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a b s t r a c t

We investigate the extent to which standard one sector RBC models with positive externalities and variable capacity utilization can account for 
the large hump-shaped response of output when the model is submitted to a pure sunspot shock. We refine the Benhabib and Wen (2004) 
model considering a general type of additive separable preferences and a general production function. We provide a detailed theoretical 
analysis of local stabilities and local bifurcations as a function of various structural parameters. We show that, when labor is infinitely elastic, local 
indeterminacy occurs through Flip and Hopf bifurcations for a large set of values for the elasticity of intertemporal substitution in consumption, the 
degree of increasing returns to scale and the elasticity of capital–labor substitution. Finally, we provide a detailed quantitative assessment of the model 
and conclude with mixed results. We show that although the model is able theoretically to generate a hump-shaped dynamics of output following an 
i.i.d. sunspot shock under realistic parameter values, the hump is too persistent for the model to be considered fully satisfactory from an empirical 
point of view.

1. Introduction

In this paper, we emphasize the link between demand shocks
and expectation-driven fluctuations based on the existence of
sunspot equilibria. More precisely, we investigate the extent to
which standard one-sector sunspotmodels with positive external-
ities and variable capacity utilization can account for ‘‘boom-bust
cycles’’ characterized by procyclical covariations of most macroe-
conomic variables and a hump-shaped output response when the
model is submitted to a pure sunspot shock.
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The traditional view put forward in the DSGE literature is that
fluctuations are triggered by shocks on economic fundamentals.
However, since Cass and Shell (1983), a field of economic research
has been developed to analyze the role of agents’ expectations in
the understanding of macroeconomic fluctuations. In particular,
researchers have highlighted the fact that agents can collectively
change their expectations due to exogenous reasons, not necessar-
ily related to economic fundamentals. In turn, these changes in ex-
pectations generate fluctuations which validate ex-post the initial
expectations and are thus consistent with rational expectations,
i.e. sunspot fluctuations are based on self-fulfilling prophecies.

The first sunspot model using the framework of the RBC/DSGE
literature (Benhabib and Farmer, 1994) was shown to perform as
well as, or even better than, the canonical RBC model (Farmer and
Guo, 1994). However, a major hurdle this literature faced was that
the existence of sunspot equilibria required very large levels of
increasing returns to scale, inconsistentlywith the data. Thisweak-
ness was considered one of the main challenge for the macroe-
conomic sunspot literature until Wen (1998) proposed a simple
extension consisting in introducing a variable capital utilization
rate in the Benhabib–Farmer setup, in the spirit of Greenwood et
al. (1988).1 It was shown that this simple extension to the canon-
ical one-sector model was sufficient to allow for the existence of
sunspot fluctuations under low and empirically plausible levels of

1 An alternative explanation is to introduce a two-sector setup with increasing
returns affecting mostly the investment good sector. See Dufourt et al. (2015).
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increasing returns. Moreover, Benhabib and Wen (2004) showed
that this model could also explain many dimensions of observed
business cycles when the model is submitted to correlated fun-
damental and sunspot shocks. In particular, the model is able to
account for Pigou cycles: periods of booms and busts triggered
by exogenous changes in agents’ expectations and affecting most
macroeconomic variables. The Benhabib–Wen (henceafter BW)
model then put an end to years of discussions about the credibility
of sunspot models and their ability to explain salient features of
observed business cycles.

Yet, a careful examination of the results presented by BW re-
veals that there remains one dimension for which the model is not
entirely satisfactory. While a positive sunspot shock does generate
procyclicalmovements in consumption, hoursworked, investment
and output – consistently with the data – these impulse responses
are not hump-shaped. This is problematic since, starting with the
seminal analysis of Blanchard and Quah (1989), there exists a bulk
of empirical literature showing that the typical impulse response
of output to a properly defined (through various assumptions)
‘‘demand shock’’ is hump-shaped. Clearly, for an explanation of
actual business cycles based on sunspot/self-fulfilling prophecies
to be fully convincing, these models should be able to replicate all
the main stylized facts associated with a canonical demand shock
identified in the empirical literature.

The aim of this paper is thus twofold. First, we observe that in
the initial BWmodel, very tight restrictions on the specification of
preferences and on the production side of the economy are consid-
ered. These restrictions imply in turn very specific values for some
crucial economic parameters that are known to affect not only
the local stability properties of the models, but also their business
cycle properties: the elasticity of intertemporal substitution (EIS)
in consumption, the degree of increasing returns to scale (IRS), the
wage-elasticity of labor supply, and the capital–labor elasticity of
substitution in production. From a theoretical point of view, it is
thus important to assesswhether the result that indeterminacy can
occur under low degrees of increasing returns to scale in the BW
setup is robust when we consider the whole range of empirically
credible values for these parameters. As a result, we provide in
the first part of the paper a complete analysis of the local stability
properties of the model as a function of these various economic
parameters.

Second, based on the whole picture of the ranges of values
for which the model is locally indeterminate, we assess whether
the inability of the BW model to replicate a hump-shaped output
dynamics in response to a pure sunspot shock is robust – i.e., struc-
tural to the model – or if it is due to the fact that this model was
evaluated under too strong restrictions regarding the specifica-
tions of individual preferences and the production function.

Ourmain findings can be summarized as follows. First,weprove
that, under the class of general additively separable preferences
and a general production function, local indeterminacy occurs
through Flip and Hopf bifurcations for a large set of values for
the degree of IRS, the EIS in consumption and the capital–labor
elasticity of substitution, provided that the labor supply elasticity is
large. In particular, the degree of IRS can be made arbitrarily small
when the other parameters are in an appropriate range. Likewise,
indeterminacy can occur for a range of values for the capital–labor
elasticity of substitution that extends well beyond one – including,
when the degree of IRS is not too large, the case a perfect factor
complementarity. Second, we perform a quantitative analysis of
the model directed toward the ability to replicate a hump-shaped
dynamics of output in response to a pure sunspot shock. We show
that, from a theoretical point of view, a standard one-sector model
with variable capacity utilization in the spirit of BW is able to
reproduce such a hump-shaped dynamics, while maintaining the
procyclicality of all the main macroeconomic variables along the

business cycle (boom-bust cycles). The key ingredients for obtain-
ing this result are to consider a value for EIS in consumption in the
upper range of available empirical estimates, a quite substantial
increase in the degree of factor substitutability compared to the
Cobb–Douglas production function, and a slightly larger degree of
IRS than considered in the BW model. On the other hand, we also
show that the obtained hump-shaped dynamics is too persistent
to be considered entirely consistent with observed data, leading us
to conclude that the puzzle is improved but not entirely solved.

This remaining of this paper is organized as follows.We present
a generalized version of the one-sector model with variable capital
utilization rate in Section 2, as well as the corresponding intertem-
poral equilibrium and steady state. We derive the local stability
properties and local bifurcations in Section 3. In Section 4 we
discuss the ability of our model to account for the stylized facts
associated with a canonical demand shock when the source of
the business cycle is a pure sunspot shock. We also check the
robustness of our results considering extended formulations with
habit formation in consumption or dynamic learning by doing in
production. We conclude in Section 5.

2. The model

We consider a closed economy framework in the spirit of Wen
(1998) and Benhabib and Wen (2004). The economy is composed
of a large number of identical infinitely-lived agents and a large
number of identical producers. Agents consume, supply labor and
accumulate capital subject to a variable capacity utilization rate
that also influences the depreciation rate of capital. Firms produce
the unique final good which can be used either for consumption
or investment. All markets are perfectly competitive, but there are
externalities in production.

