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Time-Frequency and Time-Scale Analysis

Current multimedia technologies call for e cient ways of rep resenting signals. We review several e cient methods for signal represen tation, emphasizing potential applications in signal compression and denois ing. We pay special attention to the representations which are adapted to non-stationary features of signals, in particular the classes of bilinear rep resentations, and their approximations using time-frequency atoms (mainly wavelet transforms and Gabor transforms).

Introduction

In various instances in signal processing, an important part of the processing is achieved by an e cient representation of the considered signal. This is the case for example in signal compression, where coding and bit allocation often come after a transform which expresses the signal in an adapted basis, with respect to which a large number of coe cients may be discarded. This is true for signal de-noising as well, for an e cient representation concentrates the useful signal within a few signi cant coe cients, while noise remains distributed over all coe cients. Therefore, an e cient representation, followed by simple operations such as thresholding, generally yield good de-noising algorithms.

The goal of this contribution is to describe a number of simple e cient representa tions that are generated by using time-frequency decompositions, and to show how these may be used for practical purpose. Special attention is paid to problems of spec tral estimation, for non stationary time series. We shall mainly limit our discussion to simple decompositions such as Wavelet or Gabor decompositions, in order to em phasize the di culties of such approaches, but we will also pay a few words to more sophisticated tools.

Non-Stationary Tools

Let us start by describing a few tools which we will use in the following. The most usual tool is the Fourier transform. It is well known that Fourier analysis is well adapted to stationary situations , i.e. signals which possess some translation invariance properties (we use the following convention for Fourier transformation: f(!) = R f(t)e i!t dt.)

When translation invariance assumptions are relaxed, then Fourier transform is not the most adapted tool any more, and alternatives are needed. Among them, time-frequency and time-scale methods have become quite popular in the recent years, as they provide simple approximations of optimal, Karhunen-Lo ve-type decompositions.

Brie y, the Karhunen-Lo ve (KL for short) decomposition is obtained by diagonal izing the covariance of a second order random time series. Let fX t ; t 2 Rg be a second order zero mean time series, and let C be its covariance operator, de ned by its matrix elements hCf; gi = E n hX; fihX; gi o . C is non-negative de nite (and self-adjoint.) As sume for the sake of simplicity that C has discrete spectrum, and denote by f' k ; k g the eigenfunctions and eigenvalues of C. This yields an expansion of the time series as a (random) linear combination of the functions ' k :

X t = X k q k w k ' k (t) (1) 
Such an expansion is doubly orthogonal in the sense that h' k ; ' `i = k`( 2) E fw k w `g = k`( 3) However, KL-type are sometimes of poor practical interest. Indeed, diagonalizing the covariance becomes in practice a matrix diagonalization problem, which becomes cum bersome as the matrix size increases. In addition, prior to diagonalization, the covari ance matrix has to be estimated, generally from one or (in rare cases) a few realizations of the time series. All together, performing a KL decomposition may become a di cult practical problem, and it makes sense to seek alternative methods, at least in some spe ci c situations where some a priori information about the time series is available. One particular case if that of time series which are not far from stationary , i.e. to which one may want to associate a sort of time dependent spectral representation. Studying such time series leads to the notion of time-frequency representations. Another example is provided by time series which present some sort of scale invariance. This is the realm of time scale analysis. In what follows, we brie y describe these topics.

Bilinear representations

Signals are often modeled either as deterministic signals, or more generally as (second order) random time series. In what follows, we will essentially focus on the random situations, the deterministic case being easily obtained (unless otherwise speci ed). The simplest model to consider is that of (weakly) stationary time series. However, in many situations signals can hardly be considered stationary, and it is necessary to turn to alternative tools which generalize the usual ones in non stationary situations. Several such tools have been developed in the literature, the most commonly used be ing probably the Karhunen-Loeve based methods. However, there are many situations in which the signals to be analyzed possess some characteristics which may be better understood in terms of joint time-frequency representations. The prototypes of such time-frequency representations are the so-called Ambiguity function and Wigner func tion (or Wigner-Ville function. The ambiguity function was introduced by Woodward in a radar context. The ambiguity function is essentially obtained by taking scalar products of a function with a time-frequency shifted copy of itself. More precisely:

De nition 1 1. Let f 2 L 2 (R). Its ambiguity function is de ned by A f ( ;

) = Z f(t + =2)f(t =2)e i t dt : (4) 
2. Let fX t ; t 2 Rg a second order time series. Then its ambiguity function is de ned by A X ( ; ) = E Z X t+ =2 X t =2 e i t dt :

(5)

The ambiguity function was originally introduced in a deterministic context. The deter ministic ambiguity function may be seen as a scalar product of f with a translated and modulated copy of f (up to a trivial factor). It is easily seen that if f 2 L 2 (R), then A f is a bounded function (with jjA f jj 1 jjfjj 2 ). In addition, a direct calculation shows that if f 2 L 2 (R), then A f 2 L 2 (R 2 ), and that jjA f jj 2 2 = 2 jjfjj 4 . More generally, it may be shown that A 2 L p (R 2 ) for all p 2 1; 1] (bounds for the corresponding L p (R 2 )

norms have been derived by E. Lieb).

