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Abstract. Current multimedia technologies call for e�cient ways of rep�

resenting signals. We review several e�cient methods for signal represen�

tation, emphasizing potential applications in signal compression and denois�

ing. We pay special attention to the representations which are adapted to

�non-stationary� features of signals, in particular the classes of bilinear rep�

resentations, and their approximations using time-frequency atoms (mainly

wavelet transforms and Gabor transforms).

1 Introduction

In various instances in signal processing, an important part of the processing is achieved

by an e�cient representation of the considered signal. This is the case for example in

signal compression, where coding and bit allocation often come after a transform which

expresses the signal in an adapted basis, with respect to which a large number of

coe�cients may be discarded. This is true for signal de-noising as well, for an e�cient

representation �concentrates� the useful signal within a few signi�cant coe�cients, while

noise remains distributed over all coe�cients. Therefore, an e�cient representation,

followed by simple operations such as thresholding, generally yield good de-noising

algorithms.

The goal of this contribution is to describe a number of simple e�cient representa�

tions that are generated by using �time-frequency� decompositions, and to show how

these may be used for practical purpose. Special attention is paid to problems of spec�

tral estimation, for non stationary time series. We shall mainly limit our discussion

to simple decompositions such as Wavelet or Gabor decompositions, in order to em�

phasize the di�culties of such approaches, but we will also pay a few words to more

sophisticated tools.

2 �Non-Stationary Tools�

Let us start by describing a few tools which we will use in the following. The most usual

tool is the Fourier transform. It is well known that Fourier analysis is well adapted to

�stationary situations�, i.e. signals which possess some translation invariance properties

(we use the following convention for Fourier transformation:

^

f(!) =

R

f(t)e

�i!t

dt.)

When translation invariance assumptions are relaxed, then Fourier transform is not the

most adapted tool any more, and alternatives are needed. Among them, time-frequency



and time-scale methods have become quite popular in the recent years, as they provide

simple approximations of optimal, Karhunen-Loève-type decompositions.

Brie�y, the Karhunen-Loève (KL for short) decomposition is obtained by diagonal�

izing the covariance of a second order random time series. Let fX

t

; t 2 Rg be a second

order zero mean time series, and let C be its covariance operator, de�ned by its matrix

elements hCf; gi = E

n

hX; fihX; gi

o

. C is non-negative de�nite (and self-adjoint.) As�

sume for the sake of simplicity that C has discrete spectrum, and denote by f'

k

; �

k

g

the eigenfunctions and eigenvalues of C. This yields an expansion of the time series as

a (random) linear combination of the functions '

k

:

X

t

=

X

k

q

�

k

w

k

'

k

(t) (1)

Such an expansion is �doubly orthogonal� in the sense that

h'

k

; '

`

i = �

k`

(2)

E fw

k

w

`

g = �

k`

(3)

However, KL-type are sometimes of poor practical interest. Indeed, diagonalizing the

covariance becomes in practice a matrix diagonalization problem, which becomes cum�

bersome as the matrix size increases. In addition, prior to diagonalization, the covari�

ance matrix has to be estimated, generally from one or (in rare cases) a few realizations

of the time series. All together, performing a KL decomposition may become a di�cult

practical problem, and it makes sense to seek alternative methods, at least in some spe�

ci�c situations where some a priori information about the time series is available. One

particular case if that of time series which are �not far from stationary�, i.e. to which

one may want to associate a sort of time dependent spectral representation. Studying

such time series leads to the notion of time-frequency representations. Another example

is provided by time series which present some sort of scale invariance. This is the realm

of time scale analysis. In what follows, we brie�y describe these topics.

2.1 Bilinear representations

Signals are often modeled either as deterministic signals, or more generally as (second

order) random time series. In what follows, we will essentially focus on the random

situations, the deterministic case being easily obtained (unless otherwise speci�ed).

The simplest model to consider is that of (weakly) stationary time series. However,

in many situations signals can hardly be considered stationary, and it is necessary to

turn to alternative tools which generalize the usual ones in non stationary situations.

Several such tools have been developed in the literature, the most commonly used be�

ing probably the Karhunen-Loeve based methods. However, there are many situations

in which the signals to be analyzed possess some characteristics which may be better

understood in terms of joint time-frequency representations. The prototypes of such

time-frequency representations are the so-called Ambiguity function and Wigner func�

tion (or Wigner-Ville function. The ambiguity function was introduced by Woodward

in a radar context. The ambiguity function is essentially obtained by taking scalar

products of a function with a time-frequency shifted copy of itself. More precisely:

De�nition 1 1. Let f 2 L

2

(R). Its ambiguity function is de�ned by

A

f

(�; �) =

Z

f(t+ �=2)f(t� �=2)e

�i�t

dt : (4)



2. Let fX

t

; t 2 Rg a second order time series. Then its ambiguity function is de�ned

by

A

X

(�; �) = E

�

Z

X

t+�=2

X

t��=2

e

i�t

dt

�

: (5)

The ambiguity function was originally introduced in a deterministic context. The deter�

ministic ambiguity function may be seen as a scalar product of f with a translated and

modulated copy of f (up to a trivial factor). It is easily seen that if f 2 L

2

(R), then A

f

is a bounded function (with jjA

f

jj

1

� jjf jj

2

). In addition, a direct calculation shows

that if f 2 L

2

(R), then A

f

2 L

2

(R

2

), and that jjA

f

jj

2

2

= 2�jjf jj

4

. More generally, it

may be shown that A 2 L

p

(R

2

) for all p 2 [1;1] (bounds for the corresponding L

p

(R

2

)

norms have been derived by E. Lieb).

