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Abstract. Skeletal muscle undergoes many micro-membrane lesions at physiological state. Based on their sizes and magnitude
these lesions are repaired via different complexes on a specific spatio-temporal manner. One of the major repair complex is
a dysferlin-dependent mechanism. Accordingly, mutations in the DYSF gene encoding dysferlin results in the development
of several muscle pathologies called dysferlinopathies, where abnormalities of the membrane repair process have been
characterized in patients and animal models. Recent efforts have been deployed to decipher the function of dysferlin, they
shed light on its direct implication in sarcolemma resealing after injuries. These discoveries served as a strong ground to
design therapeutic approaches for dysferlin-deficient patients. This review detailed the different partners and function of
dysferlin and positions the sarcolemma repair in normal and pathological conditions.
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INTRODUCTION

Dysferlin is a transmembrane protein belong-
ing to the ferlin family. It is coded by the gene
DYSF located on chromosome 2p13.2. The dysferlin
protein is comprised of multiple domains respon-
sible for its various functionalities. Among these
are multiple C2 domains, which are known to be
calcium-sensitive and involved mainly in phospho-
lipid interactions [1-3]. Mutations in DYSF [4, 5]
cause a class of muscular disorders termed “dys-
ferlinopathies”, including two principal muscular
dystrophies: Limb Girdle Muscular Dystrophy type
2B (LGMD2B) and Miyoshi Myopathy (MM). Both
disorders are inherited in an autosomal recessive ways;
LGMD2B affects mainly proximal muscle while MM
manifests predominantly in distal muscle. Despite
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variation in age of onset, patients with either disorder
are mostly healthy and athletic at young ages without
any clinical sign of pathology. Disease onset usually
becomes evident only in the second decade, for exam-
ple with difficulties in ambulation or climbing stairs.
The disease progress slowly but frequently results in
wheelchair dependency.

Dysferlinopathies are clinically and genetically
heterogeneous, with a broad spectrum of severity
from asymptomatic to marked functional disability
[6-8]. Patients with LGMD2B and MM are notable
phenotypically for exhibiting massive increases in
blood creatine kinase, up to 100-fold compared to
normal values, associated with severe muscle inflam-
mation [9] that can be misdiagnosed as polymyositis
[10-12]. Because of such misdiagnoses and the recent
introduction of the international patient registry
within only the last few years (https://www.jain-
foundation.org/patient-registration), the worldwide
prevalence and incidence of dysferlinopathies are
hard to estimate with much accuracy. However, some
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reviews suggest that dysferlinopathies may be the
second most frequent type of LGMD (25% of the
LGMD cases) after LGMD2A, with a prevalence of
up to 1/50,000 [13].

In this review we describe the function of dysfer-
lin and its network; while dysferlin functions are not
exclusively limited to membrane repair, we decided
to focus the review on this role in light of the recent
discoveries in the field.

DYSFERLIN AND ANNEXINS DIRECT
THE MEMBRANE REPAIR PROCESS

Due to its inherent function, skeletal muscle is a
mechanically stressed organ and is thus exposed to
frequent and sudden physiological tears at the mem-
brane [14]. Membrane rupture is followed by a drastic
increase in intracellular calcium levels, which in turn
triggers plasma membrane repair (PMR) [15]. PMR
is a multistep process that entails varied strategies
aiming to repair the injury in a spatiotemporal man-
ner. The cell creates an “emergency” patch to contain
the damage (A on Fig), prior to other mechanisms
(involving cytoskeletal and membrane remodeling)
taking over the repair process. Calcium increase at
the injury site lasts for several seconds (B on Fig),
but it takes much longer to complete PMR (~120 sec
for myoblasts and up to several minutes for muscle
fibers) [16, 17]. More specifically, a calcium gradient
is formed after the injury that triggers the PMR events
(C on Fig). This sets off a chain reaction involving
recruitment and/or recycling of Ca2+-sensor pro-
teins [synaptotagmins, ferlins, calpains, annexins,
apoptosis-linked gene (ALG)-2], and additional pro-
teins (ESCRT-III complex, MG53), membrane lipids,
as well as cytoskeletal and organellar reorganization
[18-25], which is absolutely essential for effective
membrane repair [26]. Ca2+-triggered exocytosis
likewise diminishes membrane tension, another key
determinant of cell membrane resealing and effective
repair [27, 28]. Despite some variation in the succes-
sion of events taking place during PMR, Ca2+and
ATP are indispensable [29] (D on Fig).