The non-deterministic version may be given a similar interpretation. Its properties depend on the properties of the covariance operator C of the process, de ned by its matrix elements: for all f; g 2 D(R), hCf; gi = E n hX; gihX; fi o : (

For example, if C extends to a Hilbert-Schmidt operator, which we denote by C 2 L 2 , then A 2 L 2 (R 2 ). Remark 1 Ambiguity functions, or cross-ambiguity functions of the form A f;g ( ;

) = Z f(t + =2)g(t =2
)e i t dt [START_REF] Cohen | Time frequency Analysis[END_REF] are widely used in a context of radar detection. There, f is an incident waveform and g is the observation, supposed to be an attenuated time-frequency shifted copy of g, of the form g(t) = Ae i! 0 (t t 0 ) f(t t 0 ) + noise. Here, A; ! 0 and t 0 are constants of practical interest, to be estimated. The maxima of the cross ambiguity function provide estimates for these constants.

As we shall see, ambiguity functions only provide estimates for the spreading of the analyzed object in the joint time-frequency plane, but not on its localization in that space. Such an analysis is done by the Wigner-Ville function, de ned by De nition 2 1. Let f 2 L 2 (R). Its Wigner-Ville function is de ned by

E f (b; !) = Z f(b + =2)f(b =2)e i! d (8) 
2. Let fX t ; t 2 Rg a second order time series. Then its Wigner-Ville function is 

de ned by E X (b; !) = E Z X b+ =2 X b =2 e i! d (9 
The same holds true in the deterministic context. Therefore, the Wigner function is square-integrable as soon as the ambiguity function is. It is important to notice the major di erence between the ambiguity function and the Wigner function (even though their expressions are quite close). As we have seen, the ambiguity function is a scalar product between two time and frequency shifted copies

of the signal: if f 2 L 2 (R): A f ( ; ) = hT =2 E =2 f; T =2 E =2 fi
where T and E are translation and modulation operators respectively, de ned by T b f(t) = f(t b), and E ! f(t) = e i!t f(t). For f 2 L 2 (R), one has jA f ( ; )j A f (0; 0) = jjfjj 2 , and the decay of A gives indications about the localization properties of the anal ysed object (process or function) in the time-frequency plane.

On the other hand, the Wigner-Ville function has a more complex structure, i.e

E f (b; !) = 1 2 h T b E ! f; T b E ! fi ;
where is the parity, de ned by f(t) = f( t), and actually provides estimates for time-frequency localization of signals. An example stressing the di erence is given in Figure 1, for the particular case where f(t) is a modulated Gaussian function. As ex pected, the ambiguity function is localized near the origin in the time-frequency domain, while the Wigner function is concentrated near a speci c point in the time-frequency plane, yielding estimates for the time and frequency content of the analyzed function.

Of interest too is the cross Wigner-Ville function, de ned for all f; g 2 L 2 (R) by

E f;g (b; !) = Z f(b + =2)g(b =2)e i! d : (12) 
2.2 Properties The Wigner function possesses a large number of important properties. We list here a number of simple ones, refering to 9] for a detailed account. 1. Marginals: The rst two properties we mention here deal with the behavior of marginals of the Wigner function: namely, the Wigner's function integrated with respect to the time variable or the frequency variable reproduce the power spec trum and the (square modulus of the) signal.. More precisely, we have the follow ing:

Let f 2 L 2 (R). Then Z E f (b; !)d! = 2 jf(b)j 2 , and Z E f (b; !)db = j f(!)j 2 .

2. Orthogonality relations: Let f; f 0 ; g; g 0 2 L 2 (R). Then we know that E f;g ; E f 0 ;g 0 2 L 2 (R 2 ), and a simple calculation shows that hE f;g ; E f 0 ;g 0 i = 2 hf; g 0 i hf 0 ; gi Such relations are known as orthogonality relations, or as Moyal's formula. 3. Time-frequency localization: The second set of properties deal with localization properties. It is well known that Fourier transform is optimal in the case of sine waves, in the sense that the Fourier transform of sine waves is a delta distribu tion, which is optimally localized . Since the Wigner function plays the role of a generalized spectrum, it makes sense to search for signals with perfect localiza tion in the time-frequency plane. In the case of Wigner's function, such signals are provided by the class of (generalized) linear chirps . A correct treatment of such cases (which involves Wigner functions de ned as distributions) is out of the scope of the present discussion, and we limit ourselves to a formal discussion.

