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Abstract

Atomistic Tight-Binding (TB) based simulations are widely used
to study transition metal alloys properties. However, such simulations
still require to be improved if one aims to model segregation and or-
dering phenomena in the case of magnetic materials. Indeed, they
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generally rely on local charge neutrality rules per site, per valence or-
bital and per element, but not per spin ! The aim of this paper is to
present a strategy to model the energetics of magnetic alloys, which is
illustrated in two systems of particular interest: CoPt and FeNi alloys.

Keywords : Cobalt ; Iron ; Nickel ; Tight-Binding ; Magnetism ;
Transition metal alloys

1 Introduction

The Tight-Binding approximation is known to be particularly well suited to
describe the electronic structure and the energetics of transition metals [1].
It has therefore been widely used for a long time to model the structural
properties of perfect bulk materials. However, things become increasingly
complicate when getting away from the perfect lattice, first by introducing
defects (like a vacancy or a surface for the simplest) in pure metals, then by
combining more than one element to form an alloy. The main complexity
in all these cases comes from the necessity to implement a self-consistent
treatment of the charge. Actually, as soon as non equivalent sites coexist in
the material under study, the charge distribution is modified in their vicinity
which in turn changes the potential, and so on. One has then to determine
self-consistently charge and potential, which are related through an equa-
tion involving a Coulomb parameter U, representative of on-site electronic
repulsion. In order to avoid this tedious self-consistent loop, the method-
ology adopted up to now was to try to determine a simple rule obeyed by
the charge resulting from the self-consistent procedure. Based on the results
of ab initio calculations, it has successively been shown that this rule was
a local neutrality rule, first per site in the case of defect in pure elements
[2], then per orbital when spd hybridization was taken into account [3], and
finally per element in the case of alloys [4, 5]. This local charge neutrality
rule is then used to shift the atomic energy levels and to determine in this
way the self-consistent electronic structure of the system under consideration.
Unfortunately, this local neutrality is not always holding on per spin, lead-
ing to inaccuracies when dealing with magnetic systems. Based on a recent
work on the environment dependence of magnetic moment and atomic level
shifts within the Tight-Binding approximation[6], we present here a strat-
egy to model the energetics of magnetic materials, in particular alloys. This
is illustrated by calculating in this way the magnetic moment of the three
ferromagnetic transition metals Co, Fe, Ni, and its evolution under alloying
in two archetypal systems: CoPt and FeNi. We will show in which manner
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ab initio calculations can be used in our approach for determining the ef-
fective Coulomb integral U . The choice of the two alloy systems among all
the possible ones is motivated by many reasons. First they present a strong
technology interest, in magnetic storage media [7] and catalysis [8] for CoPt,
and for their use in nuclear vessels for FeNi. They are also good examples
of systems where magnetism has been shown to have an important effect on
phenomena such as ordering (CoPt, [9, 5]) and surface segregation (FeNi,
[10]). Finally, they allow us to illustrate how our methodology evolves de-
pending on that a single alloy component (CoPt), or both of them (FeNi),
are magnetic. On the theoretical point of view, the nowadays used energy
models are much simplified so that they can be implemented in large scale
simulations like classical Monte-Carlo or Molecular Dynamics [11, 12]. The
proposed approach should bring an important progress for these types of sim-
ulations by taking into account the magnetism in energy models, for a better
description of the above mentionned segregation and ordering phenomena
tightly linked to magnetism.

2 Tight-Binding treatment of magnetism in

transition metals

2.1 Formalism

Let us recall here the well known Tight-Binding (TB) Hamiltonian in the
case of pure elements [1]:

H =
∑
n,λ

|n, λ⟩ελ0⟨n, λ|+
∑

n,m,λ,µ

|m,µ⟩βλµ
nm⟨n, λ|, (1)

in which |n, λ⟩ is the atomic λ-orbital at site n, ελ0 the atomic λ-level and
βλµ
nm the hopping integrals, directly related to the bandwidth. Magnetism of

