figure 2 upper panel), 

although their intensities are much weaker than those of the band system D1 starting at 31840 

cm-1 (which will be described in the next section).  The lowest energy band system A1 starts in 

the visible at 22710 cm-1 (2.82 eV/440.3 nm) and presents a complex band structure (left inset) 

with a branching ratio around 1/2/3/3 for the different fragmentation channels 

m/z=115/117/127/143 (see figure SI-1 in the Supplementary Information). The second band 

system B1 starts at 27625 cm-1 (3.42 eV) and shows broadened vibronic bands. When exciting 

this band system the major fragmentation channel is H loss, and the m/z 117 fragment (HCN 

loss) is very low. The third system C1 (right inset) starts at 31500 cm-1 (3.91 eV), and only two 

bands can be clearly observed, the rest of the band system being buried under the strong D1 

system starting at 31840 cm-1 (3.95 eV).  

2ANpH+ 

Compared to 1-ANpH+, the photofragmentation spectrum of 2-ANpH+ in the low energy 

region shows fewer band structures. Two systems may be distinguished: the first one, A2, starts 

at 24170 cm-1 (3.0 eV) and shows a few vibronic structures, while the band structure intensities 

(see insert) may indicate that the band origin is not observed. A second unstructured system, 

B2, is centered around 29000 cm-1 (3.60 eV), and does not yield the m/z 117 (HCN loss) 

fragment. 

 

Structured band systems in the UV region around 32000 cm-1 

The photofragmentation spectra in the UV region around 32000 cm-1 (4 eV) are presented 

in figure 3. 
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Figure 3: Photofragmentation spectra of 1-ANpH+ (a) and 2-ANpH+ (b) in the 32000 cm-1 energy region. 
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1. The bandwidths are 10 ± 2 cm-1, and are limited by the laser width.  The background 

underlying the bands is the continuation of the B1 and C1 band systems. 

2-ANpH+ 

The equivalent band system in protonated 2-ANpH+ (figure 3b) starts at 31454 cm-1 (3.90 

eV), and shows activity on a low frequency mode (c.a. 60 cm-1) that was absent in 1-ANpH+. The 

fragmentation pattern is the same as for 1-ANpH+, with a branching ratio between H loss and 

NH3 loss channels ranging from 0.33 at the band origin to 0.15 at  33100 cm-1. 

High energy region 34000-44000 cm-1 (4.2-5.5 eV) 

This spectral region is presented in figure 1. 

1-ANpH+ 

For 1-ANpH+ there is a broad continuum, particularly well defined on the NH3 and HCN loss 

channels (E1 figure 1a), starting around 32000 cm-1 (4.0 eV) and centered around 36000 cm-1 

(4.46 eV). Finally, there is an increase in the signal recorded only on the H loss channel (F1) 

above 42000 cm-1 (5.20 eV), which may be the beginning of another band. 

2-ANpH+ 

For 2-ANpH+ there is also a broad continuum (system E2) starting around 34000 cm-1 (4.20 

eV) and centered around 41000 cm-1 (5.10 eV),  with a few narrow bands superimposed on this 

continuum (system D2 in figure 1b) and particularly well defined on the H and HCN loss 

channels. Finally, there is an increase in the signal recorded only on the H loss channel (F2) 

above 42000 cm-1 (5.20 eV), which, as for 1-ANpH+, may be the beginning of another band. 

Additional experiments 

Hole burning experiments have been performed to determine whether different tautomers 

were responsible for the observed band systems. Such experiments consist of setting the pump 

frequency and the probe frequency to known absorption bands in the spectrum, with depletion 

in the fragment signal indicating a common origin for both bands. As can be seen in figure 4, in 

the case of 1-ANpH+, the 22710 cm-1 band system A1 does not come from the same tautomer as 

the 31840 cm-1 band system D1. Likewise, it was observed that, for 2-ANpH+, the 24170 cm-1 

band system A2 comes from a different tautomer than the 31454 cm-1 C2 band system. For the 
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band system D2, the hole burning experiments are ambiguous because this band system is 

superimposed on a background, so the hole burning that is observed might be due to the 

background. 
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Figure 4: Hole burning experiment for 1-and 2-ANpH+:  

a) lower panel: pump and probe (scanning) lasers are set to the first band of system D1 at 31841 cm-1; a 

depletion is observed in the fragment signal; upper panel: pump laser is set to the first visible system A1 

at 23210 cm-1  and the probe laser scans the first band of system D1 around 31800 cm-1 

b) lower panel: pump and probe laser are set to the first band of system C2 at 31515 cm-1; a depletion is 

observed in the fragment signal; upper panel: pump laser is set to the first visible system A2 at 24340 cm-

1 and the probe laser scans the first band of system C2 around 31500 cm-1  

The absence of depletion indicates that the pumped and probed band systems do not originate from the 

same species. 
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To complement the hole burning experiments, we measured additional spectra under 

different pressure conditions in the ion production region, aiming to change the relative 

concentration of tautomers in the trap51. As shown in the Supplementary Information (figure SI-

2 and SI-3), the increase of the pressure nearly entirely suppresses the signal in the visible 

region for both 1- and 2-ANpH+, while for the 2-ANpH+ isomer the UV bands D2 and E2 are also 

suppressed. Clearly, increasing the pressure at the exit of the capillary and in the octopole 

favors one of the tautomers, i.e. the ammonium tautomer, as will be established below.  