Cellular injuries also disturb the sarcomere,
disorganize membrane lipid organization and com-
position, and influence the cytoskeletal dynamic [14]
Phosphatidylserine (PS) becomes aggregated around
wound sites over time while actin binds PS [30, 31]
(E on Fig). Transitory actin cytoskeleton rearrange-
ment is in turn essential for repair [14, 32]. Indeed,
cytoskeletal actin facilitates the localized transport of

internal vesicles to the wounded membrane, assisted
by kinesin, while myosin motors promote exocytosis
[33]. Also, consequent to the injury, proteins known
to bind actin, like affixin, EDH2, and ANXAI, are
increased at the lesion site together with F-actin in
muscle cells [34-37](A on Fig). Small GTPases (Rho,
Rac, Cdc42) are also involved in distinct subcellular
patterns by recruiting the cytoskeleton surrounding
the lesion, as has been described in Drosophila or
Xenopus oocytes [38—41] (F on Fig). PM depolar-
ization is induced by the massive entry of calcium
and the cleavage of two of actin’s partners, talin and
vimentin, by calpains [42, 43] (G on Fig). Moreover,
the disassembly of the microtubule mesh around the
lesion, triggered by the calcium rise, may also influ-
ence the lysosomal transport and lipid traffic to the
PM (H on Fig) [44, 45].

Intracellular vesicles

In the wake of cellular wounding, cells must
undergo an emergency response (plugging) involv-
ing the cross-linkage of membranous compartments
or vesicles, such as lysosomes, enlargeosomes, or
other components to the plasma membrane such as
membrane-deforming proteins (I on Fig) [46—48]. An
elevation of Ca2 +in a 20 nm perimeter is required to
trigger vesicle fusion. Following membrane rupture,
there is an accumulation of small vesicles underneath
the plasmalemma that function as the main reser-
voirs of Ca2 + required for membrane fusion. Among
them, lysosomes represent one of the first actively
recruited reservoirs, as confirmed by the presence
of luminal epitopes of LAMP-1 (a lysosome-specific
marker) on the cell surface after injury [29, 47] (J on
Fig). This is also suggested by the observation that
lysosomes form a pre-existing punctate distribution
beneath the membrane [49, 50]. Indeed, lysosomes
have the ability to fuse with the plasma membrane
through a two-step approach, they are first recruited
underneath the membrane independently from cal-
cium and then they fuse with the plasma membrane
in response to an increase in calcium via synapto-
tagmin VII which is present at the surface of the
lysosome [47] (H on Figure). Therefore, lysosomes
and lysosome-related organelles have been shown to
participate in the membrane repair process [51, 52].
Calcium-dependent lysosomal exocytosis has been
shown in injured muscle fibers, decreasing membrane
tension and facilitating PMR [27] (M’ on Figure).

It is also widely acknowledged that the specific
manner in which PMR takes place is dependent



on the size of the lesion [29, 52]. Large injuries
involve an increase of caveolar endocytosis [53] (K
on Fig). Small lesions (<100nm) meanwhile will
trigger the ESCRT III complex, which promotes vesi-
cle budding or membrane shedding via a complex
involving apoptosis-linked gene 2 (ALG 2), ALG-2-
interacting protein X (ALIX), ESCRT III and Vps4
[22, 25, 54] (L on Fig). Exocytosis releases acid sph-
ingomyelinases (ASM), which will be turned into
ceramide in the outer leaflet of the plasma mem-
brane, leading to endosome formation [55, 56] (L on
Fig). These domains change the binding affinities of
annexins and caveolins for the plasmalemma, affect
cytoskeleton dynamics, and bring about changes in
plasmalemma architecture that play an important role
in the progression of membrane repair [57, 58].

Intracellular vesicles undergo a rapid recycling
in the region of the tears by a process of endo-
cytosis/exocytosis turnover (M/M’ on Fig). Indeed,
exocytosis of lysosomes, relying on synaptotag-
min VII and calcium [47], is rapidly followed by
massive endocytosis of small endosome vesicles
that merge to form a larger endosome before join-
ing the endocytic pathway [59, 60] (M on Fig).
However, in dysferlinopathies, absence of dysferlin
prevents the tethering of lysosomes to the mem-
brane, thereby delaying their exocytosis [61]. This
is especially problematic since lysosome exocytosis
is a fundamental process occurring in all kinds of
PMR independently of the type of injury involved
(mechanical, toxin-induced perforation or other
causes) [62].