Suppose that f(t) is de ned as f(t) = exp(i! 0 t + t 2 =2)), for some parameters ! 0 ;

. Then E f (b; !) = (! (! 0 + t)), i.e. has perfect localization on a straight line in the time-frequency plane. Such signals may be viewed as time-frequency rotated copies of sine waves, and include as limiting cases Dirac deltas, which are optimally localized too. Unfortunately, such a property does not generalize to frequency modulations di erent from linear ones (see Remark 3 below.) 4. Bilinearity: Inherent to the bilinear nature of Wigner's function is the existence of cross terms . More precisely, let f 2 L 2 (R) be of the form f(t

) = f 1 (t) + f 2 (t), with f 1 ; f 2 2 L 2 (R). Then E f (b; !) = E f 1 (b; !) + E f 2 (b; !) + 2<E f 1 ;f 2 (b; !) ;
where the cross wigner-Ville function has been de ned in (12). The presence of such interference terms (sometimes called ghost terms ) is generally considered a serious di culty when it comes to interpreting a Wigner representation. One classical method amounts to get rid of ghosts by appropriate smoothings of the representation (see below). However, smoothing modi es the localization prop erties of the representation. In a few speci c cases, it is possible to analyze and understand completely the geometric properties of ghost terms. But this is limited to very speci c situations.

Remark 3 As we have seen, the Wigner-Ville representation is optimal for linear chirps, in terms of time-frequency localization. It is worth mentioning that other classes of bilinear time-frequency representations have been proposed, which are optimal for some speci c frequency modulations. More generally, bilinear time-frequency represen tations may be designed which enforce speci c properties (optimal energy localization for given frequency modulations, positivity, unitarity,...) We refer to 6, 9] for a detailed account of the recent contributions in that area.

Estimation

The practical problem is often that of estimating the spectral characteristics of a func tion of a process from one or a few realizations. The simplest estimators are the sample estimators: for example, given N independent realizations X (1) ; : : : X (N) of the time se ries, consider (throughout this paper, we use the notation x to denote an estimator for the quantity x (reserving the notation x -more standard in the statistics literatureto denote Fourier transform)

ẼX (b; !) = 1 N N X n=1 Z X b+ =2 X b =2 e i! d : (13) 
In addition, real data are most often discrete and of nite length, so that the integral de ning ẼX (b; !) in ( 13) has to be replaced with a nite sum. The limits of the es timator as the sample length and the sampling frequency increase are an important issue. For the sake of simplicity, we shall not address those technical issues here. We just notice that such sample estimators generally turn out to have a large variance and poor smoothness. Therefore, one generally turns to smoothed versions (see the discussions in 9] for example). We shall see below that the use of wavelet or Gabor transforms provide examples of such smoothings. A more general class of smoothings of the Wigner-Ville function has been introduced by L. Cohen, and is known as the Cohen's class. See 6, 9] for a detailed account.

Approximating Bilinear Representations

Let us now address a slightly di erent point of view, and discuss somewhat simpler objects, namely the so-called linear time-frequency representations. As we shall see, such representations may be seen as alternatives to the bilinear representations we jus described, but also as approximations. The simplest examples of such linear transforms are the continuous wavelet and Gabor transforms, which we describe now. However, several variants have been proposed, which we shall brie y discuss later.

Windowed Fourier Transform and Wavelet transform

We describe here the simplest two examples of time-frequency linear decompositions. We rst focus on the case of continuous transforms, and postpone the description of the discretization problem to a subsequent section. We rst describe the deterministic situation.

The simplest localized version of Fourier analysis is provided by windowed Fourier transform, whose main idea is to localize the signal rst by multiplying it by a smooth and localized window, and then perform a Fourier transform. More precisely, the con struction goes as follows. Start from a function g 2 L 2 (R), such that jjgjj 6 = 0, and associate with it the following family of Gaborlets g (b;!) (t) = e i!(t b) g(t b) : [START_REF] Holschneider | Wavelets; An Analysis Tool[END_REF] De nition 3 Let g 2 L 2 (R) be a window. The continuous Gabor transform of a nite-energy signal f 2 L 2 (R) is de ned by the integral transform G f (b; !) = hf; g (b;!) i = Z f(t) g(t b)e i!(t b) dt : [START_REF] Kozek | Spectral Estimation in Non-Stationary Environments[END_REF] Gaborlets yield decomposition formulas for functions in L 2 (R), as follows.

Theorem 1 Let g 2 L 2 (R) be a non trivial window (i.e. jjgjj 6 = 0.) Then every f 2 L 2 (R) admits the decomposition

f(t) = 1 2 jjgjj 2 Z 1 1 Z 1 1 G f (b; !)g (b;!) (t)dbd! ; ( 16 
)
where equality holds in the weak L 2 (R) sense.

In other words, the mapping

L 2 (R) 3 f , ! 1 jjgjj p 2 G f 2 L 2 (R 2 )
is an isometry between L 2 (R) and L 2 (R 2 ).