 

Calculations 

Protonation site 
Competition between protonation on the amino group and on carbon atoms of the 

aromatic cycles has already been observed for protonated monocyclic molecules such as 

protonated aniline7,15,21,52, hydroxy-benzoic acid11, aminobenzoic acid10,53, or aminophenol54 and 

in the polycyclic protonated 1-aminopyrene23. For ANpH+, the calculations shown in table 1 

indicate that protonation on the amino group is not the most stable protonation site in these 

gas phase ions at low temperature. In table 1, DFT/B3LYP/cc-pVDZ calculations are given for all 

the tautomers, while CCSD(T) and MP4 calculations have only been performed for the most 

stable tautomers. The set of calculations obtained with different methods is given in the 

Supplementary Information (table SI-1). 

Tautomers characterized by having a protonated carbon atom will be denoted as 1- or 2-

ANpCnH2
+, where n indicates the carbon number on which the proton is attached (see figure 1 

for the atom numbering), and the tautomers protonated on the amino group will be referred to 

as 1- or 2-ANpNH3
+. 

 
 
 
 
 
 
 
 
 



13 
 

Table 1: Relative ground state energies calculated at the DFT/B3LYP level for the different 1- and 2-ANpH+ 
tautomers and complemented with CCSD(T) and MP4 calculations for the most stable tautomers. All 
calculations are performed with the cc-pVDZ basis set. The energies are relative to the ground state 
energy of the 1-ANpNH3

+ or 2-ANpNH3
+ tautomers. All energies are in eV. We report all eV values to the 

nearest 0.01 eV. 
  

  1-ANpNH3
+
 1-ANpC2H2

+
 1-ANpC3H2

+
 1-ANpC4H2

+
 1-ANpC5H2

+
 1-ANpC6H2

+
 1-ANpC7H2

+
 1-ANpC8H2

+
 

DFT   0 -0.14  +0.80 -0.33 +0.39 +0.80 +0.42 +0.62 

CCSD(T) 0 -0.032  -0.21     

MP4 0 +0.009  -0.17     

 

 2-ANpNH3
+
 2-ANpC1H2

+
 2-ANpC3H2

+
 2-ANpC4H2

+
 2-ANpC5H2

+
 2-ANpC6H2

+
 2-ANpC7H2

+
 2-ANpC8H2

+
 

DFT   0 -0.31 +0.28 +0.67 +0.57 +0.07 +0.68 +0.06 

CCSD(T) 0 -0.14    +0.26  +0.29 
MP4 0 -0.11    +0.32  +0.35 

 
 

As seen above, the 1-ANpC4H2
+ tautomer is always found to be more stable than the 1-

ANpNH3
+ tautomer, while the 1-ANpC2H2

+ tautomer seems to be almost isoenergetic with 1-

ANpNH3
+. For 2-ANpH+, the 2-ANpC1H2

+ tautomer is more stable than the 2-ANpNH3
+ tautomer, 

while the 2-ANpC6H2
+ and 2-ANpC8H2

+ tautomers are always less stable than the 2-ANpNH3
+ 

tautomer.  

In conclusion, the calculations indicate that protonation on the amino group is not the most 

stable protonation site in these isolated ions at low temperature. 

 

Calculated excited state transitions     

The assignment of these complicated spectra requires the use of high level ab-initio 

calculations. The vertical excitation energies and oscillator strengths of the first three excited 

states have been calculated for all the tautomers using the TD-DFT/ B3LYP (cc-pVDZ) method 

and for the most stable tautomers with the RI-CC2 (cc-pVDZ) method. The adiabatic transition 

energies of the two first excited states for the three most stable tautomers of 1-ANpH+ and the 

four most stables ones of 2-ANpH+ have been calculated with the two methods. The complete 

set of calculations can be found in the SI, while only the calculations for the most stable 

tautomers are presented in table 2. 
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Table 2: Calculated vertical excited state transition energies for the first three excited states of the most 

stable tautomers of 1- and 2-ANpH+. Adiabatic transition energies have only been calculated for the S1 

and S2 states of the most stable tautomers and the S3 state of 1-ANpC4H2
+
. Oscillator strengths (o.s.) 

calculated with the DFT method are in italics. 

 

tautomer S1 vertical S1 adiabatic S2 vertical S2 adiabatic S3 vertical S3 
adia 

 DFT 
(o.s.) 

CC2 DFT 
 

CC2 DFT 
(o.s.) 

CC2 DFT 
 

CC2 DFT 
(o.s.) 

CC2 CC2 

1-ANpNH3
+ 

 
4.18 
7.2*10

-2
 

4.40 3.93 4.25 4.43 
6.2*10

-3
 

4.53* 4.32 4.39 4.76 
6.5*10

-4
 

5.00  

1-ANpC2H2
+
 3.03 

6.7*10
-2

 
3.24 2.62 2.84 4.21 

9.4*10
-2

 
4.35 3.67 4.05 4.76 

3.0*10
-3

 
  

1-ANpC4H2
+
 3.56 

2.1*10-2
 

3.94 3.15 3.44 4.06 
0.18 

4.31 3.73 3.86 5.11 
0. 16 

5.30 4.93 

 

 

tautomer S1 vertical S1 adiabatic S2 vertical  S2 adiabatic S3 vertical 
 

 DFT 
(o.s.) 

CC2 DFT 
 

CC2 DFT 
(o.s.) 

CC2 DFT 
 

CC2 DFT 
(o.s.) 

CC2 

2-ANpNH3
+ 

 
4.12 
4*10

-2
 

4.35 3.75 4.12 4.36 
6*10

-3
 

4.59 4.18 4.32 4.56 
1*10

-5
 

5.84 

2-ANpC1H2
+
 3.22 

8*10
-3

 
3.43 2.89 2.99 3.46 

0.3 
3.63 3.33 3.36 5.28 

7*10
-2

 
5.43 

2-ANpC6H2
+
 3.18 

0.1 

3.34 2.89 2.94 4.05 
0.2 

4.15 3.89 3.87 4.87 
6*10

-2
 

5.24 

2-ANpC8H2
+
 3.19 

0.3 
3.10 2.86 2.67 3.60 

6*10-2 

3.85 3.21 3.20 4.79 
9*10-3 

5.0 

 

* in CC2, the calculation of the S2 state for 1-ANpNH3
+
 has not converged since this state becomes isoenergetic with 

the S1 state and then the optimization process crashes: this state crossing may explain the broad band above 4.2 eV 

on the NH3 loss channel. 

