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TIME-FREQUENCY ANALYSIS, FROM GEOMETRY TO SIGNAL PROCESSING

We describe some aspects of time-frequency analysis, involving mainly two arguments: time-frequency localization, and symmetry constraints. We show how such arguments appear in the classical time-frequency transforms (Wigner transforms, wavelet and Gabor transforms). Then we discuss deformed versions of one of these transforms, namely the reassigned Gabor transform, and show that it may be a promizing alternative to Wigner function.

Introduction

Time-Frequency analysis aims at providing representations for signals, involving simultaneously time and frequency descriptions. Classical signal analysis is generally based upon a representation of functions, for example the usual one (hereafter termed the time representation ), or the Fourier representation ( frequency representation ): one studies f(!) = Z f(t)e i!t dt ; whenever such an expression makes sense. In fact, most representations may be regarded as representations of functions by coe cients with respect to some basis (in some generalized sense if needed).

Among the representations, time-frequency representations have become quite popular in the recent years. The rst contributions seem to be due to the engineer J. Ville on one hand, who proposed to use the Wigner distribution as a time-frequency density , and the physicist D. Gabor on the other hand, whose approach was based upon decompositions into time-frequency atoms , generated as time and frequency translates of a Gaussian function. Since then, Ville's approach has led to the theory of quadratic time-frequency representations, very popular in the signal analysis community. Gabor-type expansions are also very popular, and have more recently enjoyed a renewed interest, since the development of wavelet theory in the early eighties. For completeness, let us also quote the contribution of M. Priestley [START_REF] Priestley | Evolutionary Spectra and Non-Stationary Processes[END_REF] , who was benin: submitted to World Scienti c on November 23, 1999 1 the rst to formulate the time-frequency representation problem in a random situation.

A. Grossmann and J. Morlet realized in 1983 that any square-integrable function may be expanded into wavelets of constant shape, shifted and scaled copies of a single function (the mother wavelet), provided that the latter possess some mild oscillation properties. This simple result, and the remark that the corresponding expansions are in fact very close to Gabor's expansions, showed that wavelet expansions had an important potential as a tool for signal analysis. Grossmann and his collaborators also provided a beautiful interpretation of wavelet and Gabor expansions in terms of square-integrable group representations, emphasizing the importance of symmetry groups in the construction.

More recently, interesting connections between wavelet and Gabor transforms on one hand, and Wigner-Ville transforms and generalizations on the other hand have been discovered, the former being some blurred versions of the latter. The problem of restoring the time-freauency resolution from such blurred transforms has then attracted some attention, in particular with the systematic study of the so-called reassignment methods by P. Flandrin [START_REF] Flandrin | Temps-Fr quence. Trait des Nouvelles Technologies, s rie Traitement du Signal[END_REF] and his collaborators, after the pioneering work of Kodera et al.f [START_REF] Kodera | Analysis of time-varying signals with small BT values[END_REF] . The geometrical status of such methods also deserves some interest [START_REF] Daudet | Time-frequency and time-scale vector elds for deforming time-frequency and time-scale representations[END_REF] .

The present contribution is a description of the relationship between the above mentioned tools. We brie y recall the basics of time-frequency analysis, Wigner, Gabor and wavelet transforms. Then, we turn to a description of the reassignment methods, in their geometrical version, and conclude with some prospective remarks.

Time-frequency analysis

Continuous wavelet analysis was introduced a in a seminal article by A. Grossmann and J. Morlet [START_REF] Grossmann | Decomposition of Hardy functions into square integrable wavelets of constant shape[END_REF] . The continuous wavelet transform is a prototype of linear time frequency representations, which provide decompositions of functions as superpositions of elementary waveforms. Those linear time-frequency representations are often compared with the quadratic time-frequency representations, a family of tools which are in some respect, more powerful, but also lack of robustness in complex practical situations. We rst give a short account of the quadratic time-frequency representations.