2.1. The production structure

The production sector is composed of a large number of iden-
tical firms which operate under perfect competition. Output Yt is
produced by combining labor Lt and capital services utKt ,where ut
is the capital utilization rate. The technology of each firm exhibits
constant returns to scale with respect to its own inputs and we
consider that knowledge diffusion occurs, in the sense that each
of the many firms benefits from positive externalities due to the
contribution of the average level of labor L̄ and capital services ūK̄ .
These external effects are exogenous and not traded in markets.
The production function is

Yt = Af (utKt , Lt )e(ūt K̄t , L̄t ) (2.1)

where A > 0 is a scaling technology parameter and e(ūt K̄t , L̄t ) is
the externality variable. Our first departure from BW is that we do
not restrict the production function to be Cobb–Douglas. Rather,
our production function is general and satisfies:

Assumption 1. f (uK , L) is C2 over R2
++

, increasing in (uK , L), con-
cave over R2

++
and homogeneous of degree one. e(ūK̄ , L̄) is C1 over

R++ and increasing in (ūK̄ , L̄).

Firms rent effective capital units at the real rental rate rt and
hire labor at the unit real wage wt . The profit maximization pro-
gram of the firm,

max
{Yt ,Lt ,utKt }

Yt − wtLt − rtutKt ,

leads to the standard demand function for effective capital utKt and
labor Lt :

rt = Af1(utKt , Lt )e(ūt K̄t , L̄t ) (2.2)

wt = Af2(utKt , Lt )e(ūt K̄t , L̄t ). (2.3)



Wecan compute the share of capital in total income s(uK , L), the
elasticity of capital–labor substitution σ (uK , L) and the elasticities
of the externality variable with respect to labor εeL(ūK̄ , L̄) and
capital εeK (ūK̄ , L̄):

s(uK , L) =
uKf1(uK , L)
f (uK , L)

∈ (0, 1),

σ (uK , L) = −
(1 − s(uK , L))f1(uK , L)

uKf11(uK , L)
> 0

(2.4)

εeK (ūK̄ , L̄) =
e1(ūK̄ , L̄)K̄
e(ūK̄ , L̄)

, εeL(ūK̄ , L̄) =
e2(ūK̄ , L̄)L̄
e(ūK̄ , L̄)

. (2.5)

It can be noted that the choice of a Cobb–Douglas production
function, as in BW, implies σ (uK , L) = 1 whereas the use of a gen-
eral production function entails σ (uK , L) ∈ (0, +∞). To simplify
notation, we now denote by s, σ , εeK and εeL the corresponding
elasticities evaluated at the steady-state. In order to allow for
a direct comparison with BW, we also introduce the following
assumption on externalities

Assumption 2. The externalities satisfy εeK = sΘ and εeL =

(1 − s)Θ with Θ > 0 the level of increasing returns.

In this case, we get indeed εeK + εeL = Θ, as assumed in BW.

2.2. Households

There exists a continuum of mass 1 of identical households
maximizing their expected lifetime utility subject to a capital
accumulation constraint. The representative household supplies
elastically an amount of labor l ∈ [0, ℓ] at each period, with ℓ > 1
its endowment of labor. It derives utility from consumption c and
leisureL = ℓ−l according to an additively separable instantaneous
utility function

U(c,L) = u(c) + Bv(L)

where B > 0 is a scaling parameter, which satisfies:

Assumption 3. u u(c) and v(L) are respectively C2 over R+ and
[0, ℓ], increasing and concave. Moreover, limx→0v

′(x)x = +∞ and
limx→+∞v′(x)x = 0, or limx→0v

′(x)x = 0 and limx→+∞v′(x)x =

+∞.2

We also introduce the intertemporal elasticity of substitution in
consumption and the elasticity of labor supply with respect to
wage:

εcc(c) = −
u′(c)
u′′(c)c

, εlw(l) = −
v′(L)
v′′(L)l

. (2.6)

Our utility function generalizes the one considered by BW, since
they impose a logarithmic consumption specification associated
with a unitary elasticity of intertemporal substitution (EIS) in con-
sumption εcc(c) = −u′(c)/(u′′(c)c) = 1, and a linear specification
with respect to leisure implying an infinitely-elastic labor supply
with εlw(l) = +∞. Our more general assumptions enable us
to consider the whole range of positive values for both of these
elasticities.

The capital stock kt is owned and accumulated by households
and the utilization rate of capital, ut , is an endogenous variable.
Households rent capital services utkt to firms at the real rental
rate rt . Increasing the utilization rate thus increases the services
of capital but it also has a direct impact on the depreciation rate of

2 If v(x) = x1−χ/(1 − χ ) with χ ≥ 0 the inverse of the elasticity of labor, the
first part of the boundary conditions is satisfied when χ > 1 while the second part
holds if χ ∈ [0, 1).

capital. The latter is a convex function of the utilization rate, such
that

δt =
uγ
t

γ
∈ (0, 1), with γ > 1. (2.7)

The capital accumulation equation constraint can now be written
as follows:

kt+1 = (1 − δt )kt + wt lt + rtutkt − ct (2.8)

with k0 given.
Combining (2.7) and (2.8), the consumer thus solves the follow-

ing lifetime utility maximization program (where β ∈ (0, 1) is the
discount factor)

max
{ct ,kt+1,lt ,ut}t=0...∞

E0
+∞∑
t=0

β t [u(ct ) + Bv(ℓ − lt )]

s.t. kt+1 =

(
1 −

uγ
t

γ

)
kt + wt lt + rtutkt − ct

k0 given.

(2.9)

The first-order conditions for an interior solution can be written
as

Bv′(ℓ − lt ) = wtu′(ct ) (2.10)

u′(ct ) = βEtRt+1u′(ct+1) (2.11)

rt = uγ−1
t (2.12)

where Rt = 1 − δt + rtut is the net return factor on capital. An
optimal path must also satisfy the transversality condition:

lim
t→+∞

E0β tu′(ct )kt+1 = 0. (2.13)

Eq. (2.10) is the consumption–leisure trade-off equation, (2.11) is
the consumption–saving arbitrage equation (i.e., the Euler equa-
tion), and (2.12) determines the optimal utilization rate of capital.

2.3. General equilibrium

A symmetric general equilibrium is a sequence of prices {wt , rt}
and quantities such that all markets clear, Lt = lt and Kt = kt for
any t, and the externality variable satisfies (utK t , Lt ) = (utKt , Lt ).

It is easy to use some of the equilibrium conditions to reduce
the dynamic system defining a general equilibrium to its minimal
dimension. We can first observe that combining (2.2) with (2.12)
gives ut as a function of capital and labor, namely ut = ν(kt , lt ).
Similarly, we can derive a consumption demand function c(kt , lt )
by implicitly solving the consumption–leisure trade-off Eq. (2.10)
with respect to ct . Finally, from the capital accumulation Eq. (2.8)
and the Euler Eq. (2.11), we can derive that a general equilibrium
of this economy is a sequence {kt , lt} satisfying the following two-
dimensional system of differential equations in k and l:

Af (ν(kt , lt )kt , lt )e(ν(kt , lt )kt , lt ) + (1 − δt )kt
− c(kt , lt ) − kt+1 = 0

βEtRt+1u′(c(kt+1, lt+1)) − u′(c(kt , lt )) = 0
(2.14)

with δt = ν(kt , lt )γ /γ and Rt = 1 − δt + Af1(ν(kt , lt )kt , lt )ν(kt , lt )
e(ν(kt , lt )kt , lt ).

Definition 1. An intertemporal equilibrium is a path {kt , lt}t≥0,
with (kt , lt ) ∈ R++ × (0, ℓ) and k0 > 0, that satisfies Eqs. (2.14)
and the transversality condition (2.13).



