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HIDDEN MARKOV TREE BASED TRANSIENT ESTIMATION FOR AUDIO CODING

S. MOLLA and B. TORRESANI

LATP / CMI

39 rue Joliot Curie, 13453 Marseille Cedex 13, France

ABSTRACT

A new approach for transients detection and estimation in

the context of hybrid audio coding is presented. The ba-

sic idea is to use an orthogonal dyadic wavelet expansion,

followed by Hidden Markov Tree modeling of wavelet co-

efficients. Coefficients may be cast as “transient type” or

“residual type”, and the estimated transient is reconstructed

from the transient type coefficients only. The estimation

procedure involves the classical two steps of Hidden Markov

Models: parameters estimation and state estimation. The

implementation of those two steps in the case of wavelet

coefficient trees is discussed in some details, and numerical

results are given. The application to audio signal encoding

is also discussed.

1. INTRODUCTION

So-called Hybrid models have received an increasing at-

tention in recent developments on audio coding. The un-

derlying idea is to model and encode separately different

features of the signal, such as tonals, transients,... Such a

scheme was developed recently in [1, 2], based upon the

following idea: a tonal part is first estimated (using thresh-

olded and weighted MCDT coefficients), encoded, and sub-

stracted from the signal. Then the transient part is estimated

in a similar way using a wavelet expansion of the residual.

It has been shown [2] that considerable savings are obtained

if a “structured” wavelet expansion is used. Namely, rather

than encoding only significant wavelet coefficients (i.e. co-

efficients larger than some given threshold), which forces to

encode a significance map as well, model transients as sets

of wavelet coefficients located at the nodes of rooted con-

nected trees. Imposing such tree structures has two main

benefits: the transient estimation is more robust, and the tree

structure turns out to be much more efficient for encoding

the significance map.

We discuss here in more details the probabilistic model

for tree structured transient estimations proposed in [1]. Our

approach is based upon the wavelet Hidden Markov Tree

model (HMT) proposed by Crouse and coworkers [3], and

implements a corresponding “transient + residual” model.

As usual with Hidden Markov Models, the main two prob-

lems to solve are parameter estimation and state estimation,

and we study several strategies for achieving these goals.

2. DESCRIPTION OF THE MODEL AND THE

ESTIMATION ALGORITHM

The model we use defines transients as “chained families”

of significant wavelet coefficients. More precisely, let  be

a compactly supported wavelet, and set as usual  
jk
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(R). The lat-

ter are obtained via a sub-band coding algorithm (see [4]

for details), and are naturally associated with a dyadic tree

structure: each coefficient d
jk

at scale j has two children
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at scale j � 1. According to the

common practice, the samples x
k

of the input signal are

identified with small scale scaling function coefficients, and

we consider wavelet expansions of the form

hx; �

0k

i � x

k

; x =

X

k

s

k

�

Jk

+

J

X

j=1

X

k

d

jk

 

jk

:

For the sake of coding efficiency, we only consider rooted

connected trees. We define transients from associated trees

of relevant coefficients [1]: a transient structure is a con-

nected tree of wavelet coefficients which satisfies a given

relevance property. In this work, the relevance property is

defined in probabilistic terms. The model we use follows

quite closely the approach described in [3] in the context

of signal and image modeling and denoising. The starting

point is a Hidden Markov Tree model, associating a random

variable D
jk

to each node (of coordinates (j; k), j being

the level and k the position) of a fixed binary tree. The dis-

tribution of the random variables D
jk

depends on a hidden

state X
jk

2 fT;Rg (the “transient” state T and the “resid-

ual” state R.) At each scale j, T -type coefficients follow a

centered normal1 distribution with a large variance �2
T;j

. R-

type coefficients follow a centered normal distribution with

1For the sake of simplicity, we limit ourselves to normal distributions,

but the model can accomodate arbitrary distributions. Gaussian mixtures

already represent quite a large family of models.



a small variance �2
R;j

. The distribution of hidden states is

given by a coarse-to-fine Markov chain, characterized by a

2 � 2 transition matrix, and the distribution of the coarsest

scale state. In order to retain only connected trees of T -

nodes, the transition R! T is forbidden: a “residual” type

coefficient cannot have “transient” type children. Thus, the

transition matrix � takes the form

� =

�

� 1� �
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where � denotes the probability of transition T ! R:

� = P fX

j�1;`

= RjX

j;k

= Tg ; ` = 2k; 2k + 1 :

The process is completely determined by � (hence, by the

number �) and the “initial” probability distribution, namely

the probabilities � = (�

T

; �

R

) of states at the maximum

scale J . The complete model is therefore characterized by

�, �, and the emission probability densities:

f

S

(y) = f(yjX = S) ; S = T;R :

According to our choice (centered Gaussian distributions),

the latter are completely characterized by �
T;j

and �
R;j

.