The non-deterministic version may be given a similar interpretation. Its properties

depend on the properties of the covariance operator C of the process, de�ned by its

matrix elements: for all f; g 2 D(R),

hCf; gi = E

n

hX; gihX; fi

o

: (6)

For example, if C extends to a Hilbert-Schmidt operator, which we denote by C 2 L

2

,

then A 2 L

2

(R

2

).

Remark 1 Ambiguity functions, or cross-ambiguity functions of the form

A

f;g

(�; �) =

Z

f(t+ �=2)g(t� �=2)e

�i�t

dt (7)

are widely used in a context of radar detection. There, f is an incident waveform

and g is the observation, supposed to be an attenuated time-frequency shifted copy of

g, of the form g(t) = Ae

i!

0

(t�t

0

)

f(t � t

0

) + noise. Here, A; !

0

and t

0

are constants of

practical interest, to be estimated. The maxima of the cross ambiguity function provide

estimates for these constants.

As we shall see, ambiguity functions only provide estimates for the spreading of the

analyzed object in the joint time-frequency plane, but not on its localization in that

space. Such an analysis is done by the Wigner-Ville function, de�ned by

De�nition 2 1. Let f 2 L

2

(R). Its Wigner-Ville function is de�ned by

E

f

(b; !) =

Z

f(b+ �=2)f(b� �=2)e

�i!�

d� (8)

2. Let fX

t

; t 2 Rg a second order time series. Then its Wigner-Ville function is

de�ned by

E

X

(b; !) = E

�

Z

X

b+�=2

X

b��=2

e

�i!�

d�

�

(9)

Remark 2 It is readily seen that the Wigner-Ville function and the ambiguity function

are related via a symplectic Fourier transform

A(�; �) =

1

2�

Z Z

E(b; !)e

�i(�b�!�)

db d! ; (10)

E(b; !) =

1

2�

Z Z

A(�; �)e

i(�b�!�)

d� d� : (11)

The same holds true in the deterministic context. Therefore, the Wigner function is

square-integrable as soon as the ambiguity function is.
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Figure 1: Example of a �Time-Frequency Atom� (left top), together with its Fourier

transform (right top); its Ambiguity function (left bottom) and its Wigner function

(right bottom) are displayed as gray levels images.

It is important to notice the major di�erence between the ambiguity function and the

Wigner function (even though their expressions are quite close). As we have seen, the

ambiguity function is a scalar product between two time and frequency shifted copies

of the signal: if f 2 L

2

(R):

A

f

(�; �) = hT

��=2

E

��=2

f; T

�=2

E

�=2

fi

where T and E are translation and modulation operators respectively, de�ned by

T

b

f(t) = f(t�b), and E

!

f(t) = e

i!t

f(t). For f 2 L

2

(R), one has jA

f

(�; �)j � A

f

(0; 0) =

jjf jj

2

, and the decay of A gives indications about the localization properties of the anal�

ysed object (process or function) in the time-frequency plane.

On the other hand, the Wigner-Ville function has a more complex structure, i.e

E

f

(b; !) =

1

2

h�T

�b

E

�!

f; T

�b

E

�!

fi ;

where � is the parity, de�ned by �f(t) = f(�t), and actually provides estimates for

time-frequency localization of signals. An example stressing the di�erence is given in

Figure 1, for the particular case where f(t) is a modulated Gaussian function. As ex�

pected, the ambiguity function is localized near the origin in the time-frequency domain,

while the Wigner function is concentrated near a speci�c point in the time-frequency

plane, yielding estimates for the time and frequency content of the analyzed function.

Of interest too is the cross Wigner-Ville function, de�ned for all f; g 2 L

2

(R) by

E

f;g

(b; !) =

Z

f(b+ �=2)g(b� �=2)e

�i!�

d� : (12)



2.2 Properties

The Wigner function possesses a large number of important properties. We list here a

number of simple ones, refering to [9] for a detailed account.

1. Marginals: The �rst two properties we mention here deal with the behavior of

marginals of the Wigner function: namely, the Wigner's function integrated with

respect to the time variable or the frequency variable reproduce the power spec�

trum and the (square modulus of the) signal.. More precisely, we have the follow�

ing:

Let f 2 L

2

(R). Then

Z

E

f

(b; !)d! = 2�jf(b)j

2

, and

Z

E

f

(b; !)db = j

^

f(!)j

2

.

2. Orthogonality relations: Let f; f

0

; g; g

0

2 L

2

(R). Then we know that E

f;g

; E

f

0

;g

0

2

L

2

(R

2

), and a simple calculation shows that

hE

f;g

; E

f

0

;g

0

i = 2�hf; g

0

i hf

0

; gi

Such relations are known as orthogonality relations, or as Moyal's formula.