The endocytic vesicles look highly similar to
caveolae when observed via electronic microscopy
as they are similar in appearance and size [63].
This is plausible since caveolar internalization could
also function as a reservoir. Certainly, caveolae are
highly expressed in tissue under mechanical stress
or in a disease context [53, 63-65]. They could
also merge to form a larger vesicle prior to their
endocytosis or flattening, suggesting that an enlarged
reservoir is required for membrane integrity [15, 53,
59, 66]. Markers of lysosomes or endosomes are also
expressed on the surface of caveolae when fused after
internalization [53]. Stretch-induced membrane rup-
ture can also disrupt T-tubules by pulling them out
of position [67] (Q on Fig). MG53, ANXAI, and
dysferlin have been shown to localize at the T-tubule
during stretch-induced injury, suggesting a role for
the T-tubule as another membrane reservoir [68].
Moreover, EDH2 translocates to the lesion site via
a T-tubule-dependent trafficking mechanism [36].

Finally, one other PMR mechanism of note
is membrane blebbing, a temporary detachment
of sub-membranous cytoskeleton from the plasma
membrane that occurs when the PMR process needs
more time to be fully completed or when the ini-
tial attempts at rescue have failed [69]. These blebs,
which involve ANXA1 as a mediator, can be defini-
tively excluded from the membrane if necessary [69].

Dysferlin

Dysferlin is a major mediator of PMR. Among
other interactions, it has been reported to bind the
cell membrane lipids phosphatidylserine (PS) and
phosphatidylinositol bisphosphate (PIP2), and to co-
localize with the SNARE protein syntaxin 4 and
snap23 [70, 71]. Dysferlin-positive vesicles can fuse
together via microtubule transport and accumulate
underneath the membrane [72]. Additionally, it has
been shown that dysferlin must be cleaved at its
C-terminus by calpains to release an active fragment
[composed of the last 2 C2 domains (out of 7) and the
transmembrane domain] called minidysferlin-C72.
Only the truncated dysferlin stays at the lesion site
where it encircles the lesion [73, 74] (O on Fig). From
there, as has been demonstrated, m- or p-calpain can
facilitate repair of damaged plasma membrane [75].
Dysferlin is also expressed at the PM via its inter-
action with caveolin 3, the main component of the
caveolae [76, 77]. Dysferlin and MG53 are present
at the surface of membrane vesicles, recruited by
an actin-cytoskeleton—dependent mechanism during
membrane damage [32, 78] (N on Fig).

MG53

Another protein found in caveolae and involved in
membrane repair is MGS53. This component binds
directly to the PS at the plasma membrane or via
Cavin-1/PTREF, probably in caveolae [79, 80]. MG53
and Cavin-1 may help in stabilizing the membrane
by recruiting dysferlin and caveolin 3 [80, 81]. This
mechanism also incorporates annexins (ANXA) 1
and 6 [82]. However, the direct involvement of this
pathway in a physiological context is not clearly
defined; it may involve prevention of cell death
and therefore the maintenance of an environment
favorable to membrane resealing with annexins as
key factors [69, 82] (P in Fig). On the other hand,
mutations in caveolin 3 and PTRF cause serious
abnormalities in muscle where vesicles are often
found underneath the PM [83, 84]. Finally, it has



been suggested that MG53 could also function out-
side of the cell since the protein can participate
to the PMR effort after intravenous injection of
recombinant MG53 in a mouse model [85, 86].