D =
1
β

⎡⎣1 +

Θθ (γ − 1)
(
1 +

σ
εlw

)
(γ − 1) [θ (1 − s) + s] +

1
εlw

[σ (γ − 1) + 1 − s] − Θ

[
1 + σ (1 − s)(γ − 1)β(1 − δ) +

sσ
εlw

]
⎤⎦

T = 1 + D +
θ (γ − 1)

βs

(θ − βδs)(1 − s)
(
1 +

εcc
εlw

)
− Θ

[
εcc(θ − βδs)

(
1 +

sσ
εlw

)
− (1 − s) (θ − σβδs)

]
(γ − 1) [θ (1 − s) + s] +

1
εlw

[σ (γ − 1) + 1 − s] − Θ

[
1 + σ (1 − s)(γ − 1)β(1 − δ) +

sσ
εlw

]
(3.2)

Box I.

2.4. Normalized steady state and linearization

A steady state is a 4-uple (k∗, l∗, u∗, c∗) such that:

Af1(u∗k∗, l∗)u∗e(u∗k∗, l∗) =
1 − β(1 − δ∗)

β
≡

θ

β
Af1(u∗k∗, l∗)u∗e(u∗k∗, l∗) = u∗γ−1

c∗
= Af (u∗k∗, l∗)e(u∗k∗, l∗) − δ∗k∗

Bv′(ℓ − l∗) = Af2(u∗K ∗, l∗)e(u∗K ∗, l∗)u′(c∗)

(2.15)

with δ∗
= u∗γ /γ . Considering the rental rate as defined by (2.2)

together with Eqs. (2.11) and (2.12) evaluated at the steady state,
we derive the explicit value of u∗ as

u∗
=

(
γ (1 − β)
β(γ − 1)

)1/γ

. (2.16)

We conclude from this expression that δ∗
= (1 − β)/[β(γ − 1)].

Equivalently, if δ is calibrated, the corresponding value for γ is
γ ∗

= [1− β(1− δ)]/(βδ). We can also use the scaling parameters
A and B in order to give conditions for the existence of a normal-
ized steady state (NSS in the sequel) which remains invariant to
parameter changes, for example a NSS such that k∗

= l∗ = 1.

Proposition 1. Under Assumptions 1–3, there exist A∗, B∗ > 0 such
that when A = A∗ and B = B∗ , a NSS satisfying (k∗, l∗, c∗) =

(1, 1, (θ − sβδ∗)/sβ) is the unique solution of (2.15).

Proof. See Appendix A.1. □

Using a continuity argument we derive from Proposition 1 that
there exists an intertemporal equilibrium for any k0 in the neigh-
borhood of k∗. In the rest of the paper, we evaluate all the shares
and elasticities previously defined at the NSS. From (2.4) and (2.5),
we consider indeed s(u∗, 1) = s, σ (u∗, 1) = σ , εeK (u∗, 1) = εeK ,
εeL(u∗, 1) = εeL, εcc(c∗) = εcc and εlw(1) = εlw .

Finally, we log-linearize the model in order to analyze the local
dynamics around the NSS for different values of four crucial pa-
rameters which are the intertemporal elasticity of substitution in
consumption εcc , the elasticity of the labor supply εlw , the elasticity
of capital–labor substitution σ and the degree of increasing returns
to scale Θ . In what follows, we provide a detailed theoretical
analysis of local stabilities and local bifurcations as function of
these crucial parameters.

3. Local stability and bifurcation analysis

Our model is composed of one forward looking variable,
hours worked, and one predetermined variable, the capital stock,
i.e. (2.14) is two-dimensional. Since time is discrete, one can use
the geometrical method developed by Grandmont et al. (1998) to
study the local stability properties of our normalized steady state,
as well as the emergence of local bifurcations.

Lemma 1. Under Assumptions 1–3, the characteristic polynomial is

P(λ) = λ2
− λT + D (3.1)

with T and D as given in Box I.

Proof. See Appendix A.2. □

We study the variation of the Trace T and DeterminantDwhen
one of our parameter of interest is made to vary continuously in
its admissible range. To avoid considering a large number of cases
that are not relevant empirically, we restrict the possible values of
the amount of increasing returns Θ , and we also introduce some
specific parametric values for δ, β and s which are consistent with
quarterly US data:

Assumption 4. δ = 0.025, β = 0.99, s ∈ (0.25, 0.35) and
Θ ≤ Θmax

= min{(1 − s)/sσ , 0.42}.3

We derive from these parametric restrictions the following
property:

Lemma 2. Under Assumptions 1–4, ∂D/∂εlw > 0, limεlw→0D > 1
and D < 1 if and only if

Θ > Θ ≡
(γ − 1)[θ (1 − s) + s]

1 + σ (1 − s)(γ − 1)β(1 − δ)
∈ (0, Θmax) (3.3)

and

εℓw > ε̂ℓw ≡
σ (γ − 1) + 1 − s − Θσ s

[1 + σ (1 − s)(γ − 1)β(1 − δ)] (Θ − Θ)
.

Proof. See Appendix A.3. □

As is usual in the sunspot literature, a large enough amount of IRS
and a large enough elasticity of labor are required to get a locally
indeterminate steady state. From now on, we then introduce these
lower bound restrictions on Θ and εℓw , together with some upper
bound on the EIS εcc in order to simplify the analysis without loss
of generality.

Assumption 5. Θ > Θ , εlw > ε̂ℓw and ϵcc ≤ ε̄cc ≡

1−s
Θmax +

θ (1−s)
θ−βδs

1+ 1−s
Θmaxεlw

.4

In this analysis of local stability and local bifurcation, we choose
the elasticity of capital–labor substitution σ to be our bifurcation
parameter. As discussed in Section 2.1, σ ∈ (0, ∞). In order to

3 The values for δ and β are almost universally shared in the RBC/DSGE literature,
together with a capital share around 0.3. The restriction on the size of externalities
Θ is based on the estimated degree of aggregate IRS for theUS economy by Basu and
Fernald (1997) and ensures that the labor demand function has a standard negative
slope.
4 Our restriction on the EIS in consumption implies ϵcc ∈ (2.41, 2.698), so that,

depending on the value of the elasticity of labor, we consider the whole range of
empirical estimates we have found for this parameter (see among others Campbell
(1999), Kocherlakota (1996), Mulligan (2002), Vissing-Jorgensen and Attanasio
(2003), and Gruber (2013), who obtained estimates ranging between 0 and 2.3).



Θ̂ ≡

2s(1 + β)
{
(γ − 1) [θ (1 − s) + s] +

1−s
εlw

}
+ θ (γ − 1)(1 − s)(θ − βδs)

(
1 +

εcc
εlw

)
2s [1 + β − θ (γ − 1)] + θ (γ − 1) [εcc(θ − βδs) − (1 − s)θ ]

(3.4)

Box II.

ε̃ℓw ≡

γ − 1 + Θ
θ−βδs

βδ

Θ(1 − s)(γ − 1)β(1 − δ)
,

σH
≡

(1 − β)
[
(γ − 1) [θ (1 − s) + s] +

1−s
εlw

]
− Θ [1 − β − θ (γ − 1)]

(1 − β)
{
Θ

[
(γ − 1)(1 − s)β(1 − δ) −

θ−βδs
εlwβδ

]
−

γ−1
εlw

} ,

σ F
≡

{2s [1 + β − θ (γ − 1)] + θ (γ − 1) [εcc(θ − βδs) − θ (1 − s)]}(Θ̂ − Θ)

s
{
2(1 + β)

[
Θ

[
(γ − 1)(1 − s)β(1 − δ) +

s
εlw

]
−

γ−1
εlw

]
+ Θθ (γ − 1)

[
(1 − s)βδ −

2
εlw

+
εcc (θ−βδs)

εlw

]} ,

σ T
≡

(θ − βδs)(1 − s)
(
1 +

εcc
εlw

)
− Θ [εcc(θ − βδs) − (1 − s)θ ]

Θs
[
βδ(1 − s) +

εcc (θ−βδs)
εlw

] .