3. Time-frequency localization: The second set of properties deal with localization

properties. It is well known that Fourier transform is �optimal� in the case of sine

waves, in the sense that the Fourier transform of sine waves is a delta distribu�

tion, which is �optimally localized�. Since the Wigner function plays the role of a

generalized spectrum, it makes sense to search for signals with �perfect� localiza�

tion in the time-frequency plane. In the case of Wigner's function, such signals

are provided by the class of (generalized) �linear chirps�. A correct treatment of

such cases (which involves Wigner functions de�ned as distributions) is out of

the scope of the present discussion, and we limit ourselves to a formal discussion.

Suppose that f(t) is de�ned as f(t) = exp(i!

0

t + �t

2

=2)), for some parameters

!

0

; �. Then E

f

(b; !) = �(!� (!

0

+�t)), i.e. has �perfect localization� on a straight

line in the time-frequency plane. Such signals may be viewed as time-frequency

rotated copies of sine waves, and include as limiting cases Dirac deltas, which are

optimally localized too. Unfortunately, such a property does not generalize to

frequency modulations di�erent from linear ones (see Remark 3 below.)

4. Bilinearity: Inherent to the bilinear nature of Wigner's function is the existence

of �cross terms�. More precisely, let f 2 L

2

(R) be of the form f(t) = f

1

(t) + f

2

(t),

with f

1

; f

2

2 L

2

(R). Then

E

f

(b; !) = E

f

1

(b; !) + E

f

2

(b; !) + 2<E

f

1

;f

2

(b; !) ;

where the cross wigner-Ville function has been de�ned in (12). The presence of

such interference terms (sometimes called �ghost terms�) is generally considered

a serious di�culty when it comes to interpreting a Wigner representation. One

classical method amounts to get rid of ghosts by appropriate smoothings of the

representation (see below). However, smoothing modi�es the localization prop�

erties of the representation. In a few speci�c cases, it is possible to analyze and

understand completely the geometric properties of ghost terms. But this is limited

to very speci�c situations.

Remark 3 As we have seen, the Wigner-Ville representation is �optimal� for linear

chirps, in terms of time-frequency localization. It is worth mentioning that other classes

of bilinear time-frequency representations have been proposed, which are optimal for



some speci�c frequency modulations. More generally, bilinear time-frequency represen�

tations may be designed which enforce speci�c properties (optimal energy localization

for given frequency modulations, positivity, unitarity,...) We refer to [6, 9] for a detailed

account of the recent contributions in that area.

2.3 Estimation

The practical problem is often that of estimating the spectral characteristics of a func�

tion of a process from one or a few realizations. The simplest estimators are the sample

estimators: for example, given N independent realizations X

(1)

; : : :X

(N)

of the time se�

ries, consider (throughout this paper, we use the notation �~x� to denote an estimator for

the quantity �x� (reserving the notation �x̂� -more standard in the statistics literature-

to denote Fourier transform)

~

E

X

(b; !) =

1

N

N

X

n=1

Z

X

b+�=2

X

b��=2

e

�i!�

d� : (13)

In addition, real data are most often discrete and of �nite length, so that the integral

de�ning

~

E

X

(b; !) in (13) has to be replaced with a �nite sum. The limits of the es�

timator as the sample length and the sampling frequency increase are an important

issue. For the sake of simplicity, we shall not address those technical issues here. We

just notice that such sample estimators generally turn out to have a large variance

and poor smoothness. Therefore, one generally turns to smoothed versions (see the

discussions in [9] for example). We shall see below that the use of wavelet or Gabor

transforms provide examples of such smoothings. A more general class of smoothings

of the Wigner-Ville function has been introduced by L. Cohen, and is known as the

Cohen's class. See [6, 9] for a detailed account.

3 Approximating Bilinear Representations

Let us now address a slightly di�erent point of view, and discuss somewhat simpler

objects, namely the so-called linear time-frequency representations. As we shall see,

such representations may be seen as alternatives to the bilinear representations we jus

described, but also as approximations. The simplest examples of such linear transforms

are the continuous wavelet and Gabor transforms, which we describe now. However,

several variants have been proposed, which we shall brie�y discuss later.

3.1 Windowed Fourier Transform and Wavelet transform

We describe here the simplest two examples of time-frequency linear decompositions.

We �rst focus on the case of continuous transforms, and postpone the description of

the discretization problem to a subsequent section. We �rst describe the deterministic

situation.

The simplest localized version of Fourier analysis is provided by windowed Fourier

transform, whose main idea is to localize the signal �rst by multiplying it by a smooth

and localized window, and then perform a Fourier transform. More precisely, the con�

struction goes as follows. Start from a function g 2 L

2

(R), such that jjgjj 6= 0, and

associate with it the following family of Gaborlets

g

(b;!)

(t) = e

i!(t�b)

g(t� b) : (14)



De�nition 3 Let g 2 L

2

(R) be a window. The continuous Gabor transform of a ��

nite-energy signal f 2 L

2

(R) is de�ned by the integral transform

G

f

(b; !) = hf; g

(b;!)

i =

Z

f(t) g(t� b)e

�i!(t�b)

dt : (15)

Gaborlets yield decomposition formulas for functions in L

2

(R), as follows.