 

 

 The values obtained with the two methods give comparable results. For most of the 

tautomers, excited state optimizations conserve the planarity of the naphthalene skeleton. As 

already observed in many aromatic systems, the difference between vertical and adiabatic 

energies is on the order of 0.3/0.4 eV, which is usual for aromatic molecules16. These 

calculations are not corrected for the difference in zero point energy between S0 and Sn that has 

to be taken into account when comparing calculations with experimental results. The difference 
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in zero point energy between S0 and S1 (ZPE) is 0.16 eV for the 1- and 2-ANpNH3
+ tautomers, 

and 0.12 eV for 2-ANpC1H2
+ and 1-ANpC4H2

+. 

Discussion  

Assignment of the band systems 

Protonation on the amino group 

The assignment of the narrow band systems in the 4 eV region (systems D1 and C2) to the 

spectra of the amino-protonated tautomers is straightforward as it can be considered that 

protonation on the amino group should lead to a spectrum similar to the naphthalene spectrum 

(band origin at 3.97 eV) or the neutral 1-aminonaphthalene at 3.72 eV55. Furthermore, the 

calculated adiabatic transition energies, 4.09 eV* for 1-ANpNH3
+ and 3.94 eV for 2-ANpNH3

+ 

(CC2/cc-pVDZ corrected for ZPE), agree well with the observed band origins at 3.95 and 3.90 

eV, respectively. This assignment is also confirmed by the Franck Condon simulation performed 

for the first excited state of 1-ANpNH3
+ (D1) shown in the SI (figure SI-4). The vibrational 

structure is quite similar to the vibrational structure of neutral aminonaphthalene, except that 

the 285 cm-1 mode is assigned to the NH2 out of plane inversion, which is missing in the 

protonated molecule because the inversion does not exist for the ammonium group. The 

assignment of the vibrational transitions is given in table SI-2. For 2-ANpNH3
+, the Franck 

Condon simulation was not as conclusive as for the other isomer due to the out of plane 

deformation (see figure SI-5) in the excited state which seems to be overestimated with the CC2 

method.  

At higher energy, the broad band leading to a specific H loss (bands F1 and F2 in figure 1) 

can be assigned to the excitation of the Rydberg * states, which are known to lead to the 

direct excited state NH dissociation24,56,57. 

Protonation on an aromatic carbon atom  
As for other protonated polycyclic aromatic molecules, the band systems in the visible and 

near UV region are characteristic of protonation on a carbon atom of the skeleton, as in the case 

of protonated naphthalene where the origin of the first transition is located at 2.46 eV31,58.  Hole 

burning experiments confirmed that the band systems in the visible and near UV do not come 

from the same tautomer as the 32000 cm-1 (4.0 eV) band systems (D1 and C2), which were 
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assigned to the tautomers protonated on the amino group. Among all the possible C-protonated 

tautomers we selected those that have the lowest ground state energy:  protonation on C2 and 

C4 for 1-ANpH+ and protonation on C1 for 2-ANpH+. The band systems observed can be assigned 

by comparing the experimental results with calculations (table 3 and 4). For 1-ANpH+, the band 

systems A1 and B1 can be assigned, respectively, to the S1  S0 transitions of the 1-ANpC2H2
+ 

and 1-ANpC4H2
+ tautomers. The C1 band system may originate from the S2  S0 transition of 

either 1-ANpC2H2
+ or 1-ANpC4H2

+, which both have high oscillator strengths. For 2-ANpH+, the 

A2 band system is assigned to the S1  S0 transition of the 2-ANpC1H2
+ tautomer, which is the 

most stable tautomer. The B2 band may be assigned to the S2  S0 transition of the same 2-

ANpC1H2
+ tautomer, which has a high oscillator strength. All the assignments are listed in table 

3.  

As for protonated naphthalene, the first electronic transitions of C-protonated tautomers of 

ANpH+ appear in the visible spectral region due to the presence of low energy Charge Transfer 

states.  For all the 1-ANpH+ tautomers, the S1 and S2 states correspond to HOMO→LUMO and 

HOMO-1→LUMO transitions, as illustrated in figures SI-6 and SI-7. For the 1-ANpC4H2
+ tautomer 

and the 2-ANpC1H2
+, these transitions involve an electron transfer from the non-protonated ring 

toward an orbital which is more localized on the protonated ring (upper panel in figure SI-6). 

The strong CT character of these transitions leads to strongly red shifted spectra with respect to 

the neutral molecule, just as in the case of protonated naphthalene. The scenario changes when 

protonation occurs on the amino group, where the absorption involves orbitals (HOMO, HOMO-

1 and LUMO) that are well delocalized on the aromatic skeleton (figure SI-6 and SI-7 lower 

panels). As a result, the electronic transition appears weakly perturbed compared to the 

transition in the neutral molecule.  

  

Table 3: Assignment of the observed band systems by comparison with excited state calculations. 