The Gabor transform of a signal gives indications on its time-frequency content . Unlike the Wigner transform, it does not have sharp localization properties for speci c frequency modulations (this is due to the fact that Gabor transform is closely related to a smoothing of the Wigner transform). Nevertheless, it may be used to study frequency modulations. For example, consider a function of the form f(t) = A(t)e i (t) , and assume that A 2 C 1 (R), 2 C 2 (R), and that both A(t) and 0 (t) are slowly varying. Then, it follows directly from Taylor's formula that G f (b; !) = A(b)e i (b) ĝ( 0 (b) !) + R(b; !), where jR(b; !)j = O(jA 0 j; j 00 j). Therefore, if g(t) is a smooth function, whose Fourier transform is peaked at the origin of frequencies, and assuming that R(b; !) is small enough to be neglected in a rst order approximation, jG f (b; !)j is peaked near a curve (the so-called ridge) of equation ! = 0 (b), which reproduces the frequency modulation of the signal.

An example of such time-frequency localization is given in Figure 2, for the case of a periodically frequency modulated signal. This illustrates the main two features of the Gabor transform. The left bottom image is a gray levels representation of the modulus of Gabor transform, in the case where the window g(t) (here a Gaussian window) is local enough ; such windows allow us to see the changes in the frequencies of the signal, therefore giving a meaning to the notion of local frequency . To obtain such local quantities, we have to give up frequency resolution, i.e. the localization near the ridge is not as sharp as one would naively expect. This is especially clear on the right bottom image of Figure 2, where a narrow band window (again a Gaussian function) has been used. In that case, the window is not enough local, and cannot analyze carefully the frequency changes. However, it is extremely precise in the frequency domain, and reproduces the harmonics and subharmonics which appear in the Fourier spectrum, with a great precision.

An alternative to Gabor transform was proposed more recently by Grossmann and Morlet 11]. The main idea was to improve the time resolution of Gabor transform, by changing the rule for generating the basis functions . This may be done by replac ing the modulation operation used to generate Gaborlets by a scaling operation. Let 2 L 1 (R) \ L 2 (R) be a xed function (in fact, it is su cient to assume 2 L 1 (R), but for convenience also assume that 2 L 2 (R). This extra assumption ensures the boundedness of the wavelet transform.) From now on it will be called the analyzing wavelet. It is also sometimes called the mother wavelet of the analysis. The correspond ing family of wavelets is the family f (b;a) ; b 2 R; a 2 R + g of shifted and scaled copies of de ned as follows. If b 2 R and a 2 R + we set:

(b;a) (t) = 1 a t b a ! ; t 2 R : (17) 
The wavelet (b;a) can be viewed as a copy of the original wavelet rescaled by a and centered around the time b. Given an analyzing wavelet , the associated continuous wavelet transform is de ned as follows

De nition 4 Let 2 L 1 (R) \ L 2 (R) be an analyzing wavelet. The continuous wavelet transform (CWT for short) of a nite-energy signal f(t) is de ned by the integral:

T f (b; a) = hf; (b;a) i = 1 a Z f(t) t b a ! dt : (18) 
Like Gaborlets, wavelets may form complete sets of functions in L 2 (R), and we have in particular Theorem 2 Let 2 L 1 (R) \ L 2 (R), be such that the number c de ned by:

c = Z 1 0 j ^ (a )j 2 da a ( 19 
)
is nite, nonzero and independent of 2 R. Then every f 2 L 2 (R) admits the decom position

f(t) = 1 c Z 1 1 Z 1 0 T f (b; a) (b;a) (t) da a db ; ( 20 
)
where the convergence holds in the strong L 2 (R) sense.

In particular, we also have energy conservation : if f 2 L 2 (R), then T f 2 L 2 (R R + ; db da a ), and jjT f jj 2 = c jjfjj 2 . Notice that in [START_REF] Torr | Time-Frequency Distributions: Wavelet Packets and Opti mal Decompositions[END_REF], the constant c can only depend on the sign of 2 R, therefore assuming independence wrt is a simple symmetry assumption. The fact that 0 < c < 1 implies that ^ (0) = 0, so that the wavelet (t) has to oscillate enough to be of zero mean.