Given a realization of this process, the corresponding

“transient” part of the so-generated signal is the wavelet

synthesis from T -type coefficients:
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2.1. Parameter estimation

The first step of the algorithm is the estimation of the pa-

rameters of the model: the transition matrix �, and the stan-

dard deviations �
T;j

and �
R;j

. The procedure is a maximum

likelihood approach: find the parameters values which max-

imize the log-likelihood

L(�) = logP fDj�g

where D represents the set of wavelet coefficients under

consideration, and � represents the collection of parame-

ters. This estimation is done using a traditional EM (expec-

tation-maximization, see [5] for an introduction) algorithm.

After an Upward-Downward pass of the algorithm, we

are able to compute conditional probabilitiesP fX
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available for the current set of parameters�, from which we

re-estimate the parameters (denoted by a hat) as follows2:
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wavelet decomposition.

�̂

2

S;j

=

1

#(scale j)

P

k2j

(d

k

� �

S;j

)

2

P fX

k

= S j T

1

g

1

#(scale j)

P

k2j

P fX

k

= S j T

1

g

where j = 1 : : : J and S = T;R. Here, J denotes the depth

of the tree resulting from a full dyadic wavelet decompo-

sition over a fixed 2

J samples large frame. To lighten the

notations, we denoted previouslyX
j;`

by X
i

, where i is the

number of the node (j; `). The tree is numbered ordinally

(i.e. 1 stands for the root (J; 1), 2 and 3 are its children,

and so on), �(i) is the ancestor of i, and c(i) its set of two

children. Moreover, T
i

represents the subtree of wavelet co-

efficients rooted at node i (coefficient d
i

), and T
ink

the set

of nodes in T
i

which are not in T
k

(where k > i).

2.2. State estimation

The second step is the estimation of the states: this is needed

in order to decide whether a given coefficient belongs to a

transient structure or to the residual. This is the most diffi-

cult part, as one has to find an optimum over an extremely

large configuration space: all together, the number of con-

figurations for a frame of N = 2

J coefficients is of the

order of 2N . In the classical HMC situation, the Viterbi

algorithm provides an efficient way of dealing with the op-

timization problem. In the HMT case, the situation is more

complex, because of the combinatorial explosion. Never-

theless, an adapted version of the Viterbi algorithm has re-

cently been proposed [6], which applies to our case. This

version of the EM algorithm reverses the roles of the upward

and downward variables using adapted conditional variables

and therefore runs the down step before the up step. More-

over, its computation is less subject to numerical limitations

(in particular, a scaling factor avoids underflow problems).

We invite the reader to refer to [6] for further details

about this algorithm (inspired by Devidjer’s “conditional

forward-backward” recursion (1985)).

2.3. A few remarks

The computation of such an algorithm in the context of tran-

sient detection in audio signals leads to consider an amount

of parameters which have to be chosen adequately.

First of all, the use of a wavelet function with few van-

ishing moments seems adapted to our case due to the well-

localization of transients in time and frequency. Typically,

for a signal sampled at 44100Hz, analysis is done through

1024 sample long frames (i.e. 23:2ms width), correspond-

ing to 10 scales depth trees, a rather sufficient depth to cap-

ture transient-like behavior. An important point is that, ac-

cording to the model, the algorithm has a tendancy to detect

transients in every frame, because of the “local” feature of

the parameters. In other words, transients selection is only

based on the current information whatever the behaviour of

the signal in the neighborhood is. A more global way of



re-estimation is thus needed. We describe here two possible

approaches.

On one hand, “global” parameters may be estimated by

considering each local ones in a set of N frames. For in-

stance, a mean of these local parameters over this set can be

taken to compute the state estimation, or whatever multiple

of this mean (this introduces an extra parameter).