Theorem 1 Let g 2 L

2

(R) be a non trivial window (i.e. jjgjj 6= 0.) Then every

f 2 L

2

(R) admits the decomposition

f(t) =

1

2�jjgjj

2

Z

1

�1

Z

1

�1

G

f

(b; !)g

(b;!)

(t)dbd! ; (16)

where equality holds in the weak L

2

(R) sense.

In other words, the mapping

L

2

(R) 3 f ,!

1

jjgjj

p

2�

G

f

2 L

2

(R

2

)

is an isometry between L

2

(R) and L

2

(R

2

).

The Gabor transform of a signal gives indications on its �time-frequency content�.

Unlike the Wigner transform, it does not have sharp localization properties for speci�c

frequency modulations (this is due to the fact that Gabor transform is closely related to

a smoothing of the Wigner transform). Nevertheless, it may be used to study frequency

modulations. For example, consider a function of the form f(t) = A(t)e

i�(t)

, and assume

that A 2 C

1

(R), � 2 C

2

(R), and that both A(t) and �

0

(t) are slowly varying. Then, it

follows directly from Taylor's formula that G

f

(b; !) = A(b)e

i�(b)

ĝ(�

0

(b)� !) + R(b; !),

where jR(b; !)j = O(jA

0

j; j�

00

j). Therefore, if g(t) is a smooth function, whose Fourier

transform is peaked at the origin of frequencies, and assuming that R(b; !) is small

enough to be neglected in a �rst order approximation, jG

f

(b; !)j is peaked near a curve

(the so-called ridge) of equation ! = �

0

(b), which reproduces the frequency modulation

of the signal.

An example of such time-frequency localization is given in Figure 2, for the case of

a periodically frequency modulated signal. This illustrates the main two features of the

Gabor transform. The left bottom image is a gray levels representation of the modulus

of Gabor transform, in the case where the window g(t) (here a Gaussian window) is

�local enough�; such windows allow us to �see� the changes in the frequencies of the

signal, therefore giving a meaning to the notion of �local frequency�. To obtain such

local quantities, we have to give up frequency resolution, i.e. the localization near the

ridge is not as sharp as one would naively expect. This is especially clear on the right

bottom image of Figure 2, where a �narrow band window� (again a Gaussian function)

has been used. In that case, the window is not enough local, and cannot analyze

carefully the frequency changes. However, it is extremely precise in the frequency

domain, and reproduces the harmonics and subharmonics which appear in the Fourier

spectrum, with a great precision.

An alternative to Gabor transform was proposed more recently by Grossmann and

Morlet [11]. The main idea was to improve the time resolution of Gabor transform,

by changing the rule for generating the �basis functions�. This may be done by replac�

ing the modulation operation used to generate Gaborlets by a scaling operation. Let
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Figure 2: Example of a frequency modulated signal, with periodic frequency modulation

(left top plot). The power spectrum (right top plot) exhibits a main frequency and a

few harmonics and subharmonics. A Gabor transform with a wide band window (left

bottom) exhibits the frequency modulation, while a Gabor transform with a narrow

band window (right bottom) reproduces the harmonic structure of the signal. The

window was a Gaussian function, with two di�erent scales.



 2 L

1

(R) \ L

2

(R) be a �xed function (in fact, it is su�cient to assume  2 L

1

(R),

but for convenience also assume that  2 L

2

(R). This extra assumption ensures the

boundedness of the wavelet transform.) From now on it will be called the analyzing

wavelet. It is also sometimes called the mother wavelet of the analysis. The correspond�

ing family of wavelets is the family f 

(b;a)

; b 2 R; a 2 R

�

+

g of shifted and scaled copies

of  de�ned as follows. If b 2 R and a 2 R

�

+

we set:

 

(b;a)

(t) =

1

a

 

 

t� b

a

!

; t 2 R : (17)

The wavelet  

(b;a)

can be viewed as a copy of the original wavelet  rescaled by a and

centered around the �time� b. Given an analyzing wavelet  , the associated continuous

wavelet transform is de�ned as follows

De�nition 4 Let  2 L

1

(R) \L

2

(R) be an analyzing wavelet. The continuous wavelet

transform (CWT for short) of a �nite-energy signal f(t) is de�ned by the integral:

T

f

(b; a) = hf;  

(b;a)

i =

1

a

Z

f(t) 

 

t� b

a

!

dt : (18)

Like Gaborlets, wavelets may form complete sets of functions in L

2

(R), and we have in

particular

Theorem 2 Let  2 L

1

(R) \ L

2

(R), be such that the number c

 

de�ned by:

c

 

=

Z

1

0

j

^

 (a�)j

2

da

a

(19)

is �nite, nonzero and independent of � 2 R. Then every f 2 L

2

(R) admits the decom�

position

f(t) =

1

c

 

Z

1

�1

Z

1

0

T

f

(b; a) 

(b;a)

(t)

da

a

db ; (20)

where the convergence holds in the strong L

2

(R) sense.