Wigner functions and quadratic time-frequency transforms

The Wigner-Ville distribution. The rst instance of time-frequency transform is the ambiguity function, familiar to radar specialists [START_REF]Radar and Sonar, Part I[END_REF] . The (cross) ambiguity function b A f;g of a pair of functions f and g may be introduced as a method for solving a simple estimation problem. Suppose that g 2 L 2 (R) is a reference signal, and that f be an observation, time and frequency shifted copy of g (possibly perturbed): f(t) = Ag(t )e i t . Here A is a constant and and are the parameters to be estimated. It follows from the Cauchy-Schwarz inequality that the parameters and may be obtained by maximizing with respect to b and ! the square-modulus of the following quantity: Z f(t)g(t b)e i!t dt :

The latter is essentially a time-frequency cross-correlation of f and g, obtained by considering scalar products of f with time and frequency shifted copies of g of the form e i!t g(t b) (with b; ! 2 R). Therefore, it measures how close f is to time-frequency shifted copies of g. The same problem may be formulated in a context of random signals. The de nition of ambiguity function (including the case of random time series) is given below.

DEFINITION 2.1 1. Let f 2 L 2 (R). Its ambiguity function is de ned by A f ( ; ) = Z f(t + =2)f(t =2)e i t dt : (1)
2. Let fX t ; t 2 Rg a second order random time series. Then its ambiguity function is de ned by A X ( ; ) = E Z X t+ =2 X t =2 e i t dt :

(2) REMARK 2.1 Clearly, if f 2 L 2 (R), then A f is a bounded function (with jjA f jj 1 jjfjj 2 ). In addition, a direct calculation shows that if f 2 L 2 (R), then A f 2 L 2 (R 2 ), and that jjA f jj 2 2 = 2 jjfjj [START_REF] Antoine | An algebraic approach to discrete dilations[END_REF] . In fact, a result due to E. Lieb 28 shows that A 2 L p (R 2 ) for all p 2 1; 1]. The de nition of ambiguity function may be extended to cover the case of distributions, and it may be shown that the ambiguity distribution of a distribution 2 S 0 (R) is a distribution A 2 S 0 (R 2 ). REMARK 2.2 The non-deterministic version may be given a similar interpretation. Given a second order random time series fX t ; t 2 Rg, the properties of A X depend on the properties of the covariance operator C of the process, de ned by its matrix elements: for all f; g 2 D(R), hCf; gi = E n hX; gihX; fi o :

For example, if C extends to a Hilbert-Schmidt operator, which we denote by C 2 L 2 , then A 2 L 2 (R 2 ). 

E X (b; !) = E Z X b+ =2 X b =2 e i! d (5) 
More generally, one also de nes the cross Wigner-Ville function of f; g 2 

L 2 (R) by W f;g (b; !) = Z f(b + =2)g(b =2)e i! d (6) 
The same holds true in the non-deterministic context. Therefore, the Wigner function is square-integrable as soon as the ambiguity function is so, i.e. as soon as f 2 L 2 (R). In fact, Lieb's estimates show that when f 2 L 2 (R), W f 2 L p (R 2 ) for all p 2 1; 1]. REMARK 2.4 Like the ambiguity function, the Wigner-Ville distribution may also be de ned when f is a distribution. Indeed, if 2 S 0 (R), it may be shown 20 that W 2 S 0 (R 2 ). In fact, the Wigner-Ville distribution is nothing benin: submitted to World Scienti c on November 23, 1999 but the Weyl symbol of the operator of orthogonal projection onto f, which may be written:

P f g(t) = 1 2 jjfjj 2 Z W f t + b 2 ; ! e i!(t b) g(b)dbd! :
Properties of the Wigner-Ville distribution. The WV distributions enjoy a set of quite remarkable properties.

1. Orthogonality relations c : let f; f 0 ; g; g 0 2 L 2 (R). Then W f;g ; W f 0 ;g 0 2 L 2 (R 2 ) and hW f;g ; W f 0 ;g 0 i = 2 hf; f 0 i hg 0 ; gi :

(9) The orthogonality relations of the Wigner-Ville coe cients are a direct consequence of the corresponding relations for ambiguity functions, and the symplectic Fourier transform formulas (7) and (8).