Box III.

derive the local stability properties of the steady state, we consider
the locus of points (T (σ ),D(σ )) as σ is made to vary continuously
in (0, ∞). One can indeed define a line denoted ∆σ as follows :
D = ∆σ (T ) = ST + C, which is independent of σ . The slope of the
latter, S, is the ratio of the partial derivatives of the Determinant
and T race with respect to σ .5 Obvious computations show that
D′(σ ) > 0 and, under Assumptions 4 and 5, T ′(σ ) > 0, so that
S = D′(σ )/T ′(σ ) > 0.

Locating the line ∆σ in the (T ,D) plan allows to provide a
full stability and bifurcation analysis. Indeed all configurations are
described through the consideration of three lines. On the one
hand, an (AC) line is associated with an eigenvalue of the Jacobian
matrix which is equal to one when P(1) = 0. On the other hand,
an (AB) line is associated with an eigenvalue equal to minus one
when P(−1) = 0. Moreover, a segment [BC] is associated with
two eigenvalues which are complex conjugates and have modulus
equal to one when D = 1 and T ∈ (−2, 2). As a result, the steady
state is a saddle-point when P(1) < 0(> 0) and P(−1) > 0(< 0).
Also, the steady state is a sink when P(1) > 0, P(−1) > 0 and
D < 1. In other words, the dynamics is locally indeterminate in the
triangle ABC. Finally, in all other cases, the steady state is a source.

We show in Appendix A.1 that beside the lower bound Θ as
defined in Lemma 2, there exists an upper bound Θ̂ ∈ (Θ, Θmax)
for the level of IRS which leads to two different types of locations
for the ∆σ line. This critical value is defined as in Box II.

It can be proved that when Θ ∈ [0, Θ) the steady state is
always saddle-point stable while we get the following geometric
configurations when Θ > Θ .

Fig. 1 depicts the case where Θ ∈ (Θ, Θ̂). When σ = 0,
the dynamics is locally determinate. As σ increases, the dynamics
remains locally determinate until σ = σ F . At this value, a Flip
bifurcation occurs and the dynamics becomes locally indetermi-
nate. As the ∆σ line crosses the triangle ABC, the steady state
is a sink until σ = σH . At this value, the two eigenvalues of
our system of differential equations are complex conjugates with
a modulus equal to one and a Hopf bifurcation occurs. Between
σH and σ T , the local dynamics is unstable. One can note that a

5 We orient the reader to Grandmont et al. (1998) for a detailed presentation of
the method.

transcritical bifurcation occurs when σ = σ T which can lead to
the apparition ofmultiple steady states. Finally, when σ → ∞, the
dynamics is again locally determinate. Local indeterminacy thus
occurs through a Flip and a Hopf bifurcation.

Fig. 2 depicts the case where Θ > Θ̂ . The main difference with
the previous case is that the locus (T (0),D(0)) is now in the triangle
ABC. We also prove in Appendix A.1 that we need to introduce
a second bound Θ̄ ≤ Θmax to guarantee the existence of local
indeterminacy through a Hopf bifurcation. We then get basically
the same conclusions as in the case Θ ∈ (Θ, Θ̂) except that now
there is no more any flip bifurcation.

We then reach the following proposition:

Proposition 2. Let Assumptions 1–4 hold and consider the bound Θ

as given by (3.3). Then, whenΘ ∈ [0, Θ), the steady state is a saddle-
point. Under the additional Assumption 5, let us consider the bound
Θ̂ as given by (3.4). Then there exist Θ̄ ∈ (Θ̂, Θmax

], ε̃ℓw > 0 and
0 ≤ σ F < σH < σ T < +∞ such that when εℓw > max{ε̃ℓw, ε̂ℓw},
the following results hold:

(i) If Θ ∈ (Θ, Θ̂), the steady state is

– a saddle-point when σ ∈ (0, σ F ),
– a sink, when σ ∈ (σ F , σH ),
– a source when σ ∈ (σH , σ T ),
– a saddle-point when σ ∈ (σ T , ∞).

(ii) If Θ ∈ (Θ̂, Θ̄), the steady state is

– a sink when σ ∈ (0, σH ),
– a source when σ ∈ (σH , σ T ),
– a saddle-point when σ ∈ (σ T , ∞).

The lower bound ε̃ℓw and the Hopf, flip and transcritical bifurcation
values are respectively defined as ε̃ℓw , σH , σ F , σ T in Box III.

Proof. See Appendix A.4. □

From Proposition 2, we clearly recover the standard result that
multiple equilibrium paths are ruled out when the amount of IRS
is small enough with Θ ∈ [0, Θ). When the degree of increasing
returns to scale is positive but not too large, Θ ∈ (Θ, Θ̂), there is



Fig. 1. Local determinacy when Θ ∈ (Θ, Θ̂).

Fig. 2. Local determinacy when Θ ∈ (Θ̂, Θ̄).

a minimal amount of capital–labor substitution σ F which is neces-
sary to get local indeterminacy and sunspot fluctuations. As the de-
gree of IRS gets larger,Θ ∈ (Θ̂, Θ̄), indeterminacy can be obtained
with an arbitrarily small elasticity of substitution between capital
and labor, including the case of strict factor complementarity. In
all cases, however, indeterminacy is excluded when the elasticity
of substitution between factors is very large. It is also worth noting
that the additional bound ε̃ℓw on the elasticity of labor is, beside the
upper bound Θ̄ , also introduced to ensure the existence of a Hopf
bifurcation. Indeed, if Assumptions 1–5 hold with εℓw < ε̃ℓw , the
Hopf bifurcation value and the source configuration for the steady
state no longer exist. The only possible transition is between the
saddle-point and sink configurations through a transcritical or a
Flip bifurcation.

In order to illustrate Proposition 2, and to immediately compare
our results to the conclusions of BW, we assume for now an
infinitely elastic labor supply with εℓw = +∞. Fig. 3 displays
the determinacy/indeterminacy areas as well as the corresponding
bifurcation loci in the 3-dimensional plane defined by εcc, Θ and
σ when the standard calibration s = 0.3 is considered. Clearly,
there exists a wide range of values for which the model is in-
determinate. The BW model, associated with a unitary elasticity
of intertemporal substitution (εcc = 1), a unitary elasticity of
substitution between capital and labor (σ = 1), and a degree of
increasing returns to scale close to its minimum value consistent

with indeterminacy (Θ = 0.11), is just a particular point in
this plane which locates the model relatively ‘‘close’’ to the flip
bifurcation locus in the parameter space. Yet, other, potentially
very different, combinations of values for these parameters are also
consistent with an indeterminate steady-state. A general assess-
ment of whether the BW model with variable capacity utilization
is able or not to replicate the main ‘‘stylized facts’’ associated with
a canonical demand shock when the model is submitted to self-
fulfilling changes in expectations requires to consider the whole
range of values for which the model is indeterminate, provided
these values are empirically credible. This is the issue to which we
now turn.

4. Stylized facts of demand shocks

4.1. Preliminary considerations

In order to understand why considering alternative configura-
tions for εcc, Θ and σ is important while keeping εℓw = +∞ as
in BW, consider as a starting point the effects of increasing the
elasticity of capital–labor substitution σ on the dynamics of output
following a positive sunspot shock. Under our benchmark calibra-
tion with Θ = 0.11, we can apply the formulae in Proposition 2 to
obtain that the steady-state is indeterminate for σ ∈ (σF , σH ) with
σF ≈ 0.74 and σH ≈ 5.84. We thus consider four different values



Fig. 3. Indeterminacy area and bifurcation loci.

Fig. 4. Output dynamics following a positive sunspot shock for different values of σ .

for σ : σ = 0.8, σ = 1, σ = 2 and σ = 5.8. Fig. 4 displays the IRFs
of output associated with a positive sunspot shock. The size of the
shock is set so that the initial output response is 1%.