The alternative, much less intuitive, is to globally and

simultaneously re-estimate parameters in each frame of the

N -set, modifying section 2.1 formulae by considering the

whole set’s conditional probabilities computed at each loop

EM (known as “tying” across wavelet trees). The EM algo-

rithm thus converges towards the set of global parameters

�

G

. The choice of the method used to reach �

G

is dis-

cussed below. Hence, a wavelet decomposition is done on a

N � 1024 samples long segment of the signal, limited to

10 scales depth, which leads to N wavelet coefficient trees,

and then our algorithm can be applied to these trees.

Moreover, to avoid edge effects in the decomposition,

only N � 2 center frames are used for the re-estimation,

while previous and next selected coefficients in extremal

frames are taken for resynthesis, and so this set of frames

is slided of N � 2 frames between two detections to permit

an overlapping. More generally, we can consider an overlap

set of N
0

frames, and thus a sliding over N �N

0

frames.

3. RESULTS ON TRANSIENT ESTIMATION

An example of tree estimation may be found in Figure 1,

where a dyadic tree and a corresponding signal have been

generated from a HMT model with a fixed set of parameters.

The estimated tree and signal appear to be remarkably close

to the original signal, except for a few glitchs, caused by

“missed” branches.

We now discuss the performance of this algorithm on an

audio signal 3 with various sets of parameters (essentially

size of frames sets and way of re-estimate parameters).

Sound files and additional material related to this paper

can be found at the following URL:

http://www.cmi.univ-mrs.fr=
e

molla/GTS/index.htm

We consider below two ways in re-restimating parame-

ters �: the “global” one, in section 2.3 (tree tying), and the

other we will call “local mean”: it consists in taking a L
p

mean to re-estimate standard deviations scale by scale,
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where �̂
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(k) is the estimated standard deviation of hidden

sate S in the jth scale of the kth frame of the current set.

Obviously,N still denote the size of a set of frames.

3a tonal part has been estimated and then removed from the original

signal in order to obtain the signal with which we work (see [2] for details).

Note that setting p to 1 is the same as taking the arith-

metic mean of the standard deviations across the frames,

and raising p emphasizes the influence of large values.
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Figure 1: From top to bottom: Simulated signal and transient part

for a given set of parameters, with corresponding tree. Estimated

signal and trees of coefficients with a “local mean” model.

The role of the differents settings is illustrated in Figs 3-

4. An audio signal of about 60000 samples long, sampled

at 44:1 kHz is used for these tests.
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Figure 2: “Global” parameters estimation, with N = 10.

We can see in FIG. 3 how the choice of p can influ-

ence the behaviour of the algorithm. For p = 1, the tran-

sients features are pretty well selected while for p = 2 se-

lected coefficients are concentrated in the “attacks”, due to

the importance given to strong standard deviations, and thus

to strongest wavelet coefficients, and do not select all the



expected coefficients. However, for much more localized

transients (such as short attacks), such a setting would yield

better results.

This problem naturally leads us to consider the “global”

parameter re-estimation evoked before. FIG. 2 shows that

it gives excellents results, in terms of transient estimation.

Therefore, the residual part after removal of the estimated

transients is closer to a stationary random signal, with a

rather small variance, which is one of the main goals [1, 2].
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Figure 3: “Local mean” transient estimation with different values

of p, with N = 10. From top to bottom: input signal, tree of

estimated T wavelet coefficients, estimated transient component,

residual (for p = 1); tree, estimated, residual (p = 2).

However, this improved precision in the transient esti-

mation goes together with an increased number of retained

wavelet coefficients, which may become a severe shortcom-

ing in a signal coding perspective.

The optimization of the performances of this algorithm

would also require optimizing the numberN of frames where

parameters are re-estimated. For instance, selecting the few

tree branches near the 45000th sample in FIG. 2 would eas-

ily be avoided by another choice of N . Nevertheless, let us

stress that the optimization of N may become an important

issue, as shown in FIG. 4, where an inadequate N yields a

very poor transient estimates. In general, if N is too large,

some transients hidden by others within the same set are

ignored. If N is too small, “ghost” transients show up.
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Figure 4: Transient estimation with N = 4, p = 1.

4. CONCLUSION

We presented in this paper an application to audiophonic

signals of HMT models in the wavelet-domain. We showed

that its adaptation to transient estimation gives relevant re-

sults if an optimization upon the parameters of the underly-

ing model is done. This optimization will be useful to in-

clude this algorithm in a more global framework of hybrid

audio signal encoding.
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