Wavelet analysis may be used as a time-frequency analysis method, though in a slightly di erent way. To see that, let us consider again the same example as before: f(t) = A(t)e i (t) , with A 2 C 1 (R), 2 C 2 (R), and that both A(t) and 0 (t) are slowly varying. With the same arguments as before, we obtain T f (b; a) = A(b)e i (b) ^ (a 0 (b)) + R(b; a), where jR(b; !)j is again controlled by the speed of varia tion of A and 0 . Assuming that (t) is a smooth function, whose Fourier transform is peaked at a particular frequency ! 0 (by de nition of a wavelet, ! 0 6 = 0), and assum ing that R(b; a) is small enough to be neglected, jT f (b; a)j is peaked near a curve (the ridge of the wavelet transform) of equation a = ! 0 = 0 (b), which again reproduces the frequency modulation of the signal, in a slightly di erent way (multiplicative instead of additive). There is a major di erence between wavelet systems and Gaborlet systems: Gabor lets are functions of constant size, and variable shape, while wavelets have constant shape, and variable size. An illustration of this fact may be seen in Figure 3, where we display the wavelet transform modulus of the frequency modulated signal analyzed in Figure 2. The wavelets have sharp frequency localization at low frequencies, and sharp time localization at high frequencies. Therefore, wavelets analyze this particular signal as follows: at low frequencies, the time resolution is not good enough to capture the frequency changes, but the frequency resolution is extremely good, and the analysis exhibits clearly the fundamental frequency of the signal. At higher frequencies, the wavelets have smaller support, and exhibit time dependent frequencies.

Remark 4 Figures 2 and 3 exhibit striking di erences between wavelets and Gaborlets,

and open the problem of selecting the best representation for a given signal. We shall address this problem brie y in a subsequent section.

Remark 5 Time-frequency analysis is certainly not the main application of wavelet analysis. Wavelets are particularly well adapted to all problems which present some scale invariance properties. A good illustration is provided by the characterization of singularities, and its applications to multifractal analysis (see e.g. 3] for a review). More practical applications include the characterization of long range correlations in 1=f-type processes. We shall see below a few examples.

Weighted spectra of second order random time series, and sample estimates

Wavelet transforms and Gabor transforms may yield alternatives to the Wigner func tion, i.e. bilinear time-frequency (or time-scale) representations. We shall term generi cally weighted spectra alternatives obtained in such ways. Let us consider a second order random time series fX t ; t 2 Rg. Its continuous Gabor transform is de ned analogously to [START_REF] Kozek | Spectral Estimation in Non-Stationary Environments[END_REF], as the time-frequency series G X (b; !) = hX; g (b;!) i : [START_REF] Vetterli | Wavelets and SubBand Coding[END_REF] Similarly, one introduces the continuous wavelet transform of fX t ; t 2 Rg by T X (b; a) = hX; (b;a) i : [START_REF] Ville | Th orie et Applications, de la Notion de Signal Analytique[END_REF] It may be proved that this de ned second order stochastic processes. This motivates the following de nition De nition 5 Let fX t ; t 2 Rg be a second order time series. 1. Let g 2 L 2 (R), normalized so that jjgjj = 1. The Gabor spectrum of the time series fX t ; t 2 Rg is de ned by E (G)

X (b; !) = E n jG X (b; !)j 2 o : (23)
2. Let 2 L 1 (R) be a wavelet, normalized so that jj jj = 1. The wavelet spectrum of the process is de ned by

E (W ) X (b; a) = E
n jT X (b; a)j 2 o :

(24)

Notice that in the particular case of (weakly) stationary time series, these quantities do not depend on b anymore (like the Wigner spectrum).

Remark 6 For a given window g 2 L 2 (R), jjgjj 6 = 0, the Gaborlets g (b;!) (t) form a complete set in L 2 (R). Therefore, the covariance C of a second order time series is completely characterized by the matrix elements hCg (b;!) ; g (b 0 ;! 0 ) i. However, we have by de nition E (G) X (b; !) = hCg (b;!) ; g (b;!) i : Therefore, one cannot expect to characterize C by its Gabor spectrum, unless the ma trix hCg (b;!) ; g (b 0 ;! 0 ) i is sharply localized near its diagonal. The time series for which such a property holds true may be termed locally stationary , and Gabor analysis may be used to study them. Such time series have been considered by several authors in the literature. See e.g. [START_REF] Mallat | Adaptive Covariance Estima tion of Locally Stationary Processes[END_REF][START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF][START_REF] Holschneider | Wavelets; An Analysis Tool[END_REF].

A similar remark holds when Gaborlets are replaced with wavelets. The class of time series which are well characterized by the wavelet spectrum is however di erent, and basically corresponds to time series whose covariance has a simple behavior under rescalings and translations. We shall see some examples below.

The simplest estimators for weighted spectra are again the sample estimators. Let us consider for example the wavelet case. Let X (1) ; : : : X (N) be N independent realizations of the time series fX t ; t 2 Rg, let 2 L 1 (R) \ L 2 (R) be a wavelet such that jj jj = 1, and set

Ẽ(W) (b; a) = 1 N N X n=1 jT X (n) (b; a)j 2 : (25) Similarly, if g 2 L 2 (R) is such that jjgjj = 1, we set Ẽ(G) (b; !) = 1 N N X n=1 jG X (n) (b; !)j 2 (26)
We shall see below that such estimators may be used as estimators for the Wigner-Ville spectrum, or even of the usual power spectrum in the stationary case (in which case they are close to classical Welsh-Bartlett estimators). This generally leads to biased, but smoother estimates.