As Fig. 4 clearly illustrates, the dynamics of output is non-
monotonous in all cases. Yet, when the elasticity of capital–labor
substitution is small or moderate, the output response does not
display the ‘‘hump’’ typically identified in the empirical literature.
In particular, when σ = 1, we recover the inability of the BW
model to account for this fact. However, Fig. 4 also shows thatwhen
the elasticity of capital–labor substitution is further increased, the
dynamics of output becomes more and more persistent and even-
tually becomes hump-shapedwhen σ gets close to σH , itsmaximal
value consistent with indeterminacy. From a theoretical point of
view, this result is important since it proves that a standard one-
sector stochastic growthmodelwith variable capacity utilization is
not structurally unable to reproduce a hump-shaped dynamics of
output when themodel is submitted to pure (i.i.d.) sunspot shocks.

In Fig. 5, we perform the same exercise except that, starting
from the BW model with εcc = σ = 1 and Θ = 0.11, we now
increase the degree of increasing return to scales from Θ = 0.11
to a maximal value of Θ = 0.4. The same result basically obtains,
albeit slightly attenuated. A hump-shaped dynamics occurs for
degrees of IRS above 30%.

To understand the results in Figs. 4 and 5, it is useful to re-
mind some well-known results in the theory of bifurcations. In
particular, it is known that generically, when a parameter crosses
its bifurcation value, there exists an invariant orbit that ‘‘sur-
rounds’’ the steady-state and which influences the local dynamics
of the variables. If the bifurcation is subcritical, this invariant orbit

emerges when the steady-state is a sink. It is repelling and defines
a basin of attraction within which the steady-state is locally stable.
When the bifurcation is supercritical, the limit cycle is stable and
attracts trajectories outside the steady-state.

Fig. 6 displays this invariant orbit in the plane (k, y) when the
value for σ is sufficiently close to its Hopf bifurcation value, σH .
Interestingly, the shape of this curve is pointing to the top and
to the right, suggesting that, following a sunspot shock implying
that output jumps out of the steady-state, both the capital stock
and output are expected to continue increasing for some periods
of time. In other words, the dynamics of the model along the limit
cycle is hump-shaped.

A general result is therefore that in order to obtain a hump-
shaped dynamics of output in the variable capacity utilization
model, it is sufficient to choose a calibration that locates themodel
sufficiently ‘‘close’’ to the Hopf bifurcation locus. In this case, the
local dynamics of output following an i.i.d. sunspot shock will
be sufficiently influenced by the limit cycle. As an illustration of
this general result, we display in Fig. 6 the dynamic trajectories
associated with a 1% sunspot shock, but now the in (k, y) plane.
We consider two meaningful values for σ : σ = 1, corresponding
to the BWmodel, and σ = 5.8, a value close to the Hopf bifurcation
value σH . The influence of the limit cycle on the dynamics is clear
when σ is close to the Hopf bifurcation value.

4.2. Quantitative assessment

Our examples displaying a hump-shaped dynamics were ob-
tained by increasing either the degree of capital–labor substitution



Fig. 5. Output dynamics following a positive sunspot shock for different values of Θ .

Fig. 6. Dynamic trajectories and the limit orbit.

or the degree of IRS independently. In both cases, the hump was
obtained for values of these parameters that were too large to
be considered empirically credible (a value of 5.8 for the capital–
labor elasticity of substitution or a degree of aggregate IRS greater
than 30%). Yet, Fig. 3 reveals that it is also possible to make the
model closer to theHopf bifurcation locus by combining amoderate
increase in Θ and a moderate increase in σ . In this section, we
thus perform an evaluation of the model based on what can be
judged as ‘‘realistic’’ parameter values. Still assuming for now
εℓw = +∞, we consider the most favorable configuration for
which σ , Θ and εcc are set in the upper range of empirically
credible estimates for these parameters. Accordingly, we fix Θ =

0.16, which corresponds to the point estimate obtained by Basu
and Fernald (1997) for aggregate value-added in the US economy.
We allow for a substantial deviation from the Cobb–Douglas tech-
nology by increasing the capital–labor elasticity of substitution to
σ = 3, consistently with the upper range of estimates for this
elasticity obtained in the empirical literature.6 Finally, although
the Hopf bifurcation is independent of εcc (see Proposition 2), we
found that considering a large EIS in consumption helps getting a

6 There is no clear agreement on the size of the elasticity of capital–labor sub-
stitution σ in the empirical literature. The lower estimates belong to the range
(0.4,0.9), as shown in León-Ledesma et al. (2010), Klump et al. (2007, 2012) and
MacAdam and Willman (2013). By contrast, the largest estimates obtained by
Duffy and Papageorgiou (2000) and Karagiannis et al. (2005) range in the interval
(1.24,3.24).

hump-shaped dynamics.7 We thus set εcc = 2.3, associated with
the upper range obtained by Gruber (2013).

Fig. 7 displays the Impulse Response Functions of the main
macroeconomic variables when the model is submitted to a pure
sunspot shock using this configuration (DVV calibration). For com-
parison purposes, we also display the IRFs obtained with the BW
model. We observe that the DVV model is able to explain not only
‘‘boom-bust’’ cycles triggered by self-fulfilling changes in expec-
tations, but also a hump-shaped dynamics of output. The latter
feature is in sharp contrast with the results obtained under the
BW configuration. To understand this result, consider the system
of Eqs. (2.14) and assume that for some exogenous reason, agents
expect that the rental rate of capital rt+1 will be high in the next
period, so that Rt+1 is also high. When the model is close to the
Hopf bifurcation, agents expect that this increase in the interest
rate will be much more persistent than in the BW configuration.
This leads to a persistent boom in investment, associated with
a large increase in the capital stock – far greater than in the
BW model – and a corresponding persistent increase in the rate
at which this capital stock is expected to be used.8 An expected
persistent increase in capital services in turn implies that labor

7 Changing the value of εcc actually influences the shape of the invariant orbit.
When εcc increases, the limit cycle points more to the top, which is consistent with
a hump-shaped dynamics.
8 According to (2.12), the dynamics of the utilization rate is directly related to the

dynamics of rt .



Fig. 7. Impulse Response Functions to a sunspot shock.

demand is expected to be high for a long period of time. As a
result, the representative household expects a sustained period
of high real wages, leading him to increase its consumption level
significantly, by amuch larger extent than in the BWconfiguration.
Since the dynamics of consumption is hump-shaped (as a result
of consumption smoothing motives – a standard result in the RBC
literature), a significant increase in consumption in turn implies a
hump-shaped dynamics of output.

These positive results should not, however, conceal the dimen-
sions over which the model is less satisfactory. In our view, the
main deficiency of the model is that the ‘‘shape’’ of the hump does
not really resemble the one obtained in the empirical literature
estimating themacroeconomic effects of a standard demand shock.
In particular, the dynamics implied by the model is not sufficiently
hump-shaped, and it is too persistent.

4.3. Robustness

We now assess whether our conclusion is robust to alterna-
tive assumptions. We first depart from the infinite labor supply
elasticity specification associated with Hansen’s (1985) model of
indivisible individual labor supply with employment lotteries and
perfect unemployment insurance that was considered up to now
as in BW. We consider instead alternative calibrations regarding
the aggregate labor supply elasticity that remain compatible with
indeterminacy. We show that considering finite labor supply elas-
ticities does not help to render the dynamics of output closer to the
data when the model is submitted to sunspot shocks.

We then consider more significant changes to the model. Fol-
lowing the DSGE literature that had early emphasized that the
canonical RBC model lacks endogenous propagation mechanisms



Fig. 8. Indeterminacy area for different values of εlw .

Fig. 9. Output dynamics following a positive sunspot shock for different values of εlw .

(Cogley and Nason James, 1995; Rotemberg and Woodford, 1996),
we consider two of the most popular extensions proposed in the
literature to enhance the dynamics of output in response to ex-
ogenous shocks: introducing habit formation in consumption, in
the spirit of Boldrin et al. (2001), Jaimovich (2008) and others, and
introducing a richer class of production functions associated with
dynamic learning by doing, in the spirit and Chang et al. (2002).9
We show that none of these extensions help to better replicate the
hump-shaped dynamics of output following a sunspot shock.