In particular, we also have �energy conservation�: if f 2 L

2

(R), then T

f

2 L

2

(R �

R

�

+

; db

da

a

), and jjT

f

jj

2

= c

 

jjf jj

2

. Notice that in (19), the constant c

 

can only depend

on the sign of � 2 R, therefore assuming independence wrt � is a simple symmetry

assumption. The fact that 0 < c

 

<1 implies that

^

 (0) = 0, so that the wavelet  (t)

has to oscillate enough to be of zero mean.

Wavelet analysis may be used as a time-frequency analysis method, though in

a slightly di�erent way. To see that, let us consider again the same example as

before: f(t) = A(t)e

i�(t)

, with A 2 C

1

(R), � 2 C

2

(R), and that both A(t) and

�

0

(t) are slowly varying. With the same arguments as before, we obtain T

f

(b; a) =

A(b)e

i�(b)

^

 (a�

0

(b)) + R(b; a), where jR(b; !)j is again controlled by the speed of varia�

tion of A and �

0

. Assuming that  (t) is a smooth function, whose Fourier transform

is peaked at a particular frequency !

0

(by de�nition of a wavelet, !

0

6= 0), and assum�

ing that R(b; a) is small enough to be neglected, jT

f

(b; a)j is peaked near a curve (the

ridge of the wavelet transform) of equation a = !

0

=�

0

(b), which again reproduces the

frequency modulation of the signal, in a slightly di�erent way (multiplicative instead of

additive).
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Figure 3: Continuous wavelet transform of the frequency modulated signal of Figure 2.

There is a major di�erence between wavelet systems and Gaborlet systems: Gabor�

lets are functions of constant size, and variable shape, while wavelets have constant

shape, and variable size. An illustration of this fact may be seen in Figure 3, where we

display the wavelet transform modulus of the frequency modulated signal analyzed in

Figure 2. The wavelets have sharp frequency localization at low frequencies, and sharp

time localization at high frequencies. Therefore, wavelets analyze this particular signal

as follows: at low frequencies, the time resolution is not good enough to capture the

frequency changes, but the frequency resolution is extremely good, and the analysis

exhibits clearly the fundamental frequency of the signal. At higher frequencies, the

wavelets have smaller support, and exhibit time dependent frequencies.

Remark 4 Figures 2 and 3 exhibit striking di�erences between wavelets and Gaborlets,

and open the problem of selecting the �best� representation for a given signal. We shall

address this problem brie�y in a subsequent section.

Remark 5 Time-frequency analysis is certainly not the main application of wavelet

analysis. Wavelets are particularly well adapted to all problems which present some

scale invariance properties. A good illustration is provided by the characterization of

singularities, and its applications to multifractal analysis (see e.g. [3] for a review).

More practical applications include the characterization of long range correlations in

1=f -type processes. We shall see below a few examples.

3.2 Weighted spectra of second order random time series, and sample estimates

Wavelet transforms and Gabor transforms may yield alternatives to the Wigner func�

tion, i.e. bilinear time-frequency (or time-scale) representations. We shall term generi�

cally weighted spectra alternatives obtained in such ways. Let us consider a second order

random time series fX

t

; t 2 Rg. Its continuous Gabor transform is de�ned analogously

to (15), as the time-frequency series

G

X

(b; !) = hX; g

(b;!)

i : (21)

Similarly, one introduces the continuous wavelet transform of fX

t

; t 2 Rg by

T

X

(b; a) = hX; 

(b;a)

i : (22)

It may be proved that this de�ned second order stochastic processes. This motivates

the following de�nition



De�nition 5 Let fX

t

; t 2 Rg be a second order time series.

1. Let g 2 L

2

(R), normalized so that jjgjj = 1. The Gabor spectrum of the time

series fX

t

; t 2 Rg is de�ned by

E

(G)

X

(b; !) = E

n

jG

X

(b; !)j

2

o

: (23)

2. Let  2 L

1

(R) be a wavelet, normalized so that jj jj = 1. The wavelet spectrum

of the process is de�ned by

E

(W )

X

(b; a) = E

n

jT

X

(b; a)j

2

o

: (24)

Notice that in the particular case of (weakly) stationary time series, these quantities

do not depend on b anymore (like the Wigner spectrum).

Remark 6 For a given window g 2 L

2

(R), jjgjj 6= 0, the Gaborlets g

(b;!)

(t) form a

complete set in L

2

(R). Therefore, the covariance C of a second order time series is

completely characterized by the matrix elements hCg

(b;!)

; g

(b

0

;!

0

)

i. However, we have by

de�nition

E

(G)

X

(b; !) = hCg

(b;!)

; g

(b;!)

i :

Therefore, one cannot expect to characterize C by its Gabor spectrum, unless the �ma�

trix� hCg

(b;!)

; g

(b

0

;!

0

)

i is sharply localized near its diagonal. The time series for which

such a property holds true may be termed �locally stationary�, and Gabor analysis may

be used to study them. Such time series have been considered by several authors in the

literature. See e.g. [17, 16, 14].