Weighted spectra as approximations

We have seen in the previous subsection how wavelet or Gabor transforms may be used to introduce local versions of power spectra. The following result is well known (see for example 9]) and follows from a simple calculation Proposition 1 Let fX t ; t 2 Rg be a second order time series, and let E X and E (G) X denote respectively its Wigner spectrum and its Gabor spectrum. Then we have the following

E (G) (b; !) = 1 2 Z E X (b 0 ; ! 0 )E g (b 0 b; ! 0 !) db 0 d! 0 (27)
where E g (b; !) is the Wigner function of the window g(t). A similar result holds true in the case of the wavelet spectrum:

E (W ) (b; a) = 1 2 1 a Z E X (b + a ; !=a)E ( ; !) d d! : (28)
This shows that the two weighted spectra we have described above may be seen as ap proximations, or smoothings, of the Wigner-Ville spectrum. The corresponding sample estimators may therefore be expected to be smoother than the sample estimator given in [START_REF] Hogan | Extensions of the Heisenberg Group by Dila tions and Frames[END_REF].

The case of weakly stationary second order random time series is an interesting This suggests to modify the sample estimators by smoothing with respect to the b variable to improve their smoothness. Examples using the simplest smoothing, for example

Ẽ(G) (!) = 1 B Z b 0 +B=2 b 0 B=2 Ẽ(G) (b; !)db ; (29) Ẽ(W) (a) = 1 B Z b 0 +B=2 b 0 B=2 Ẽ(W) (b; a)db ; (30) 
where B and b 0 are xed parameters, have been studied in 4]. In particular, one easily

shows that

E n Ẽ(G) (!) o = E n Ẽ(G) (b; !) o = 1 2 Z E(! 0 )jĝ(! ! 0 )j 2 d! 0 ; (31) E n Ẽ(W) (a) o = E n Ẽ(W) (b; a) o = 1 2 Z E(!)j ^ (a!)j 2 d! (32) 
This shows that the two estimators Ẽ(G) (!) and Ẽ(W) (a) yield smooted versions of the power spectrum E(!), the smoothing being a standard convolution in the Gabor case, and a multiplicative convolution in the wavelet case.

Remark 7 Notice that the estimator Ẽ(G) (!) is very much in the spirit of the so-called Welsh-Bartlett estimator, a standard tool for spectral estimation. The Welsh-Bartlett estimator is obtained by computing local (tapered) periodograms of the signal, and then taking the average of these local spectra. This is basically what the averaged Gabor spectral estimator Ẽ(G) (!) does. The averaged wavelet estimator Ẽ(W) (a) (which may be seen as a spectral estimator by considering the scale as an inverse frequency variable) does a similar job, the di erence being that the window size changes proportionally to the inverse of the frequency (the higher the frequency, the smaller the window).

Examples of spectral estimation are presented in Section 4 below.

Adaptive Decompositions

We have seen that di erent types of weighted spectra are adapted to di erent types of time series, i.e. di erent types of covariances. In practice, the covariance is not known, and has to be estimated from one or a few realizations of the time series. In such a context, the choice of the method, or say the choice of the window g(t) in the Gabor case, is not innocuous. Several aproaches have been proposed to solve such problems (see for example [START_REF] Holschneider | Wavelets; An Analysis Tool[END_REF][START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF]). In most cases, the objective is to nd the decomposition which make the corresponding weighted spectrum as diagonal as possible . Such a requirement may be realized in di erent ways.

Let us describe here the solution proposed in 14], in a slightly more general context than in 14]. Let us assume that we are given a family of functions (for example wavelets, or Gaborlets, or more general functions), denoted by L = f ; 2 g, where is some measure space, normalized so that jj jj = 1 for all 2 . Assume further that there exists an associated reproducing formula: there exists a measure d on such that 8f 2 L 2 (R), Let C be the covariance of a second order time series fX t ; t 2 Rg, and consider the generalized weighted spectrum E (L) ( ) = E n jhX; ij 2 o = hC ; i :

(34) Let us write C = E (L) ( ) + r where r is some remainder, such that r ? . In order to almost diagonalize the covariance C, a possible approach amounts to make jjr jj as small as possible for all . The solution proposed in 14] amounts to search for the optimal decomposition L by solving L opt = arg min L Z jjr jj 2 d ( )

This program may be justi ed in the following situation Proposition 2 Assume that C is Hilbert-Schmidt (i.e. jjCjj 2 HS = Tr(C C) < 1). Then R jjr jj 2 d ( ) = jjCjj 2 HS jjE (L) jj 2 L 2 ( ) , and the problem (35) is equivalent to

L opt = arg max L jjE (L) jj 2 L 2 ( ) (36) 
The proposition follows from a simple calculation. The fact that E (L) 2 L 2 ( ) is also veri ed directly from the reproducing formula (33).