4.3.1. Reducing labor supply elasticity
As shown in Fig. 8, decreasing the aggregate labor supply elas-

ticity has two effects on the range of parameter values consistent
with indeterminacy: first, the flip bifurcation shifts upward, im-
plying that larger degrees of IRS are required to maintain the sink
property of the steady-state. Second, the Hopf bifurcation locus
also shifts upward and eventually disappears when εlw crosses a
lower threshold. Quantitatively, the minimum value for Θ con-
sistent with indeterminacy quickly increases when εlw gradually
decreases. For example, when εlw = 10, indeterminacy requires

9 Note that this lack of endogenous persistence does not actually apply to our
model, since white noise sunspot shocks do generate a persistent dynamics of
output, as shown in Figs. 4 and 5. Yet, considering these extensions is worthwhile
since they are known to influence the shape of output dynamics in response to
shocks.

that Θ exceeds 0.2. When εlw = 5, indeterminacy is already
eliminated for all empirically plausible values for Θ.

Yet, it remains interesting theoretically to assess whether de-
creasing the aggregate labor supply elasticity could help improving
the fit of the model with the data. In Fig. 9, we thus compare
the results obtained under our benchmark calibration associated
with εlw = ∞ with those obtained under a similar calibration
for all parameters except that εlw is now calibrated to εlw = 12,
the minimum value consistent with indeterminacy. The figure
clearly shows that the results are worsened under this alternative
calibration. This result is easily explained by the fact that εlw =

12 < ε̃ℓw and thus the Hopf bifurcation no longer exists. More
precisely, if reducing εlw does enable to reduce the persistence
in the response of output to a sunspot shock, the dynamics is no
longer hump-shaped. Moreover, in unreported results, we have
experienced with alternative calibrations combining smaller labor
supply elasticities with larger degrees of IRS to preserve the inde-
terminacy property. None of these experiments helped to improve
the results.

4.3.2. Habits in consumption
We now introduce habit formation in consumption. There are

different ways of doing this, and we chose to adopt a generalized
specification of the instantaneous utility function in Boldrin et al.
(2001) with internal habits in consumption. We thus consider the



Fig. 10. Indeterminacy area for different values of b.

following instantaneous utility function:

u(ct , ct−1, lt ) =
(ct − bct−1)

1−ρ

1 − ρ
+ Bv (ℓ − lt)

with b ∈ (0, 1) the parameter of habit formation.
Solving the consumer’s intertemporal utility maximization

problem, we obtain the new first-order conditions characterizing
optimal consumption choices:

Bv′ (ℓ − lt) = wtλt

λt = (ct − bct−1)
−ρ

− βbEt(ct+1 − bct)−ρ

λt = βEtRt+1λt

replacing Eqs. (2.10)–(2.11) above. All the other equations are the
same. Clearly, when b = 0 we recover our benchmark model with
λt = u′(ct ) = c−ρ

t and a constant EIS in consumption ϵcc = 1/ρ.

When b > 0, the EIS in consumption is also constant but is now
given by ϵcc = (1 − b)/ρ. Using a continuity argument, all our
theoretical characterizations of the local stability properties of the
steady-state hold in a small neighborhood of b = 0. In order to
consider larger values for b, we rely on numerical simulations.
Fig. 10 displays the flip, Hopf and transcritical bifurcation loci for
different values of b ranging between 0 and 0.7. As can be seen,
when b is positive but not too large, the model remains in the
indeterminacy area for most empirically credible values for ϵcc ,
σ , and Θ. When b is increased further, however, the indetermi-
nacy area progressively shrinks, due to a quantitatively significant
downward shift in the Hopf bifurcation locus.

In Fig. 11, we display the Impulse Response Functions of output
to a positive sunspot shock when the value of b is progressively
increased, considering two alternative calibrations for the other
structural parameters. The initial BW calibration with εcc = σ = 1
and Θ = 0.11 (see Panel A), and our benchmark calibration with
εcc = 2.3, σ = 3 and Θ = 0.16 (see Panel B). In the first
case, we increase b from 0 to 0.7, since the model remains in the
indeterminacy area for this whole set of values. In the second case,
we increase b from 0 to 0.3, since the model is no longer indeter-
minate for large values of b under this calibration. As can be seen,
in both cases, the effects are quantitatively marginal: an increase
in b is associated with a slight increase in the persistence of output
following a sunspot shock, but the hump-shaped dynamics is not
getting closer to the data.

4.3.3. Dynamic learning by doing in production
We now experience with alternative specifications regarding

the productive side of the economy, and consider as an example
an enriched specification of the production function displaying
dynamic learning by doing à la Chang et al. (2002). The production
function is now:

Yt = Af (utKt ,Nt )e(ūt K̄t ,N t ) (4.1)

whereNt = xt lt are hoursworked by the representative household
in efficiency units,N t being the aggregate (economywide) average,
and xt is the skill level of this household. The latter accumulates
as:10

xt = x1−φ

t−1 l
φ

t−1 (4.2)

withφ ∈ (0, 1].Whenφ = 0,we recover our benchmark casewith
xt = xt−1 = x, i.e. skills are constant over time. The representative
firm’s profit maximization problem yields the modified optimality
condition for hours worked in efficiency units:

wt = Af2(utKt ,Nt )e(ūt K̄t ,N t ).

The representative household maximizes its expected in-
tertemporal utility function subject to the modified budget con-
straint kt+1 =

(
1 − uγ

t /γ
)
kt + wtxt lt + rtutkt − ct and the skill

accumulation Eq. (4.2). Denoting by ζt the Lagrange multiplier
associated to the latter equation, the first-order conditions with
respect to lt and xt are:

Bv′ (ℓ − lt) = u′(ct )wtxt + βφx1−φ
t lφ−1

t Etζt+1

ζt = u′(ct )wt lt + β(1 − φ)x−φ
t lφt Etζt+1

while other optimality conditions are unchanged.
It turns out that with this specification, the model’s dynamic

properties are drastically changed as soon as φ exceeds 0 by any
significant amount. When φ > 0, the model, reduced to its mini-
mal dimension, involves 4dynamic equations in 4 variables, among
which two of them are state variables. As shown in Fig. 12, when
φ = 0.01, themodel features a Hopf and a transcritical bifurcation
in the 3-dimensional plane defined by εcc, σ and Θ. However,
the Hopf bifurcation is no longer associated with the existence of
sunspot equilibria. Indeed, when σ crosses the Hopf bifurcation

10 Chang et al. (2002) consider a non-constant returns-to-scale skill accumulation
process. We rather choose a CRS specification to avoid adding too many additional
parameters.



Fig. 11. Output dynamics following a positive sunspot shock for different values of b.

value σH , the steady state switches from a saddle path to a source,
associated with locally unstable dynamics. Indeed, when σ < σH ,
the model has two stable and two unstable eigenvalues. When σ
crosses σH , two (initially stable) complex conjugate eigenvalues
have a modulus crossing 1, and the steady-state becomes a source
associated with four unstable eigenvalues.

The model also features a transcritical bifurcation. Starting
from the area for which the steady state is a saddle, if εcc is
increased until it crosses the transcritical bifurcation curve, one
real eigenvalue crosses 1 and the steady state becomes a source
associated with three unstable eigenvalues. If, on the other hand,
εcc is gradually increased starting from the area where the steady-
state is a source associatedwith four unstable eigenvalues, crossing
the transcritical bifurcation locus implies that themodel remains a
source, but now associated with three unstable eigenvalues. In any
case, indeterminacy is ruled out for any empirically credible values
for εcc, σ and Θ.