A similar remark holds when Gaborlets are replaced with wavelets. The class of

time series which are well characterized by the wavelet spectrum is however di�erent,

and basically corresponds to time series whose covariance has a simple behavior under

rescalings and translations. We shall see some examples below.

The simplest estimators for weighted spectra are again the sample estimators. Let us

consider for example the wavelet case. Let X

(1)

; : : :X

(N)

be N independent realizations

of the time series fX

t

; t 2 Rg, let  2 L

1

(R) \ L

2

(R) be a wavelet such that jj jj = 1,

and set

~

E

(W )

(b; a) =

1

N

N

X

n=1

jT

X

(n)

(b; a)j

2

: (25)

Similarly, if g 2 L

2

(R) is such that jjgjj = 1, we set

~

E

(G)

(b; !) =

1

N

N

X

n=1

jG

X

(n)

(b; !)j

2

(26)

We shall see below that such estimators may be used as estimators for the Wigner-Ville

spectrum, or even of the usual power spectrum in the stationary case (in which case

they are close to classical Welsh-Bartlett estimators). This generally leads to biased,

but smoother estimates.



3.3 Weighted spectra as approximations

We have seen in the previous subsection how wavelet or Gabor transforms may be used

to introduce local versions of power spectra. The following result is well known (see for

example [9]) and follows from a simple calculation

Proposition 1 Let fX

t

; t 2 Rg be a second order time series, and let E

X

and E

(G)

X

denote respectively its Wigner spectrum and its Gabor spectrum. Then we have the

following

E

(G)

(b; !) =

1

2�

Z

E

X

(b

0

; !

0

)E

g

(b

0

� b; !

0

� !) db

0

d!

0

(27)

where E

g

(b; !) is the Wigner function of the window g(t). A similar result holds true in

the case of the wavelet spectrum:

E

(W )

(b; a) =

1

2�

1

a

Z

E

X

(b+ a�; !=a)E

 

(�; !) d� d! : (28)

This shows that the two weighted spectra we have described above may be seen as ap�

proximations, or smoothings, of the Wigner-Ville spectrum. The corresponding sample

estimators may therefore be expected to be smoother than the sample estimator given

in (13).

The case of weakly stationary second order random time series is an interesting

particular case. Let fX

t

; t 2 Rg be such a stationary time series. Then one easily

veri�es that

� The random time series fG

x

(b; !); b 2 Rg and fT

X

(b; a); b 2 Rg are second order,

weakly stationary, random time series.

� The two weighted spectra E

(W )

(b; a) and E

(G)

(b; !) are respectively functions of a

and ! only.

This suggests to modify the sample estimators by smoothing with respect to the

b variable to improve their smoothness. Examples using the simplest smoothing, for

example

~

E

(G)

(!) =

1

B

Z

b

0

+B=2

b

0

�B=2

~

E

(G)

(b; !)db ; (29)

~

E

(W )

(a) =

1

B

Z

b

0

+B=2

b

0

�B=2

~

E

(W )

(b; a)db ; (30)

where B and b

0

are �xed parameters, have been studied in [4]. In particular, one easily

shows that

E

n

~

E

(G)

(!)

o

= E

n

~

E

(G)

(b; !)

o

=

1

2�

Z

E(!

0

)jĝ(! � !

0

)j

2

d!

0

; (31)

E

n

~

E

(W )

(a)

o

= E

n

~

E

(W )

(b; a)

o

=

1

2�

Z

E(!)j

^

 (a!)j

2

d! (32)

This shows that the two estimators

~

E

(G)

(!) and

~

E

(W )

(a) yield smooted versions of the

power spectrum E(!), the smoothing being a standard convolution in the Gabor case,

and a multiplicative convolution in the wavelet case.



Remark 7 Notice that the estimator

~

E

(G)

(!) is very much in the spirit of the so-called

Welsh-Bartlett estimator, a standard tool for spectral estimation. The Welsh-Bartlett

estimator is obtained by computing local (tapered) periodograms of the signal, and then

taking the average of these local spectra. This is basically what the averaged Gabor

spectral estimator

~

E

(G)

(!) does. The averaged wavelet estimator

~

E

(W )

(a) (which may be

seen as a spectral estimator by considering the scale as an inverse frequency variable)

does a similar job, the di�erence being that the window size changes proportionally

to the inverse of the frequency (the higher the frequency, the smaller the window).

Examples of spectral estimation are presented in Section 4 below.

3.4 Adaptive Decompositions

We have seen that di�erent types of weighted spectra are adapted to di�erent types of

time series, i.e. di�erent types of covariances. In practice, the covariance is not known,

and has to be estimated from one or a few realizations of the time series. In such a

context, the choice of the method, or say the choice of the window g(t) in the Gabor

case, is not innocuous. Several aproaches have been proposed to solve such problems

(see for example [14, 16]). In most cases, the objective is to �nd the decomposition

which make the corresponding weighted spectrum �as diagonal as possible�. Such a

requirement may be realized in di�erent ways.