This program has been carried out by W. Kozek in 14] in the particular case of Gaborlets: the families L are families of Gaborlets L = L g = fg (b;!) ; b; ! 2 Rg with di erent window functions g(t), jjgjj = 1. In that particular case, it may be shown that the optimal window is that one which maximizes the scalar products of the square moduli of the ambiguity functions of the time series jA X j 2 and of the window jA g j 2 , i.e.

the problem (35) becomes

g opt = arg max g2L 2 (R);jjgjj=1 jjE (G) jj 2 L 2 (R 2 ) = arg max g2L 2 (R);jjgjj=1
hjA X j 2 ; jA g j 2 i

(37)

This provides a simple interpretation to this problem, in the light of the example of Figure 2: the optimization searches a window whose spreading in the time-frequency domain matches best that of the time series.

More generally, there is no reason for a time series to be well described by constant size Gaborlets, even if the time series may be considered locally stationary. This implies that most of the time it is not su cient to limit oneself to Gaborlets, and the decompo sition has to be seeked in larger families. Examples have been studied e.g. in 12,[START_REF] Priestley | Evolutionary Spectra and Non-Stationary Processes[END_REF]. Another approach may be found in 16], in a di erent context which we brie y mention now.

3.5 Remark: Discretization, and Adaptive Spectral Decomposition So far, we have limited our analysis to the case of time series de ned for continuous time, and considered only continuously labeled decompositions. In practice, one clearly needs to develop discrete analogs of these techniques.

Discretizations of the continuous time-frequency decompositions have been discussed in several places (see for example [START_REF] Arneodo | Ondelettes, Multifractales et Turbulence[END_REF][START_REF] Carmona | Practical Time-Frequency Analysis: Wavelet and Gabor transforms, with an implementation in S[END_REF][START_REF] Cohen | Time frequency Analysis[END_REF][START_REF] Hogan | Extensions of the Heisenberg Group by Dila tions and Frames[END_REF][START_REF] Ville | Th orie et Applications, de la Notion de Signal Analytique[END_REF]). The rst main result (existence of wavelet and Gabor frames, see for example 7]) is that the continuous formulae in ( 16) and ( 20) may be discretized without introducing important distortions, as long as the discretization step is small enough. By doing so, one generally keeps some redundancy in the decompositions.

However, it is desirable in some contexts to go further and get rid of redundancy as much as possible, and in particular use (orthonormal) bases when possible. This is the case in particular for all applications related to signal compression. As we have seen above, the optimal representation, in terms of reduction of variance, is the Karhunen-Loeve decomposition (see equation (1) above). However, we have stressed already at the beginning of Section 2 that such decompositions may sometimes be of poor interest in practice. A possible alternative, in the spirit of our previous discussion, amounts to look for the optimal basis decomposition within a library of bases, gener ated in a simple and systematic way. This best basis paradigm, proposed by Coifman and Wickerhauser rst and developed systematically since then (see in particular 22]), has been applied recently by Mallat, Papanicolaou and Zhang in 16] for constrructing approximate spectral decompositions for locally stationary processes. The construction makes use of the local trigonometric bases, which may be understood as (generalized) bases of Gaborlets. We refer to 16] for the details, and to 8] for an alternative approach.

We have seen in the previous section how time-frequency or time-scale transforms may be used to build spectral estimators, adapted to stationary or non-stationary situations. We now illustrate with a couple of examples of spectral estimation based upon wavelet and Gabor transforms. Our purpose is not to provide a systematic comparison of estimation techniques in a variety of situations. We just present two situations for which the methods we just explained are well adapted.

It is readily seen form equation (31) that if E(!) = Ce ! , for some constants ; C, and if g(t) is chosen in such a way that K

= 1 2 R e ! jĝ(!)j 2 d! < 1, then E n Ẽ(G) (!) o = KE(!).
Of course, such a choice for E(!) is not suitable for the spectral density of a stationary time series. However, if E(!) e ! within a given frequency domain, we may expect Ẽ(G) (!) to provide an unbiased estimation of E(!) within this frequency domain.

Figure 4 is an illustration of this case. We consider an example of discrete (weakly stationary) time series, whose spectral density is a decaying exponential function of the frequency: E(!) = expf j!jg ; for ! . In such a case, one expects Ẽ(G) to provide a good estimation, except perhaps in the neighborhood of the origin of frequencies.

In the example, has been set to = 2. A standard periodogram-based estimation (shown in the right top plot of the gure) followed by a linear regression yields an estimate ~ = 2:0059. A part of the Gabor spectrum Ẽ(G) (b; !) is represented in the left bottom gure, and the corresponding b-averaged version Ẽ(G) (!) is displayed in the right bottom plot. The estimate for obtained in this case was ~ = 2:003. Several simulations in the same experimental situations have shown that the Gabor estimate has a variance about twice smaller than the estimate based on the periodogram. This is not surprising, for we have already remarked the similarity of this approach with the Welsh-Bartlett estimator, which was introduced for that purpose.