transition metals is essentially driven by their valence d electrons so that the
Hamiltonian can be simplified with ελ0=ε0 for the atomic d-level. Then, the
hopping integrals, which are rapidly damped (after the first nearest neigh-
bours shell for a close-packed structure), can be expressed in terms of three
single Slater parameters : ddσ, ddπ, ddδ which can be chosen either in a
canonical way (|ddσ| ≈ 2|ddπ|, |ddπ| ≈ 0) [17] when interested in general
trends, or fitted to DFT calculations for a peculiar system. In this frame-
work, the electronic local density of states (LDOS) at a given site p, np(E),
is easily obtained from the continued fraction expansion of the Green func-
tion G(E) = (E −H)−1, the coefficients of which are directly related to the
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moments of the density of states. These coefficients are calculated within the
recursion method [18]. In this formalism, the LDOS is the most precise as
the number of calculated coefficients is large.
For a few metallic elements at the end of the first transition series, the energy
of the system is lowered by shifting the two spin bands, inducing different
numbers of electrons with up and down spins (N↑, N↓), and therefore a finite
magnetic moment µ = N↑ − N↓. In the framework of collinear magnetism
and in absence of spin-orbit coupling, the up and down states are decoupled,
so that the sub-systems of up and down electrons can be treated separately.
In this framework each spin partial ferromagnetic LDOS (normalized to 5 e)
is obtained from the paramagnetic one n0(E) (therefore also normalized to
5 e) by simply shifting its barycentre ε0 by ±∆ε/2:

n↑(E) = n0(E +
∆ε

2
)

n↓(E) = n0(E − ∆ε

2
).

Even though treated separately, the two spin LDOS are linked through
the definition of a single Fermi level (EF ) for both spin directions in order
to get the right total d-band filling Ne = N↑ + N↓, the number of electrons
of spin σ (σ =↑,↓) being defined by:

Nσ =

∫ EF

−∞
nσ(E)dE, (2)

so that the magnetic moment is simply given by:

µ = N↑ −N↓ =

EF+∆ε
2∫

EF−∆ε
2

n0(E)dE, (3a)

On the other hand, linearizing the Hamiltonian leads to a self-consistency
relation between the d-level shifts and the magnetic moment through the
Coulomb integral U which writes: ∆ε = Uµ/5, giving another ∆ε-variation
law for µ:

µ =
5

U
∆ε. (3b)

The precise value of U in ferromagnetic transition metals has long been
the subject of debate, in particular in relation with what could be inferred
from photoemission experiments. Indeed, one has to keep in mind that such
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values in the solid are effective values, smaller than their atomic counterpart
due to screening effects. In this context, most authors agree to keep values
around 2-3 eV for the three ferommagnetic elements Fe, Co, Ni[19]. A self-
consistent determination of the magnetic moment then requires finding the
crossing points of the two curves given by eqs. 3a and 3b as a function of
∆ε for the actual value of the U parameter. The precise value of U will then
be determined as that which better fits the value of the magnetic moment
calculated by abinitio calculations in selected configurations. The determi-
nation of (possibly multiple) crossing points then requires to determine the
zeros of the following equation:

∆µ =

EF+∆ε
2∫

EF−∆ε
2

n0(E)dE − 5

U
∆ε. (4)

If more than one crossing point is found, the equilibrium value of µ is the
one that minimizes the band energy Eb:

Eb(µ) =

∫ EF

−∞
En↑(E)dE +

∫ EF

−∞
En↓(E)dE −Neε0 +

5

4
U(

µ

5
)2, (5a)

where the last two terms account for the double counting of interactions in
the one-electron term. Taking advantage of the self-consistent relation 3b,
this energy also writes:

Eb(µ) = Ecoh,0(N ↑) + Ecoh,0(N ↓)− 1

20
Uµ2, (5b)

with: Ecoh,0(Nσ) =
∫ Eσ

F

−∞ Enσ(E)dE−N0ε0; E
σ
F = EF ± (∆ε/2) depending on

σ =↑, ↓. The gain (or loss) in energy due to magnetism for a given d-band
filling is then given by:

∆Eb(µ) = ∆Ecoh,0(Ne, µ)−
1

20
Uµ2

∆Ecoh,0(Ne, µ) = Ecoh,0(N ↑) + Ecoh,0(N ↓)− 2Ecoh,0(Ne). (5c)

As can be seen, for small values of the magnetic moment, the first term,
independent on U , is nothing but the second derivative (convexity) of the
curve Ecoh,0(Ne) at the considered band filling. This band term is positive and
then disfavours magnetism whereas the second (magnetic) term is explicitly
negative and then favours its occurrence. The efficiency of the methodology
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to characterize magnetic systems has been shown in the preliminary study
of Ref.[6] in the case of some Co based systems. It is applied in the following
to the other two ferromagnetic transistion metals, Fe and Ni, before being
extended to the study of their alloys.