 

1-ANpH+ 
Band systems in 

figure 1a 

Tentative 
assignment 

Calculated adiabatic 
transitions corrected 

for ZPE 
TD-DFT/CC2 

Observed transitions 
1-ANpH

+
 (eV) 

A1 1-ANpC2H2
+ 

S1 2.46/2.68 2.81 

B1 1-ANpC4H2
+
 S1 2.99/3.28 3.42 

C1 1-ANpC2H2
+ 

S2 or 3.51/3.89 3.90 



17 
 

1-ANpC4H2
+
 S2 3.57/3.70 

D1 1-ANpNH3
+
 S1 3.77/4.09 3.94 

E1 1-ANpNH3
+
 S2 4.16/4.23 ~4.00 

F1 1-ANpNH3
+ 
 -/5.59-ZPE* ~5.25 

 

 

2-ANpH+ 
Band systems in 

figure 1b 

Tentative 
assignment 

Calculated adiabatic 
transitions corrected 

for ZPE 
TD-DFT/CC2 

Observed transitions 
2-ANpH

+
 (eV) 

A2 2-ANpC1H2
+ 

S1 2.73/2.83 3.00 

B2 2-ANpC1H2
+ 

S2 3.17/3.20 ~3.20 

C2 2-ANpNH3
+  

S1 3.59/3.94 3.90 

D2   4.63 

E2 2-ANpC1H2
+  

S3  ~4.2 

F2 2-ANpNH3
+ 
*  ~5.25 

 

For 1-ANpH+, the assignment is unambiguous, since calculations and experiment are in 

good agreement. The assignment is more difficult for 2-ANpH+: for example, the band at 4.63 eV 

(D2) was thought to belong to the ammonium species but the pressure effect shows quite nicely 

that it does not (see section ”In-source tautomerization” below and figure SI-3).  

 

Proton affinity 

Proton affinity and calculation methods 

The proton affinity (PA) can be deduced from calculations. However, as can be seen in table 

1, the ground state energy difference between tautomers depends strongly on the calculation 

method (see also table SI-1). For protonated aniline, the best calculations21 at the CCSD(T)/aug-

cc-pVTZ level including ZPE give: PA(N) = 9.12 eV  for protonation on the amino group and 

PA(C4) = 9.08 eV for protonation on the C4 carbon atom.  Such a costly calculation has been 

performed only for 1-ANpH+, comparing protonation on the amino group and on the C4 carbon 

atom. The 1-ANpC4H2
+ tautomer was found more stable than the 1-ANpNH3

+ by 0.26 eV when 

ZPE is included. Since the values obtained with the CCSD(T)/cc-pVDZ and the DFT/B3lyp/cc-

pVDZ methods are in good agreement with this high level calculation, and bearing in mind that 

the CCSD(T)/aug-cc-pVTZ  approach is too time consuming for large systems, we have chosen 

the cc-pVDZ basis set and the DFT method to investigate the evolution of the PA with the size of 

the PAH in a reasonable time. 
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Figure 6: Evolution of the proton affinity with the size of the amino aromatic hydrocarbon. The change in 
ZPE between the protonated form and the neutral form has not been calculated for all the molecules. In 

the case of 1-ANpH+, ZPE has been calculated to be 0.35 eV for protonation on the amino group and 
slightly smaller for protonation on the carbon atom (0.3 eV). The calculated proton affinity including 

ZPE correction for this molecule, 9.3 eV at the DFT/cc-pVDZ level, is in good agreement with the 
experimental value (9.40 eV) reported in the literature50. The blue and cyan circles indicate the 
protonation sites. 

 

Proton affinity and PAH size 

Evolution of the proton affinity of the amino group with the PAH size. 

The evolution of the PA of the amino group linked to an aromatic molecule is presented in 

figure 6 as a result of DFT calculations. The values show a slight increase of the proton affinity 

(PA < 0.4 eV) as the substituted PAH size increases, from 9.56 eV for aniline to 9.92 eV for 

aminopentacene. Such a size effect on the PA can be explained in terms of the stabilization of 

the protonated ion. One would expect a larger PA in molecules that efficiently reduce the 

positive charge on the group where the proton is attached, e.g. by relocating electronic charge 

and contributing to the formation of a covalent bond. However, in amine-protonated PAHs a 

large portion of the charge remains on the ammonium group (e.g. Mulliken population analysis 

performed on 1-ANpNH3
+ reveals that about 45 % of the positive charge is retained in the –NH3 
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group) while the rest of it is withdrawn by the PAH moiety. To a first approximation, the amount 

of positive charge on the –NH3 substituent can be assumed invariant with the PAH’s size 

because the inductive interaction with the aromatic system is short-range in nature. Therefore, 

the small size effect observed on the PA must rely on the energy gain caused by a better 

distribution of the excess positive charge in the aromatic skeleton when the number of fused 

rings increases. Further evidence supporting that the partial charge on the  –NH3 substituent is 

not the dominant factor in explaining the PA’s size behavior was given in a previous paper23 

where we found that the electron attachment energy  on the protonated ammonium group was 

PAH size independent, being 3.15 eV for the series starting in ANpH+ and ending in protonated 

aminopentacene.   

Evolution of proton affinity (PA) at the Cn site with PAH size. 

The proton affinity of the Cn site as a function of the PAH size has been calculated for the 

carbon atom in the para position to the amino group, namely C4 for naphthalene, C10 for 

anthracene, and so on (see figure 6). The selected structures are expected to be abundant 

tautomers because the addition of an electrophile, in particular a proton, to the Cn site is 

strongly activated by the para-amino substituent. In contrast to what happens in ammonium 

ions, ring protonation is very efficient in delocalizing the excess positive charge away from the 

Cn site. For example, a Mulliken charge calculation on 1-ANpC4H2
+ shows that only 5 % of the 

positive charge remains in the acceptor C4H2 group. The high PA values in figure 6 are explained 

in terms of the large stability of such arenium ions, in which a so-called covalent -complex is 

formed at the protonation site, i.e. Cn acquires sp3 hybridization to attach two hydrogen atoms 

to the aromatic skeleton. Almost the entire positive charge is delocalized in the aromatic system 