Finally, Fig. 12 shows that a similarly negative conclusion is ob-
tainedwhen larger values of φ are considered. Themain difference
is that the Hopf bifurcation curve progressively shifts downward
(and eventually totally disappears) when φ increases, reducing
the area for which the steady-state is a saddle path. Once again,
indeterminacy is ruled out. Thus, introducing dynamic learning by
doing in the production function does not appear to be a promising
road to improve the model’s predictions because it tends to elimi-
nate the possibility of existence of sunspot fluctuations.

At this stage, we are led to conclude that although the one-
sector model with variable capital utilization rate is able to ex-
plain crucial features of the estimated empirical responses of the
economy to a standard demand shock, the model is not yet ready
to survive a more stringent data confrontation. Other extensions
and/or refinements to this model are necessary to improve the
model’s predictions in this dimension. We leave this discussion for
further research.

5. Conclusion

If one wants sunspot fluctuations based on self-fulfilling
prophecies to be more credible, a requirement is that endogenous
fluctuations models replicate the main stylized facts of a demand
shock. Considering a generalized version of the BW model and
allowing for more substitution between intertemporal consump-
tion, a moderate increase in factor substitutability and a slightly
higher degree of increasing returns, we have shown that, from a
theoretical point of view, the one-sector stochastic growth model
with variable capacity utilization is able to generate a hump-
shaped dynamics of output in response to a pure sunspot shock.
Yet, this response is too persistent for the model to be directly
confronted to the data. Further research should be done in order
to determine which extension of the model should be introduced
to improve the results in this dimension. Dufourt et al. (2017)
are exploring whether a two-sector stochastic growth model with



Fig. 12. Indeterminacy area for different values of φ.

variable capacity utilization enables the model to come closer to
the data.

Appendix

A.1. Proof of Proposition 1

A steady state is a 4-uple (k∗, l∗, u∗, c∗) such that:

Af1(u∗k∗, l∗)u∗e(u∗k∗, l∗) =
1 − β(1 − δ∗)

β
≡

θ

β
(A.1a)

Af1(u∗k∗, l∗)u∗e(u∗k∗, l∗) = u∗γ−1 (A.1b)

c∗
= Af (u∗k∗, l∗)e(u∗k∗, l∗) − δ∗k∗ (A.1c)

Bv′(ℓ − l∗) = Af2(u∗K ∗, l∗)e(u∗K ∗, l∗)u′(c∗). (A.1d)

Using (A.1a) and (A.1b), we find

u∗
=

(
γ (1 − β)
β(γ − 1)

)1/γ

implying

δ∗
=

(1 − β)
β(γ − 1)

.

After substitution of this expression into (A.1a), we find that there
exists a normalized steady state with k∗

= l∗ = 1 solution
of Eq. (A.1a) if and only if A = A∗ with

A∗
≡

θ

β

1
f1(u∗, 1)u∗e(u∗, 1)

with θ = 1−β(1−δ∗). Including A∗ in (A.1c)–(A.1d) and using the
share s = s(u∗, 1) of capital income, we find

c∗
=

θ − sβδ

βs
,

θ (1 − s)
s

=
Bv′(ℓ − 1)

u′(c∗)
.

It follows that (k∗, l∗, c∗) = (1, 1, (θ − sβδ∗)/sβ) is a normalized
steady state solution of the system (A.1a)–(A.1d) if and only if
A = A∗ and B = B∗ with

B∗
≡

θ (1 − s)u′(c∗)
sv′(ℓ − 1)

. □

A.2. Proof of Lemma 1

Eq. (2.12) can be written:

Af1(utKt , lt )ute(utKt , lt ) = uγ−1
t .

Solving this equation gives ut as a function of capital and labor,
namely ut = ν(Kt , lt ), which allows us to apply the implicit
function theorem to compute the following elasticities:

ενK (uK , l) =
ν1(uK , l)k
ν(uK , l)

=
−

1−s
σ

+ εeK

γ − 1 +
1−s
σ

− εeK
,

ενl(uK , l) =
ν2(uK , l)l
ν(uK , l)

=

1−s
σ

+ εeL

γ − 1 +
1−s
σ

− εeK
.

(A.2)

From (2.2)–(2.3) and recalling that Rt = 1−δt +rtut , we also derive
at the steady state:

∂w

∂K
K
w

= (1 + ενK )
(
εeK +

s
σ

)
,

∂w

∂ l
l
w

= εel −
s
σ

+ ενl

(
εeK +

s
σ

)
∂R
∂K

K
R

= θ (1 + ενK )
(

εeK −
1 − s

σ

)
,

∂R
∂ l

l
R

= εel +
1 − s

σ
+ ενl

(
εeK −

1 − s
σ

)
.

(A.3)

We may then compute the following linearized system:⎛⎜⎝
dKt+1

K ∗

dlt+1

l∗

⎞⎟⎠ = J

⎛⎜⎝
dKt

K ∗

dlt
l∗

⎞⎟⎠
with

J =

⎛⎝ 1 0

−
J21
J22

1
J22

⎞⎠
×

⎛⎝ J11 J12

−(1 + ενK )(εeK +
s
σ
) −

[
−

1
εlw

+ εeL −
s
σ

+ ενK (εeK +
s
σ
)
]⎞⎠



where

J11 =
θ

βs
(1 + ενK )(s + εeK ) − δγ ενK

+ 1 − δ − εcc
(θ − βδs)

βs
(1 + ενK )

( s
σ

+ εeK

)
J12 =

θ

βs
[ενl(s + εeK ) + 1 − s + εeL]

− δγ ενl − εcc
θ − βδs

βs

[
−

1
εlw

+ εeL −
s
σ

+ ενl

(
εeK +

s
σ

)]
J21 = θ (1 + ενK )(εeK −

1 − s
σ

) − (1 + ενK )
(
εeK +

s
σ

)
J22 = θ

[
εeL +

1 − s
σ

+ ενl

(
εeK −

1 − s
σ

)]
−

[
−

1
εlw

+ εeL −
s
σ

+ ενl

(
εeK +

s
σ

)]
.

Therefore

D = −
J11
J22

[
−

1
εlw

+ εeL −
s
σ

+ ενl

(
εeK +

s
σ

)]
+

J11
J22

(1 + ενK )
(
εeK +

s
σ

)
T =

J11J22 − J12J21
J22

−
1
J22

[
−

1
εlw

+ εeL −
s
σ

+ ενl

(
εeK +

s
σ

)]
.

Rearranging these expressions leads to the ones expressed in
Lemma 1. □

A.3. Proof of Lemma 2

Straightforward computations give Eq. (A.4a) given in Box IV.
Assumptions 4 and 5 imply ∂D/∂εlw > 0 and limεlw→0D > 1.
Moreover, we derive that D < 1 if and only if

Θ > Θ =
(γ − 1)[θ (1 − s) + s]

1 + σ (1 − s)(γ − 1)β(1 − δ)

and

εlw > εll ≡
σ (γ − 1) + 1 − s − Θσ s

[1 + σ (1 − s)(γ − 1)β(1 − δ)] (Θ − Θ)

with limεlw→ε+

ll
D = −∞. It follows also that when Θ ∈ [0, Θ)

we get, for any σ ∈ (0, +∞), 1 − T (σ ) + D(σ ) < 0 and
1 + T (σ ) + D(σ ) > 0. □

A.4. Proof of Proposition 2

Consider Eqs. (3.2). The strategy consists in locating the line ∆σ

in the (T ,D) plan. For this we have to precisely locate the initial
and final points (T (0),D(0)) and (T (+∞),D(+∞)). We get

D(0) =
1
β

[1 − θ (γ − 1)](Θ1 − Θ)
Θ2 − Θ

with

Θ1 ≡

(γ − 1)[θ (1 − s) + s] +
1−s
εlw

1 − θ (γ − 1)
> Θ2

≡ (γ − 1)[θ (1 − s) + s] +
1 − s
εlw

> 0.