2.2 Application to pure Fe, Co, Ni bulk materials

The three late metals of the first transition series (Fe, Co and Ni) present
a stable magnetic structural phase at low temperature. In this sequence
the strongest ferromagnetic element is Fe and the weakest one Ni which is
related to the increasing filling of the d-band from 7 (Fe) to 9 (Ni). At
low temperature, these elements crystallize respectively in the BCC body-
centered cubic (Fe), the HCP hexagonal close packed (Co) and FCC face-
centered cubic (Ni) structures. These sequences should then be recovered by
our model in order to propose it for any further coupled structural/magnetic
study of magnetic systems.
In order to apply the previously described magnetic treatment, we use the non
magnetic local densities of states (LDOS) calculated as a continued fraction
exact up to the 11th, i.e. with 22 exact moments. In this way it is ensured
to obtain detailed LDOS and to differentiate all the crystalline structures.
For the applications, we use the specific parameters for d orbitals (hopping
integrals and d atomic levels) compiled by Papaconstantopoulos [20]. Then
the treatment of magnetism, presented in the previous section, is applied to
these LDOS. The results for each ferromagnetic element in its equilibrium
crystalline structure are presented in Fig. 1, in which the equilibrium value
of the magnetic moment is given as the intersection of the two µ curves.
The values of U used in this figure have been checked in the physical range
(2 eV < U < 4 eV ) generally admitted for the ferromagnetic elements at
the end of the first transition element series[19]. We keep in this figure the
U values which give values of the local magnetic moment presenting the
best agreement with density functional theory (DFT) as well as the known
experimental value, namely:

• Fe: µ = 2.2µB when U = 2.8 eV

• Co: µ = 1.6µB when U = 3.0 eV ,

• Ni: µ = 0.6µB when U = 2.0 eV ,

The lower graph confirms the reliability of the methodology by showing
the coincidence between the absolute minimum of ∆Eb and the last crossing
of the ∆µ curve with the µ axis.
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Figure 1: (color on line) Bulk BCC Fe, HCP Co, FCC Ni. The upper graphs
show the self-consistent determination of µ from the crossing points of eqs.
(3a) and (3b) (line) for the respective values of U = 2.8eV (Fe), 3.0eV (Co)
and 2.0eV (Ni). The lower graphs correspond to the µ-dependence of ∆µ
(eq. (4), black diamonds) and ∆Eb (eq. (5c), red line joining red circles) for
the same U values.

3 Tight-Binding treatment of magnetism in

transition metal alloys

In the case of an AcB1−c alloys, the TB hamiltonian has to be re-written as:

H =
∑
n,i,λ

pin|n, λ⟩ε0,i⟨n, λ|+
∑

n,m,i,j,λ,µ

pinp
j
m|m,µ⟩βλµ

nm,ij⟨n, λ|, (6)

in which the i, j indices label the chemical nature of the atoms at sites n,m,
and pin is the so-called occupation factor, equal to one if site n is occupied
by an atom of the i-species, and zero elsewhere. For sites having a different
environment from the pure bulk material, which is the case in alloys, a self-
consistent treatment is necessary to determine the non magnetic LDOS prior
to apply the magnetic treatment. The self-consistency is achieved by using
the usual local charge neutrality rule. This implies to shift the pure elements
atomic levels ε0,i until the neutrality is reached, i.e until the on-site charge
is equal to the charge in the pure bulk material [21]. The shifted atomic
levels at the end of the charge neutrality procedure will be referred to as the
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self-consistent atomic levels εi. Once the chemical shift undergone, we can
apply the previous described magnetic treatment to these εi to determine
the local magnetization µi on the different sites. However, the situation is
different depending on that the alloy includes one or two magnetic elements.