(75 % concentrates in the ring that hosts the proton, and 20 % extends to the adjacent 

aromatic ring in the case of 1-ANpC4H2
+). In Scheme 1, we show the most relevant mesomeric 

structures in the case of 1-ANpC4H2
+ that account for the efficient charge delocalization  
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Scheme 1: Delocalization of the positive charge in the aromatic system of 1-ANpC4H2
+ via the mesomeric 

effect. The numbers indicate the percent weight of each mesomeric structure, according to a simple 

Mulliken analysis 

As in the case of -NH2 protonation, the size effect observed on the PA can be rationalized in 

terms of the stabilization acquired by a better distribution of the excess positive charge in more 

extended PAHs. However, in the case of ring protonation the effect is larger because almost all 

the positive charge is delocalized in the aromatic system, in contrast to what happens in the 

amino protonated ions, where a fraction of the charge remains in the ammonium group. 

The mesomeric effect can be evaluated by comparing the PA of the unsubstituted PAH with the 

PA of the amino-PAH, which results in a difference of more than one eV (1.4 eV) for aniline, 

decreasing as the PAH size increases, being 0.75 eV for pentacene (see figure SI-8). For 

aminopentacene, the proton affinity reaches 11 eV, even larger than the PA of 1,8-

Bis(dimethylamino)naphthalene (called a “proton sponge” with a PA of 10.6 eV)50, which makes 

it a “superbase”.  

From these calculations it is clear that ring protonation is much more stable than amino 

protonation for large amino PAHs in the gas phase, which is not necessarily true in liquid, where 

the solvation energy has to be introduced as an important contribution. 

 

In-Source tautomerization 

Due to the large number of collisions at the exit of the capillary and in the first octopole 

trap, thermal equilibrium at room temperature is expected to be reached.  Since the molecules 

stay, on average, 10 s in the octopole, they undergo around 105 collisions before they are sent 
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to the cold Paul trap through two low pressure chambers. If we now consider that the 

difference between the 2-ANpNH3
+ and the 2-ANpC1H2

+ ground state energies (for ions in the 

gas phase) is 0.19 eV (CCSD(T) value corrected for ZPE), it follows that, at room temperature, 

the 2-ANpNH3
+ population should be ~5*10-4 times the population of the 2-ANpC1H2

+ tautomer. 

In the case of 1-ANpH+ the values are slightly different, but again the 1-ANpNH3
+ population 

should be very small. However, an interesting observation is that the 1- and 2-ANpNH3
+ 

contributions to the recorded UV spectra are the most intense ones. Why does the tautomer 

population in the trap not correspond to the energetic prediction? To answer this question we 

must pay attention to the effect of the solvent environment on the distribution of tautomers, 

and how the UV spectrum in the bulk will consequently exhibit remarkable differences with 

respect to that in vacuum. It has been shown, using the COSMO model with DFT/B3lyp/cc-pVDZ 

applied to protonated aminophenol,54 that protonation on the amino group is energetically 

favored in a polar medium such as water/methanol (0.5 eV compared to protonation on a 

carbon atom). A similar result was obtained (see table SI-3 at the DFT level) for 2-ANpH+, where 

the 2-ANpC1H2
+ tautomer, which is more stable than the 2-ANpNH3

+ by 0.31 eV in the gas phase, 

becomes less stable in the liquid phase by 0.24 eV. It is worth speculating on whether the ESI 

source might conserve part of the liquid phase tautomer distribution, which would favor the 2-

ANpNH3
+ population at the exit of the electrospray source, until the very last solvent molecules 

are vaporized. Under this assumption, the source-pressure effect observed in our experiment 

indicates that an increase of the backing pressure at the exit of the heated capillary above a few 

mbars favors the liquid phase tautomer, i.e. protonated on the amino group. Such conditions 

correspond to a diffusion regime in which elastic collisions between the molecules of interest 

and buffer gas (air) occur, without activation. This effect has already been observed when 

investigating in-source dissociation processes51,59 . Here it is assumed that most of the activation 

of the ions occurs in the high pressure region of the ESI, with very weak increase of the internal 

energy in the octopole where the pressure is reduced by three orders of magnitude. In our case, 

the mean free path of the molecules (N2 for air) at the exit of the capillary in front of the 

skimmer is estimated to be 1 mm (1 mBar / 500 K), and decreases by a factor of 10 when the 

pressure reaches 10 mBar. The distance between the exit of the capillary and the skimmer is on 
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the order of 1 mm so, at high pressure, a diffusion regime will be reached, whereas at lower 

pressure, an intermediate regime (with both diffusional and collisional contributions, is 

expected to occur, under which ion activation cannot be neglected. It is, however, difficult to go 

beyond this qualitative explanation because of the concomitance of droplet evaporation and ion 

activation processes. In the former case, inelastic collisions fully desolvate the ions maintaining 

a low internal energy (evaporative cooling), while in the latter case, the energy increases to 

overcome the tautomerization and fragmentation barriers. So it seems reasonable to consider 

that when the pressure in the source is high, the tautomer distribution found in the liquid will 

be preserved to a large extent. 

Provided that ESI tends to conserve the liquid phase structure, one has to be careful in the 

assignment of the most stable forms of protonated species when using electrospray sources and 

photofragmentation spectroscopy. It seems that ion mobility may be a better method60,59 as 

long as one can reach thermal equilibrium and if the collisional cross sections between 

tautomers are different enough27,28,30,56.   