Annexins

Annexins are a family of ubiquitously expressed
soluble proteins binding negatively charged mem-
brane lipids (mostly PS) in a Ca2+-dependent manner
[87]. Among them, ANXAS stands out since it
can promote the formation of annexin-2D arrays
below the membrane surface [88, 89] (A on Fig).
Together with other components, ANXA (6, 1, 2)
has been shown to promote several membrane-related
processes like endocytosis or exocytosis, vesicle traf-
ficking, and general membrane dynamics (including
fusion, organization, and aggregation) [90]. ANXA2
seems to promote enlargeosomes’ movement toward
the PM where they can fuse via SNAP23, VAMP4,
and syntaxin6 or via a connecting ANXA2/S100A10-
AHNAK complex [91-93] (I on Fig). Another
protein interacting with ANXA2, S100A11, could
play a role in the mesh formation by facilitating the
actin polymerization at the wounding site [94, 95].
Enlargeosomes have also been involved in PMR with
an undefined role; their main marker, AHNAK, is
re-localized to the PM after injury [96]. ANXAs are
therefore one of the major players in the membrane
repair process [91]. ANXA 6, 1, 5, and 2 in particular
are recruited at the outset to prevent extension of the
wound by promoting emergency fusion [88, 91, 97]
(A on Fig).

Additional proteins (MCOLNI1/TRMPLI1 and
ANOS5) have also been linked to PMR, but their
roles are as yet not fully understood (A on Fig). It is
believed that MCOLN1 may be involved in lysosomal
exocytosis by promoting lysosomes’ trafficking to the
membrane via a mechanism dependent on calcium
[98]. The fact that ALG-2 and MCOLNI1 interact
in a calcium-dependent manner raises the question
of possible involvement of MCOLN1 in membrane
shedding [99]. In the same manner, ANOS has been
linked to PMR since it has been shown that recruit-
ment of ANOS vesicles to the membrane is triggered
following the increase of calcium influx [100].

Altogether these results suggest that dysferlin and
ANXAs, among other actors (caveolin 3, MG53, cal-
pains, and others), are essential for the PMR process
and more generally for muscle homeostasis, since
damage to these components has been directly associ-
ated with pathologic processes or the exacerbation of

numerous diseases [4, 5, 101-104]. They are highly
active during the events following membrane rupture
via vesicle recruitment and endocytosis/exocytosis
events (K and R on Fig). Finally, it has been proposed
recently that damaged membrane components could
also be sequestered and removed from the mem-
brane instead of being resealed, and we believe that
in this context, dysferlin and ANXAs would likely be
among the participants involved in this process [55].
It should also be noted that the vesicles involved in
PMR are eliminated by macrophages (S on Fig) that
have been recruited to the wound site via the increase
of phosphatidylserine at the membrane triggered by
dysferlin [105].

CONCLUDING REMARKS

PMR is an essential and conserved protective pro-
cess found in multiple species and a variety of tissues.
Several mechanisms have been proposed over the
years but in light of recent progress in the field, it
seems that the recycling of membrane vesicles in and
out of the cells is crucial. Another consensus finding
is that PMR is highly dependent on calcium and ATP
and that the succession of events taking place has to
be relatively fast (from an emergency response within
seconds to a complete membrane repair within min-
utes). Studies suggest that the size and type of the
lesion may trigger different mechanisms of repair,
but one other possibility is that multiple mechanisms
involved in the correction of the membrane damage
can occur simultaneously within the same cell [106].
This hypothesis has served as the basis of our review,
in which we seek to precisely depict the different
players in the highly regulated PMR process in which
we believe dysferlin plays a central role.

Furthermore, although a substantial body of
knowledge about the PMR mechanisms has been
attained in recent years, we are only beginning to
fully comprehend the complexity of the events tak-
ing place, especially regarding the coordination of
all the molecular participants. The knowledge accu-
mulated in the past few years has been valuable to
better understand the pathophysiology of numerous
diseases involving defects in membrane repair. Nev-
ertheless, numerous gaps still persist regarding our
comprehension of the subtlety within each aspect of
the pathology and in particular in dysferlinopathies
where, although patients share a commonly mutated
gene, the pathophysiology of the disease still varies
significantly between patients independently of a
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given mutation for reasons not fully elucidated. More-
over, each domain of dysferlin has been shown to
carry potential disease-causing mutations, resulting
in a variety of natural histories in patients and demon-
strating the importance of each domain in dysferlin’s
functions. Based on the finding that the c-terminal
portion of the protein is essential for membrane
repair [73, 74, 107], mutations in this region could
have dramatic consequences for muscle homeostasis.
Therefore, new experiments (based on live imaging
and models using mutated proteins) are still needed
to fill in the gaps and help conceive more appropriate
therapeutics in disorders resulting from malfunction-
ing PMR mechanisms, such as muscular dystrophy
and cardiomyopathy.
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