3.1 Binary alloys with one magnetic element: CoPt

Let us first consider an AcB1−c alloy associating a magnetic element A and
a non magnetic one B. For the sake of simplicity, we will consider that the
final magnetic treatment involves only the magnetic element of the alloy, by
neglecting the possible (very small) magnetic moment which could be gained
by the initially non magnetic element. In that case, the procedure remains
quite simple since only the A-partial LDOS will be splitted (by ∆ε = ∆εA.
Starting from the non magnetic LDOS, one just needs to readjust the d
band levels since the splitting into spin-up and spin-down bands, for the
magnetic element, may change the charge redistribution. This is performed
by inserting, for each ∆ϵ value the self-consistent loop on charge neutrality
described above by shifting accordingly the d band of the non magnetic
element.

This is illustrated here for the CoPt system. The results for the local
magnetic moment on Co atoms in the bulk CoPt alloy are presented in Fig-
ure 2. The curves represent the µ-dependence of ∆µ (eq. 4) obtained after
the magnetic treatment of the LDOS. In the following, only the values cor-
responding to minimal band energy are discussed.

0,0 0,5 1,0 1,5 2,0
-0,2

-0,1

0,0

0,1

0,2

0,3

 (
B
)

 ( B)

 U=2.65 eV
 U=3.05 eV
 U=2.60 eV

Figure 2: CoPt: curves of ∆µ(µ) for Co in a bulk CoPt alloys. The different
curves correspond to values of U ranging between 2.6 and 3.0 eV.

Using the value of U from the pure Co (U = 3.0 eV ) leads to a strong
enhancement of µ which reaches a value of 1.98µB. This effect is similar to
that of bond breaking, both leading, within the same order of magnitude,
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to the enhancement of the local magnetic moment[31]. This value has then
to be compared to DFT calculations. However, considering the literature on
the subject, a rather large dispersion on these values can be found going from
≈ 1.83 to 1.96µB. We have therefore varied the values of U to investigate
which range of variation is required to obtain these different values of µ. The
minimal value of U that can be taken, while keeping a magnetic behaviour
(i.e a crossing of ∆µ with µ axis) is found to be ≈ 2.60 eV leading to a local
magnetic moment of 1.8µB. Therefore, our magnetic treatment can cover the
realistic range of µ by varying U in the physical range [2.6eV-3eV]. In this
context, in future works on CoPt based systems (and certainly any alloy), a
choice will be needed regarding the fitting to DFT values, the lesson of the
present work being that one should refer to a single coherent series of DFT
calculations within the same code.

3.2 Binary alloys with two magnetic elements: FeNi

The situation is a little bit more complex when associating two A and B
magnetic elements. In that case, the energy of the system can be lowered
by shifting the two spin bands for each partial i-LDOS, inducing different
numbers of electrons with up and down spins (Ni↑, Ni↓), and therefore two
finite local magnetic moments µi = Ni↑ − Ni↓. As for pure elements, in the
framework of collinear magnetism and in absence of spin-orbit coupling, the
up and down states are decoupled for each element, so that the sub-systems
of up and down electrons can be treated separately, keeping in mind that
one must define a single Fermi level (EF ) for both spin directions and both
elements in order to get the right total d-band fillings per species Ne,i = Ni↑+
Ni↓ (i=A,B), which corresponds to those of the corresponding pure elements
following the local charge neutrality rule per species. Thus, in a canonical
approach, each spin partial i-LDOS is obtained from the paramagnetic one
ni0(E) by simply shifting by ±∆εi its barycentre εi, i.e. the self-consistent
atomic level issued from the charge neutrality procedure per species.

This is performed by first calculating the alloying induced chemical shifts
undergone by the atomic levels with respect to their values in the pure ele-
ments (leading to the self-consistent εi), for each possible value of the mag-
netic moments, including µ = 0. This means that one has to apply the local
neutrality rule for a whole series of (∆εA, ∆εB) couples, therefore for a series
of magnetic states, the neutrality procedure being performed on the partial
densities ni(E) = ni↑(E) + ni↓(E), with a common Fermi level EF (which
has no reason to be the same as in the paramagnetic state). This allows us,
on one hand to determine the band filling per spin for each species (Niσ),