  Protonated amino group and excited state 

For 1-ANpH+, a structureless transition leading specifically to H loss is observed at high 

energy, starting at 5.25 ± 0.2 eV, which can be assigned to a  transition in which one 

electron of the orbital on the aromatic moiety is transferred on a diffuse Rydberg * orbital 

on the amino group. This state is well characterized in other amino-substituted aromatic 

molecules and is responsible for a direct H loss on the excited potential surface23. The adiabatic 

transition energy (uncorrected for ZPE) has been calculated at 5.59 eV, which is in good 

agreement with the empirical formula23 where the  transition energy is derived from the 

difference between the ionization potential of the aromatic unsubstituted molecule and the 

electronic affinity of the ammonium group linked to an aromatic structure ( 8.14 eV - 3.15 eV ). 

For 2-ANpH+, the * state is also observed in the 5.3 eV energy region, but the onset is not 

well defined due the presence of a strong transition from another electronic state (band system 

E2, tentatively assigned to the S3-S0 transition of the 2-ANpC1H2
+ tautomer). 
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Conclusions 
In this paper we have characterized the electronic properties of several tautomers of 

protonated 1- and 2-ANpH+ by a combination of experiments and calculations. For both 

molecular ions, the first excited states of the amino-protonated and the aromatic skeleton-

protonated tautomers were observed under our experimental conditions. Moreover, ab-initio 

calculations were found to be in good agreement with the experiment for such transitions, 

while the comparison was not as good for the higher excited states. By changing the pressure in 

the source, we were able to alter the tautomer distribution in the trap, which helped us in the 

assignment of some of the electronic bands corresponding to particular tautomers. This 

experimental procedure demonstrated that the tautomer distribution is very sensitive to the 

experimental conditions in the source, and that the observed population ratio in the trap does 

not necessarily reflect that found either in the liquid phase or in the gas phase at room 

temperature. 

An interesting result derived from the calculations highlighted the fact that protonation in 

larger amino PAHs largely occurs on specific carbon atoms of the aromatic skeleton, rather than 

on the amino group. Large amino PAHs exhibit very large proton affinity values, and qualify as 

good candidates for being “proton sponges”. It will be interesting to investigate how such 

carbocations behave in the conditions imposed by an ESI source, and if the relative proportions 

of N- and C-protonated ions could still be changed when the energy difference between the 

tautomers is larger. 
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Figure SI-1: Photofragmentation spectra showing the branching ratio between the m/z 115, 117, 

127, 143 fragments in the first band system of 1-ANpH+ ; Figure SI-2: pressure effect on 2-ANpH+ 

photofragmentation  in the spectral region of the D2 band ; Figure SI-3: pressure effect on 1-

ANpNH3
+ photofragmentation on the 314 nm band ; Figure SI-4: Franck Condon simulation of 

the first excited state of the 1-ANpNH3
+ tautomer ; Figure SI-5:  optimized structure of the 2-

ANpNH3
+ S1 state ; Figure SI-6: orbitals involved in the two first electronic transitions in the 1-

ANpC4H2
+ and 1-ANpNH3+ tautomers ; Figure SI-7: orbitals involved in the two first electronic 

transitions in the 2-ANpC1H2
+ and 2-ANpNH3

+ tautomers ; Figure SI-8: Evolution of proton 

affinities (PA) with molecular size. 

Table SI-1: Relative ground state energies calculated at different levels of theory for the 1- and 
2-ANpH+ tautomers ; Table SI-2: Calculated frequencies of the first excited state of 1-ANpNH3

+ 
and tentative assignment of the bands observed ; Table SI-3: Comparison of the calculated 
tautomer stability for ions isolated in the gas phase or ions in solution. 

Energetics of the dissociation channels. 
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Figure SI-1: Photofragmentation spectra recorded on different fragments in the first band system of 1-

ANpH+ around 440 nm, showing that the branching ratio between the m/z 115/117/127/143 

fragmentation channels is 1/2/3/3. 
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Figure SI-2: 2-ANpH
+
 photofragmentation spectrum in the UV spectral region of the D2 band: effect of decreasing 

the pumping speed (i.e. increasing the pressure) in the ion formation region. In red, low pressure conditions, both 
the background due to the 2-ANpNH3

+
 tautomer and the D2 band at 267 nm are observed; in blue, high pressure 

conditions, the 267 nm band disappears and the background increases, which means that the D2 band system does 
not correspond to an excited state of the 2-ANpNH3

+
 tautomer. 
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Figure SI-3:  1-ANpH
+
 photofragmentation spectra under different pressure conditions in the first octopole chamber: 

upper panel in blue, under high pressure conditions, only the band at 314 nm assigned to the species protonated on 
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the amino group (1-ANpNH3
+
) is observed; lower panel in red, under lower pressure conditions, the background 

assigned to the 1-ANpCnH2
+
 tautomers is also observed. 
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Figure SI-4: Franck Condon simulation of the first excited state of the 1-ANpNH3
+ tautomer 

(obtained using the Pgopher program) compared to the experimental photofragmentation 

spectrum.  

  



32 
 

 

 

         
Figure SI-5:  optimized structure of the 2-ANpNH3

+ S1 state calculated at the CC2/aug-cc-pVDZ 
level.  The ammonium group is slightly out of the naphthalene plane by 24°. 