Let us describe here the solution proposed in [14], in a slightly more general context

than in [14]. Let us assume that we are given a family of functions (for example wavelets,

or Gaborlets, or more general functions), denoted by L = f 

�

; � 2 �g, where � is some

measure space, normalized so that jj 

�

jj = 1 for all � 2 �. Assume further that there

exists an associated reproducing formula: there exists a measure d� on � such that

8f 2 L

2

(R),

f =

Z

�

hf;  

�

i 

�

d�(�) (33)

weakly in L

2

(R). Continuous Gabor and wavelet transforms provide examples of such

reproducing formulas. Other examples have been studied, in particular in [12, 18].

Let C be the covariance of a second order time series fX

t

; t 2 Rg, and consider the

generalized weighted spectrum

E

(L)

(�) = E

n

jhX; 

�

ij

2

o

= hC 

�

;  

�

i : (34)

Let us write

C 

�

= E

(L)

(�) 

�

+ r

�

where r

�

is some remainder, such that r

�

?  

�

. In order to �almost diagonalize� the

covariance C, a possible approach amounts to make jjr

�

jj as small as possible for all �.

The solution proposed in [14] amounts to search for the optimal decomposition L by

solving

L

opt

= argmin

L

Z

jjr

�

jj

2

d�(�) (35)

This program may be justi�ed in the following situation

Proposition 2 Assume that C is Hilbert-Schmidt (i.e. jjCjj

2

HS

= Tr(C

�

C) <1). Then

R

jjr

�

jj

2

d�(�) = jjCjj

2

HS

� jjE

(L)

jj

2

L

2

(�)

, and the problem (35) is equivalent to

L

opt

= argmax

L

jjE

(L)

jj

2

L

2

(�)

(36)



The proposition follows from a simple calculation. The fact that E

(L)

2 L

2

(�) is also

veri�ed directly from the reproducing formula (33).

This program has been carried out by W. Kozek in [14] in the particular case of

Gaborlets: the families L are families of Gaborlets L = L

g

= fg

(b;!)

; b; ! 2 Rg with

di�erent window functions g(t), jjgjj = 1. In that particular case, it may be shown that

the �optimal window� is that one which maximizes the scalar products of the square

moduli of the ambiguity functions of the time series jA

X

j

2

and of the window jA

g

j

2

, i.e.

the problem (35) becomes

g

opt

= arg max

g2L

2

(R);jjgjj=1

jjE

(G)

jj

2

L

2

(R

2

)

= arg max

g2L

2

(R);jjgjj=1

hjA

X

j

2

; jA

g

j

2

i (37)

This provides a simple interpretation to this problem, in the light of the example of

Figure 2: the optimization searches a window whose spreading in the time-frequency

domain matches best that of the time series.

More generally, there is no reason for a time series to be well described by constant

size Gaborlets, even if the time series may be considered locally stationary. This implies

that most of the time it is not su�cient to limit oneself to Gaborlets, and the decompo�

sition has to be seeked in larger families. Examples have been studied e.g. in [12, 18].

Another approach may be found in [16], in a di�erent context which we brie�y mention

now.

3.5 Remark: Discretization, and Adaptive Spectral Decomposition

So far, we have limited our analysis to the case of time series de�ned for continuous

time, and considered only continuously labeled decompositions. In practice, one clearly

needs to develop discrete analogs of these techniques.

Discretizations of the continuous time-frequency decompositions have been discussed

in several places (see for example [4, 5, 7, 13, 22]). The �rst main result (existence of

wavelet and Gabor frames, see for example [7]) is that the continuous formulae in (16)

and (20) may be discretized without introducing important distortions, as long as the

discretization step is small enough. By doing so, one generally keeps some redundancy

in the decompositions.

However, it is desirable in some contexts to go further and get rid of redundancy

as much as possible, and in particular use (orthonormal) bases when possible. This

is the case in particular for all applications related to signal compression. As we

have seen above, the optimal representation, in terms of reduction of variance, is the

Karhunen-Loeve decomposition (see equation (1) above). However, we have stressed

already at the beginning of Section 2 that such decompositions may sometimes be of

poor interest in practice. A possible alternative, in the spirit of our previous discussion,

amounts to look for the �optimal basis decomposition� within a library of bases, gener�

ated in a simple and systematic way. This best basis paradigm, proposed by Coifman

and Wickerhauser �rst and developed systematically since then (see in particular [22]),

has been applied recently by Mallat, Papanicolaou and Zhang in [16] for constrructing

approximate spectral decompositions for locally stationary processes. The construction

makes use of the local trigonometric bases, which may be understood as (generalized)

bases of Gaborlets. We refer to [16] for the details, and to [8] for an alternative approach.



4 Examples

We have seen in the previous section how time-frequency or time-scale transforms may

be used to build spectral estimators, adapted to stationary or non-stationary situations.

We now illustrate with a couple of examples of spectral estimation based upon wavelet

and Gabor transforms. Our purpose is not to provide a systematic comparison of

estimation techniques in a variety of situations. We just present two situations for

which the methods we just explained are well adapted.

It is readily seen form equation (31) that if E(!) = Ce

��!