9



and on the other hand to draw a 3D mapping of the self-consistent (εA, εB)
couples in the (∆εA,∆εB) space. Then, once these self-consistent εA, εB
so-determined, one can calculate the values of both magnetic moments µi

by extending the equations 3a-3b, by just labelling all the variables, except
EF by an i-index, namely: Ni, ni,0(E), εA. One then obtain now two 3D
maps µi in the ∆εA, ∆εB. This is illustrated in Figure 3 (left-hand side)
in the FeNi case at equiconcentration, for the Fe magnetic moment µFe.
Then, it remains to intersect each of two µi maps (i=Fe,i=Ni) by the plane
corresponding to the extension of eq. (3b) for the proper value of Ui. This
is illustrated in the same figure for the µFe = 2.8eV , i.e. the value of the
Coulom interaction in pure Fe. We also plot in Figure 3 (left-hand side)
the projection of the intersection line in the (∆εFe,∆εN i) layer. Finally, the
equilibrium µA and µB magnetic moments will be given by the common val-
ues of (∆εA,∆εB) for which there exists simultaneous intersections. This is
achieved by finding the crossing point of the intersection lines projections in
the (∆εA,∆εB) layer. This is illustrated for the FeNi alloy in the right-hand
side of Figure 3, by first keeping for the alloy (as for CoPt) the same values
of Ui as in the pure metals (UFe = 2.8 eV, UNi = 2 eV ).

Figure 3: FeNi: left-hand side: Intersecting maps µFe given by the gener-
alization of equation 3a-3b to alloys. The intersection line is projected in
(∆εFe,∆εNi). right-hand side: crossing of the projected intersection lines for
Fe and Ni.

As can be seen, the single intersection point obtained for (∆εA,∆εB) =
(0.9 eV, 0.2 eV) leads to the following magnetic moments: µFe = 1.6µB

and µNi = 0.6µB, lower that in the pure elements (µFe = 2.2µB and
µNi = 0.45µB). However, as in the CoPt case, there is no reason to keep
constant the values of UFe and UNi when going from the pure elements
to the alloy. We have then here again allowed small variations of these
Coulomb integrals as a function of the chemical environment, in order to
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identify the (∆εA,∆εB) values which would give values of the equilibrium
magnetic moments consistent with DFT values. One finds that these pro-
jections cross for 2.5 eV < UFe < 2.9 eV and 2 eV < UNi < 4 eV . This
gives different 2D (∆εA,∆εB) intersection lines and therefore different val-
ues of the magnetic moments (µFe, µNi)=f(UFe, UNi) which can be com-
pared to those of the pure elements. From such an analysis, it appears
that the case (UFe = 2.9 eV, UNi = 2 eV ) gives values closer to those of
the pure element than those previously determined for the precise values
(UFe = 2.8 eV, UNi = 2 eV ), which illustrates the sensibility of the calcu-
lation in this U range. However, if one takes as a reference DFT calcula-
tions performed in the L10 phase (µFe = 2.64µB and µNi = 0.78µB),[33]
it is more suited to choose the case (UFe = 3 eV, UNi = 2 eV ) which gives
µFe = 2.35µB and µNi = 0.71µB. This result indicates that the Coulomb
integral is unchanged for the Ni sites and slightly increased on the Fe ones.
Here again, an alternative procedure which either avoids to find the zero of
∆µi, or allows to discriminate between possible multiple solutions if they
exist, is to calculate the magnetic energy balance by a simple extension
of the equations(5c)[33]. In that case, the equilibrium magnetic moments
µA,eq(UA, UB) and µB,eq(UA, UB), for a given (UA, UB) couple, are those cor-
responding to the values of (∆εA,∆εB) for which ∆Eb is minimum.

4 Conclusion

We have presented here a simple way to characterize the variation of the
magnetic moment with the environment and to generalize the tight-binding
expression of the energy to account for magnetism. This has been illustrated
in different systems based on the three ferromagnetic transition elements Co,
Fe and Ni. This methodology should be now implemented in the expression
of the TB total energy founding numerical simulation in order to account for
magnetism effects in complex transition metal compounds including surfaces
or more generally including any possible inequivalent sites and defects.
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014205.

[32] V. Dupuis, G. Khadra, S. Linas, A. Hillion, L. Gragnaniello, A. Tamion,
J. Tuaillon-Combes, L. Bardotti, F. Tournus, E. Otero, P. Ohresser, A.
Rogalev, F. Wilhelm, J. Mag. Mag. Mat 383 (2015) 73.

[33] M. Sansa, F. Ribeiro, A. Dhouib,N. JaIdane, Tréglia, submitted to Phys.
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