 

Cartesian coordinates of the above structure 
 
ATOM                      CARTESIAN COORDINATES 
    1 c      -0.03237626647460      0.09295118508548      0.01886026215097 
    2 c      -0.10249855734972      0.19259376721050      2.70265055076771 
    3 c       2.29804003945061     -0.06849833538860     -1.35743673585278 
    4 c       4.68397747486221     -0.13083661528096     -0.00584351228890 
    5 c       2.33852138400495     -0.13966551106242     -4.05848632755360 
    6 h       0.56905298765013     -0.08399262607070     -5.12850198931318 
    7 c       7.02194143835557     -0.33875175091409     -1.31536065729741 
    8 h       8.77753027802044     -0.54407179763194     -0.23019803727113 
    9 c       4.66231551952435     -0.31126091068176     -5.35659497028840 
   10 h       4.65025822049470     -0.28120996077809     -7.43099384434985 
   11 c       6.98251238547425     -0.65221729762236     -4.02310621736102 
   12 n       9.33253814820944      0.19441807245318     -5.37729548294762 
   13 c       2.20332917266613      0.13059554005356      4.00712453048840 
   14 c       4.56026959634376     -0.03108564850672      2.67148689996979 
   15 h       6.32169058283750     -0.08088552649927      3.76283729991732 
   16 h       2.24278301775756      0.20768095259240      6.07407526899866 
   17 h      -1.90058026239914      0.31470656848563      3.70897896369729 
   18 h       9.21633557954636     -0.17755894483688     -7.28343006161966 
   19 h      -1.80247979280076      0.13505675887722     -1.05759368125755 
   20 h      10.88418153253196     -0.76079644884641     -4.70450733749599 
   21 h       9.69335385620823      2.12030992845785     -5.14511351326717 
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Figure SI-6: orbitals involved in the two first electronic transitions in the 1-ANpC4H2
+ and 1-

ANpNH3
+ tautomers.  
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Figure SI-7: orbitals involved in the two first electronic transitions in the 2-ANpC1H2
+ and 2-

ANpNH3
+ tautomers.  
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Figure SI-8: Evolution of proton affinities (PA) with molecular size; compared to the data presented in figure 6 in the 
manuscript, the PA of protonated unsubstituted PAH (black circles) has been added. For homogeneity, the PA values 
of neutral PAHs reported in this figure have been calculated using the same method as for the amino aromatic 
molecules, DFT/B3LYP/cc-pVDZ.:   
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Table SI-1: Relative ground state energies calculated at different levels of theory for different 1- and 2-
ANpH+ tautomers (cc-pVDZ basis set). The energies are relative to the ground state energy of the 1-
ANpNH3

+ or 2-ANpNH3
+ tautomer. All energies are in eV (cm-1, in parenthesis). We report all eV values to 

the nearest 0.01 eV and all wavenumber values to the nearest 5 cm-1. 
 

  1-ANpNH3
+
 1-ANpC2H2

+
 1-ANpC3H2

+
 1-ANpC4H2

+
 1-ANpC5H2

+
 1-ANpC6H2

+
 1-ANpC7H2

+
 1-ANpC8H2

+
 

DFT   0 
  0 

-0.14  
(-1130) 

+0.80 
(+6450) 

-0.33 
(-2660) 

+0.39 
(+3150) 

+0.80 
(+6450) 

+0.42 
(+3390) 

+0.62 
(+5000) 

CC2 0 
 

+0.07 
 

 -0.12 
 

    

CCSD(T) 0 -0.032 
(-255) 

 -0.21 
(-1715) 

    

MP2 0 +0.17  -0.01     

MP4 0 0.009 
(+75) 

 -0.17 
(-1360) 

    

 

 2-ANpNH3
+
 2-ANpC1H2

+
 2-ANpC3H2

+
 2-ANpC4H2

+
 2-ANpC5H2

+
 2-ANpC6H2

+
 2-ANpC7H2

+
 2-ANpC8H2

+
 

DFT   0 
  0 

-0.31 
(-2500) 

+0.28 
(+2260) 

0.67 
(+5400) 

+0.57 
(+4600) 

+0.07 
(+565) 

+0.68 
(+5480) 

+0.06 
(+485) 

CC2 0 -0.09    +0.37 +1.04 +0.36 

CCSD(T) 0 -0.14 
(-1170) 

   +0.26  
(+2060) 

 +0.29 
(+2370) 

MP2 0 +0.03    +0.57 +1.11 +0.57 

MP4 0 -0.11 
(-865) 

   +0.32 
(+2555) 

 +0.35 
(+2815) 

 

As seen above, the 1-ANpC4H2
+ tautomer is always found to be more stable than the 1-

ANpNH3
+ tautomer. The 1-ANpC2H2

+ is more stable than 1-ANpNH3
+ with DFT and almost 

isoenergetic with 1-ANpNH3
+ using CCSD(T) or MP4 methods. For 2-ANpH+, the 2-ANpC1H2

+ 

tautomer is more stable than the 2-ANpNH3
+ tautomer, while the 2-ANpC6H2

+ and 2-ANpC8H2
+ 

tautomers are always less stable than the 2-ANpNH3
+ tautomer. As already noted in previous 

reports 1, the MP2 (see table SI-1 ) method overestimates the stability of the NH3
+ tautomer 

compared to the CnH2
+ tautomers, while DFT, MP4 and CCSD(T) methods provide consistent 

results. 
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 Table SI-2: Calculated frequencies at the CC2/aug-cc-pVDZ level of the first excited state of 1-
ANpNH3

+ and tentative assignments of the bands observed 
 
   

Mode 
number 

Calculated  
frequencies 

 
Observed 

frequencies 
tentative 

assignment 

1 80 NH3 rotation   

2 136 NH3 rotation   

3 152 Ring deformation out of plane   

   159 (2*80)  1
 
 

 

4 163 Ring deformation out of plane   

5 249 NH3 bending in plane   

6 302 Ring deformation out of plane   

7 354 Ring deformation out of plane   

8 379 Ring deformation in plane 419 8
 
 

 

9 404 Ring deformation out of plane   

10 420 Ring deformation out of plane   

11 424 Ring deformation in plane 482 11
 
 

 

12 463 Ring deformation in plane   

13 527 Ring deformation in plane 538 13
 
 

 

14 531 C2H out of plane   

15 583 Ring deformation out of plane   

16 633 Ring breathing in plane 658 16
 
 