Under Assumptions 4 and 5, we have indeed 1 − θ (γ − 1) > 0,
Θ < Θ2 and Θ1 < Θmax. It follows that

– D(0) > 0 if and only if Θ ∈ (Θ, Θ2) ∪ (Θ1, Θmax),
– D(0) < 0 if and only if Θ ∈ (Θ2, Θ1).

We also find D(+∞) = 1/β > 1 and we easily show that
– D(0) > D(+∞) when Θ ∈ (Θ, Θ2),
– D(0) ∈ (0, 1) if and only if Θ ∈ (Θ1, Θmax).

Now we can compute

1 − T (+∞) + D(+∞)

=
θ (γ − 1)

β

Θ

[
εcc (θ−βδs)

εlw
+ (1 − s)βδ

]
γ−1
εlw

− Θ

[
(1 − s)(γ − 1)β(1 − δ) +

s
εlw

] .

Under Assumptions 4 and 5, we get 1 − T (+∞) + D(+∞) < 0.
We conclude therefore that T (+∞) > 2. Similarly, we get

1 − T (0) + D(0) =
θ (γ − 1)

βs
(θ − βδs)(εcc − ε̃cc)(Θ3 − Θ)

Θ − Θ2

with

ε̃cc ≡
θ (1 − s)
θ − βδs

, Θ3 ≡

(1 − s)
(
1 +

εcc
εlw

)
εcc − ε̃cc

and thus (εcc − ε̃cc)(Θ3 − Θ) > 0 if εcc ∈ (0, ε̃cc). Under
Assumptions 4 and 5,we easily derive ε̃cc ∈ (0, ε̄cc) andΘ3 > Θmax

when εcc ∈ (ε̃cc, ε̄cc) so that we still get (εcc − ε̃cc)(Θ3 − Θ) > 0.
We then conclude

– 1 − T (0) + D(0) < 0 when Θ ∈ (Θ, Θ2),
– 1 − T (0) + D(0) > 0 for any Θ ∈ (Θ2, Θmax).

Finally we get

1 + T (0) + D(0)

=
{2s [1 + β + θ (γ − 1)] + θ (γ − 1) [εcc (θ − βδs) − θ (1 − s)]} (Θ − Θ4)

βs(Θ − Θ2)

with

Θ4 ≡

2s(1 + β)
{
(γ − 1)[θ (1 − s) + s] +

1−s
εlw

}
+ θ (γ − 1)(1 − s)(θ − βδs)

(
1 +

εcc
εlw

)
2s [1 + β − θ (γ − 1)] + θ (γ − 1) [εcc (θ − βδs) − θ (1 − s)]

.

Assumptions 4 and 5 imply

2s [1 + β + θ (γ − 1)] + θ (γ − 1) [εcc(θ − βδs) − θ (1 − s)] > 0

and Θ4 ∈ (Θ2, Θ1). It follows that
– 1 + T (0) + D(0) > 0 when Θ ∈ (Θ, Θ2) ∪ (Θ4, Θmax),
– 1 + T (0) + D(0) < 0 when Θ ∈ (Θ2, Θ4).

From all these informationwe are then able to derive the following
conclusions:

(i) when Θ ∈ (Θ, Θ2), D(0) > D(+∞) > 1/β , 1 − T (0) +

D(0) < 0 and 1 + T (0) + D(0) > 0,
(ii) when Θ ∈ (Θ2, Θ4), D(0) < 0, 1 − T (0) + D(0) < 0 and

1 + T (0) + D(0) < 0,
(iii) when Θ ∈ (Θ4, Θ1), D(0) < 0, 1 − T (0) + D(0) > 0 and

1 + T (0) + D(0) > 0,
(iv) when Θ ∈ (Θ1, Θmax), D(0) ∈ (0, 1), 1 − T (0) + D(0) > 0

and 1 + T (0) + D(0) > 0.
Let us finally compute the value σH such that D(σH ) = 0. We

get the following expression

σH
=

(1 − β)
[
(γ − 1) [θ (1 − s) + s] +

1−s
εlw

]
− Θ [1 − β − θ (γ − 1)]

(1 − β)
{
Θ

[
(γ − 1)(1 − s)β(1 − δ) −

θ−βδs
εlwβδ

]
−

γ−1
εlw

} .

Under Assumption 4 we have 1 − β − θ (γ − 1) < 0. It follows
therefore that σH > 0 if and only if

εℓw > ε̃ℓw ≡

γ − 1 + Θ
θ−βδs

βδ

Θ(1 − s)(γ − 1)β(1 − δ)
.

From now on let us assume that εℓw > max{ε̃ℓw, ε̂ℓw}. Denoting
Θ̂ ≡ Θ4, and provided T (σH ) ∈ (−2, 2), cases (i) and (ii) are
leading to a localization of the ∆σ line as in Fig. 1 while cases (iii)
and (iv) are leading to a localization of the ∆σ line as in Fig. 2.



∂D
∂εlw

=

Θθ (γ−1)(1−s)
εℓw

[
1 + σ

[
(γ − 1)β(1 − δ) + Θ[1 + σ (γ − 1)β(1 − δ)]

]]
β

{
(γ − 1) [θ (1 − s) + s] +

1
εlw

[σ (γ − 1) + 1 − s] − Θ

[
1 + σ (1 − s)(γ − 1)β(1 − δ) +

sσ
εlw

]}2

lim
εlw→0

D =
1
β

[
1 +

Θθ (γ − 1)σ
σ (γ − 1) + 1 − s − Θσ s

] (A.4a)

Box IV.

σ F
=

{2s [1 + β − θ (γ − 1)] + θ (γ − 1) [εcc(θ − βδs) − θ (1 − s)]}(Θ̂ − Θ)

s
{
2(1 + β)

[
Θ

[
(γ − 1)(1 − s)β(1 − δ) +

s
εlw

]
−

γ−1
εlw

]
+ Θθ (γ − 1)

[
(1 − s)βδ −

2
εlw

+
εcc (θ−βδs)

εlw

]}
Box V.

It remains to show that T (σH ) ∈ (−2, 2). Straightforward
computations yield

T (σH ) = 2 −
(θ − βδs)(1 − β)(εcc − εcc)

Θβs
(
1 +

σH

εlw

) (Θ̃ − Θ)

with

εcc ≡
θ (1 − s)(θ − σHβδs)

(θ − βδs)
(
1 +

sσH

εlw

) , Θ̃ ≡

(1 − s)
(
1 +

εcc
εlw

)
(
1 +

sσH

εlw

)
(εcc − ε̂cc)

.

Assumptions 4 and 5 imply εcc ∈ (0, ε̄cc) and Θ̃ > Θ̂ . It follows
obviously that T (σH ) < 2 when:
– either εcc ≤ εcc as in this case we get (εcc − εcc)(Θ̃ − Θ) ≥ 0,
– or εcc ∈ (εcc, ε̄cc) when Θ < Θ̃ .
Let us then denote

Θ̄ ≡

{
Θmax when εcc ≤ εcc

max{Θ̃, Θmax
} when εcc ∈ (εcc, ε̄cc).

We then conclude that when Θ ∈ (Θ, Θ̄), T (σH ) < 2. Straightfor-
ward computations finally also show that T (σH ) > −2.

Solving the equation 1 − T (σ ) + D(σ ) = 0 with respect to σ

gives the transcritical bifurcation value

σ T
=

(θ − βδs)(1 − s)
(
1 +

εcc
εlw

)
− Θ [εcc(θ − βδs) − (1 − s)θ ]

Θs
[
βδ(1 − s) +

εcc (θ−βδs)
εlw

] .

which is always positive under Assumption 4. Solving the equation
1 + T (σ ) + D(σ ) = 0 with respect to σ gives the flip bifurcation
value σ F which is given in Box V which is positive if and only if
Θ < Θ̂ . The conclusions of Proposition 2 then follow from all these
results and Lemma 2. □
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