Our second example illustrates the behavior of wavelet-based spectral estimation. As we have remarked already, the wavelet spectrum is more adapted to time series whose covariance possesses some scale invariance properties. This is the case for the fractional Brownian motion which we are considering now. The fractional Brownian motion (fBm) of Hurst exponent h is a Gaussian process fX t ; t 2 Rg with zero mean, and covariance E fX t X s g = 2 2 n jtj 2h + jsj 2h jt sj 2h o : This is an interesting example of non stationary process, which has received great attention lately, because it exhibits long range correlations, a phenomenon which has been observed in various contexts. However, it is known that because of these long range correlations, the estimation of the Hurst exponent h (and the variance parameter ) is a di cult task, for sample estimators turn out to have a large variance.

Remarkably enough, the xed-scale wavelet transform fT X (b; a); b 2 Rg of such a time series is a weakly stationary time series, so that the discussion of the previous section may be extended to the present situation. We show how the wavelet spectrum we described in the previous section may be used for estimating h from a single realization. The logarithm of the periodogram estimate of the spectral density is shown on the right top plot, superimposed with a regression line. The (estimated) wavelet spectrum (on a small part of the signal) is displayed as a surface plot in the left bottom gure, and its average with respect to the time variable is presented in the right bottom plot, together with a corresponding regression line.

We illustrate it with one realization, with Hurst exponent h = 0:2. Figure 5 shows the realization of the time series (left top plot), together with a periodogram-based estimation. As can be seen from the right top plot, the lack of smoothness of the periodogram makes it di cult to estimate the Hurst exponent. This is to be compared with the right bottom plot, representing the (logarithm of) wavelet spectrum Ẽ(W) (a).

For such processes, it may be shown (see for example 4]) that E n Ẽ(W) (a) o a 2h ; as soon as (t) has been chosen in such a way that R j!j 2h 1 j ^ (!)j 2 d! < 1, so that a linear regression on a log-log plot of the wavelet spectrum provides directly an estimate for the exponent. In our case, the estimate was h = 0:196 (notice that -as in the case of the periodogram-all the scales could not be used, the smallest scales being corrupted by additional noise). Such methods have been carefully analyzed (see e.g. 1, 4]). In particular, P. Abry has shown that estimators of the type we are considering are unbiased and of minimal variance.

Conclusions

We have described a series of methods designed to provide simple representations of deterministic and random signals, emphasizing the so-called time-frequency methods. Besides more sophisticated tools such as Wigner-s functions and its generalizations, we have shown that simple decompositions such as Gabor or wavelet transforms yield e cient algorithms, in particular for spectral estimation. These two particular methods are well adapted to speci c situations, and extensions to more general contexts require using more general (adaptive) decomposition methods.

The illustrations of this papers have been generated using the Swave package devel oped by R. Carmona, W.L. Hwang and the author (see 4]). Swave (based on the Splus environment), is available by anonymous ftp at the site: http://soil.princeton.edu/ rcarmona and documented in 4].
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 1 Figure 1: Example of a Time-Frequency Atom (left top), together with its Fourier transform (right top); its Ambiguity function (left bottom) and its Wigner function (right bottom) are displayed as gray levels images.

Figure 2 :

 2 Figure2: Example of a frequency modulated signal, with periodic frequency modulation (left top plot). The power spectrum (right top plot) exhibits a main frequency and a few harmonics and subharmonics. A Gabor transform with a wide band window (left bottom) exhibits the frequency modulation, while a Gabor transform with a narrow band window (right bottom) reproduces the harmonic structure of the signal. The window was a Gaussian function, with two di erent scales.
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 3 Figure 3: Continuous wavelet transform of the frequency modulated signal of Figure 2.

  particular case. Let fX t ; t 2 Rg be such a stationary time series. Then one easily veri es that The random time series fG x (b; !); b 2 Rg and fT X (b; a); b 2 Rg are second order, weakly stationary, random time series. The two weighted spectra E (W ) (b; a) and E (G) (b; !) are respectively functions of a and ! only.

  in L 2 (R). Continuous Gabor and wavelet transforms provide examples of such reproducing formulas. Other examples have been studied, in particular in 12, 18].
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 4 Figure4: Example of spectral estimation using the Gabor spectrum. The signal (left top plot) is a Gaussian process, whose spectral density is an exponential function of the frequency. The logarithm of the periodogram estimate of the spectral density is shown on the right top plot, superimposed with a regression line. The (estimated) Gabor spectrum (on a small part of the signal) is displayed as a surface plot in the left bottom gure, and its average with respect to the time variable is presented in the right bottom plot, together with a corresponding regression line.
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 5 Figure 5: Example of spectral estimation using the wavelet spectrum. The signal (left top plot) is a realization of a fractionam Brownian motion, with Hurst exponent h = :2.