, for some constants

�; C, and if g(t) is chosen in such a way that K =

1

2�

R

e

��!

jĝ(!)j

2

d! < 1, then

E

n

~

E

(G)

(!)

o

= KE(!). Of course, such a choice for E(!) is not suitable for the spectral

density of a stationary time series. However, if E(!) � e

��!

within a given frequency

domain, we may expect

~

E

(G)

(!) to provide an unbiased estimation of E(!) within this

frequency domain.

Figure 4 is an illustration of this case. We consider an example of discrete (weakly

stationary) time series, whose spectral density is a decaying exponential function of the

frequency:

E(!) = expf��j!jg ;

for �� � ! � �. In such a case, one expects

~

E

(G)

to provide a good estimation, except

perhaps in the neighborhood of the origin of frequencies.

In the example, � has been set to � = 2. A standard periodogram-based estimation

(shown in the right top plot of the �gure) followed by a linear regression yields an

estimate

~

� = 2:0059. A part of the Gabor spectrum

~

E

(G)

(b; !) is represented in the

left bottom �gure, and the corresponding b-averaged version

~

E

(G)

(!) is displayed in the

right bottom plot. The estimate for � obtained in this case was

~

� = 2:003. Several

simulations in the same �experimental� situations have shown that the Gabor estimate

has a variance about twice smaller than the estimate based on the periodogram. This

is not surprising, for we have already remarked the similarity of this approach with the

Welsh-Bartlett estimator, which was introduced for that purpose.

Our second example illustrates the behavior of wavelet-based spectral estimation.

As we have remarked already, the wavelet spectrum is more adapted to time series

whose covariance possesses some scale invariance properties. This is the case for the

fractional Brownian motion which we are considering now. The fractional Brownian

motion (fBm) of Hurst exponent h is a Gaussian process fX

t

; t 2 Rg with zero mean,

and covariance

E fX

t

X

s

g =

�

2

2

n

jtj

2h

+ jsj

2h

� jt� sj

2h

o

:

This is an interesting example of non stationary process, which has received great

attention lately, because it exhibits long range correlations, a phenomenon which has

been observed in various contexts. However, it is known that because of these long

range correlations, the estimation of the Hurst exponent h (and the variance parameter

�) is a di�cult task, for sample estimators turn out to have a large variance.

Remarkably enough, the �xed-scale wavelet transform fT

X

(b; a); b 2 Rg of such

a time series is a weakly stationary time series, so that the discussion of the previous

section may be extended to the present situation. We show how the wavelet spectrum we

described in the previous section may be used for estimating h from a single realization.
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Figure 4: Example of spectral estimation using the Gabor spectrum. The signal (left

top plot) is a Gaussian process, whose spectral density is an exponential function of the

frequency. The logarithm of the periodogram estimate of the spectral density is shown

on the right top plot, superimposed with a regression line. The (estimated) Gabor

spectrum (on a small part of the signal) is displayed as a surface plot in the left bottom

�gure, and its average with respect to the time variable is presented in the right bottom

plot, together with a corresponding regression line.
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Figure 5: Example of spectral estimation using the wavelet spectrum. The signal (left

top plot) is a realization of a fractionam Brownian motion, with Hurst exponent h = :2.

The logarithm of the periodogram estimate of the spectral density is shown on the right

top plot, superimposed with a regression line. The (estimated) wavelet spectrum (on a

small part of the signal) is displayed as a surface plot in the left bottom �gure, and its

average with respect to the time variable is presented in the right bottom plot, together

with a corresponding regression line.



We illustrate it with one realization, with Hurst exponent h = 0:2. Figure 5 shows

the realization of the time series (left top plot), together with a periodogram-based

estimation. As can be seen from the right top plot, the lack of smoothness of the

periodogram makes it di�cult to estimate the Hurst exponent. This is to be compared

with the right bottom plot, representing the (logarithm of) wavelet spectrum

~

E

(W )

(a).

For such processes, it may be shown (see for example [4]) that

E

n

~

E

(W )

(a)

o

� a

2h

;

as soon as  (t) has been chosen in such a way that

R

j!j

2h�1

j

^

 (!)j

2

d! <1, so that a

linear regression on a log-log plot of the wavelet spectrum provides directly an estimate

for the exponent. In our case, the estimate was

~

h = 0:196 (notice that -as in the case of

the periodogram- all the scales could not be used, the smallest scales being corrupted

by additional noise).

Such methods have been carefully analyzed (see e.g. [1, 4]). In particular, P. Abry

has shown that estimators of the type we are considering are unbiased and of minimal

variance.

5 Conclusions

We have described a series of methods designed to provide simple representations of

deterministic and random signals, emphasizing the so-called time-frequency methods.

Besides more sophisticated tools such as Wigner-s functions and its generalizations,

we have shown that simple decompositions such as Gabor or wavelet transforms yield

e�cient algorithms, in particular for spectral estimation. These two particular methods

are well adapted to speci�c situations, and extensions to more general contexts require

using more general (adaptive) decomposition methods.

The illustrations of this papers have been generated using the Swave package devel�

oped by R. Carmona, W.L. Hwang and the author (see [4]). Swave (based on the Splus

environment), is available by anonymous ftp at the site:

http://soil.princeton.edu/ rcarmona

and documented in [4].
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