 

17 684 CH out of plane   

18 736 CH out of plane   

19 752 CH out of plane   

20 755 Ring deformation in plane    

21 817 Ring in plane 830 21
 
 

 

22 832 CH out of plane   

23 853 CH out of plane   

24 874 CH out of plane   

25 907 Ring deformation in plane   

   914 8
 
 

13
 
 

 

   978 11
 
 

13
 
 

 

26 992 ring in plane   

   1017 8
 
 

16
 
 

 

27 1025 NH/CH in plane   
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28 1040 NH3 out of plane   

29 1044 NH &CH bend in plane   

30 1108 CH bend in plane   

31 1137 CH bend in plane   

32 1150 CH bend in plane   

   1160 13
 
 

16
 
 

 

   1196  

33 1207 CH bend in plane   

   1219 8
 
 

21
 
 

 

34 1228 CH bend in plane   

35 1242 CH bend in plane   

36 1344 CH bend in plane   

   1351  

37 1384 CH bend in plane   

   1390  

38 1408 CH bend in plane   

39 1427 CH bend in plane & NH3 umbrella   

40 1444 CH bend in plane & ring deformation   

   1450   

41 1470 Ring deformation in plane & NH3 umbrella   

42 1479 NH3 umbrella   

43 1489 Ring deformation in plane   

   1497  

   1550  

44 1618 NH3 antisymmetric bend   

45 1618 NH symmetric +ring deformation in plane   

46 1632 NH symmetric  bend   

47 1659 NH symmetric +ring deformation in plane   

48 3171 CH stretch   

49 3202 CH stretch   

50 3204 CH stretch   

51 3208 CH stretch   

52 3217 CH stretch   

53 3230 CH stretch   

54 3242 CH stretch   

55 3335 NH3 stretch symmetric   

56 3413 NH3 stretch antisymmetric   

57 3479 NH3 stretch antisymmetric   
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Table SI-3: Comparison of the calculated tautomer stability for ions isolated in the gas phase or ions in solution 
calculated using COSMO (COnductor-like Screening Model) as implemented in the Turbomole package. The 
calculations indicate that the tautomer protonated on the amino group is the most stable in solution, whereas 
protonation on a carbon atom (C4 for 1-ANpH

+
 and C1 for 2-ANpH

+
) is favored for isolated molecules. 

 

 

 

 

 

 

 

 

 

  

 DFT  DFT+COSMO 

(=80) 

1-ANpNH3
+

 0 0 

1-ANpC2H2
+ -0.14 +0.35 

1-ANpC4H2
+ -0.33 +0.22 

2-ANpNH3
+

 0 0 

2-ANpC1H2
+ -0.31 +0.24 
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Energetics of the dissociation channels 

 The energetics of the dissociation channels has been calculated at the DFT level and is 

summarized in figure 5 together with the energy of the observed excited states. (The details of 

the calculations can be found in the table SI-4) 

 

Figure 5: Comparison between the energy of the electronic transitions and the energy of the dissociation 
channels. 

 

The lower dissociation energy corresponds to the HCN loss channel, well below the energy 

of the first band system, while the NH3 loss channel has the highest dissociation energy, slightly 

lower than the energy of the most intense band system D1 and C2. It should be noted that the H 

loss channel as well as the NH3 loss channel are simple bond cleavage for aminonaphthalene 

protonated on the amino group. On the other hand, the other dissociation channels necessitate 

rearrangement processes involving barriers higher than the dissociation energy.  As in 

protonated aminopyrene1 , the NH3 loss channel is higher in energy than the H loss channel by 

almost 1 eV.  

Note that the HCN loss channel is observed for the low energy band systems (A1, B1 and 

A2), but absent when exciting the D1 and C2 major band systems. In protonated diazine and 

aminopyridine2,3,  the HCN loss channel mechanism involves a hydrogen or proton transfer to a 

carbon atom, and if the same mechanism is assumed for ANpH+, the most probable parents will 
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be the ANpCnH2
+ tautomers. This would therefore mean that the D1 and C2 band systems 

correspond to 1-and 2-ANpNH3
+ tautomers. These assumptions may be checked by comparison 

with calculations of the excited state transitions.  

 

Table SI-4: Energetics of the dissociation channels 

 

 Energy 
DFT/B3lyp 
(hartree) 

Proton affinity 
(eV) 

 

Energy 
DFT/B3lyp 
(hartree) 

 

1-ANp  
mass 143 

-440.9942406   -440.99413893 2-ANp  
mass 143 

1-ANpH+ 
m/z 144 
 

-441.3497544 9.67 
 

9.71 -441.35092526 2-ANpH+ 
m/z 144 
 

 Dissociation 
Energy (eV) 

 

HCN loss channel  
m/z 117 + 27 (HCN) 

-347.899-93.378 
=-441.277 

1.97 2.00 -347.899-93.378 
=-441.277 

HCN loss channel  
m/z 117 + 27 (HCN) 

H loss channel  
m/z 143 (1-ANp+) +1 
(H) 

-440.7476-0.4983 
=-441.2459 

2.83 2.87 -440.7472-0.4983 
=-441.2455 

H loss channel  
m/z 143 (2-ANp+) +1 
(H) 

CH2NH loss channel 
m/z 115+29 (CH2NH) 

-346.659-94.574 
=-441.233 

3.16 3.19 -346.659-94.574 
=-441.233 

CH2NH loss channel 
m/z 115+29 (CH2NH) 

NH3 loss channel   
m/z 127 +17 (NH3) 

-384.695-56.518 
=-441.213 

3.72 3.84 -384.692-56.518 
=-441.210 

NH3 loss channel   
m/z 127 +17 (NH3) 
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