Covariance:

The WV distribution is covariant with respect to a certain number of simple transformations. Namely: The Wigner transform is actually covariant under a general group of transformations, called the metaplectic group. We refer to the textbook of Folland [START_REF] Folland | Harmonic Analysis of Phase Space[END_REF] for more details.

Translations: if g(t) = f(t ), W g (b; !) = W f (b ; !). Modulations: if g(t) = e i t f(t), then W g (b; !) = W f (b; ! ). Rescalings: if g(t) = 1 p a f t a , then W g (b; !) = W f b a ; a! .
3. Time-frequency localization: Let us start with simple examples, namely the case of the pure oscillations, i.e. the distribution of the form f(t) = e i t . The WV transform of such an f(t) has to be de ned as a twodimensional distribution, and one easily shows that W f (b; !) = 2 (!

), which has sharp localization in the time-frequency space.

c also known as Moyal's formula. Such optimal localization properties are preserved by the simple transformations alluded to in the previous section. While the e ect of translations, modulations and rescalings are easy to visualize, let us pay special attention to the consequences of the time-frequency rotations covariance.

It is easily shown that the so-called linear chirps, i.e. the distributions with a linearly time-varying frequency e i t+ t 2 =2 may be obtained by appropriate translation, modulation, rescaling and time-frequency rotation of a pure oscillation. Hence, its WV distribution inherits the perfect localization properties from those of the pure oscillations, and one obtains W f (b; !) = 2 (! ( + b)). An example of such a behavior is provided in Fig. 1, which represents the WV distribution of a linear chirp.

Interferences. As a quadratic functional of the function f(t), the WV distribution yields interference terms. Namely, let f 1 ; f 2 2 L 2 (R), and let f = f 1 + f 2 . Then one immediately sees that W f (b; !) = W f1 (b; !) + W f2 (b; !) + 2< (W f1;f2 (b; !)) : Even in the case where both W f1 (b; !) and W f2 (b; !) are sharply localized in the (b; !) plane, the cross term 2<W f1;f2 (b; !) introduces an extra component in the WV transform of f, which degrades the resolution.

The treatment of such interference terms has received a considerable attention in the signal processing literature during the past 10 years. Interferences terms are generally attenuated by appropriate smoothings of the WV benin: submitted to World Scienti c on November 23, 1999 distribution. Examples are provided by the following classes of time-frequency distributions:

1. Usual smoothings: given a kernel 2 L 1 (R 2 ), one may associate with it the following time-frequency distribution f (b; !) = Z ( ; )W(b ; ! )d d : (10) f (b; !) is smoother than the Wigner-Ville distribution. In addition, the interference terms of the Wigner distribution are generally much smaller in f . In addition, since f is obtained from a WV distribution via a twodimensional convolution (a translation invariant operation), it inherits from W(b; !) the time-frequency translations covariance. The family of f generated in that way is called the Cohen's class. 

f (b; a) is a time-scale representation of f. With the same arguments as before, it may be shown that it inherits from the WV distributions its properties of covariance with respect to translations and rescalings. The family of representations generated in that way is called the a ne class.

Generalized Wigner functions. The covariance properties are an important ingredient in the construction of Wigner functions. In fact, it may be shown that the Wigner function is the only quadratic representation possessing the covariance properties described above. This suggests that imposing di erent covariance conditions would yield generalized Wigner functions. This program has been achieved in a number of situations, in particular in the work of Bertrand and Bertrand [START_REF] Bertrand | A new class of Wigner functions with extended covariance properties[END_REF] , who constructed generalized Wigner functions, covariant with respect to 3-dimensional extensions of the a ne group (see P. Flandrin's book [START_REF] Flandrin | Temps-Fr quence. Trait des Nouvelles Technologies, s rie Traitement du Signal[END_REF] for more details on signal processing applications). Let us also mention the more abstract recent contribution of Ali et al. [START_REF] Ali | The Wigner operator and Wigner function for general Lie groups[END_REF] , who extend the concept to general type one Lie groups.

Continuous Gabor transform (CGT)

In his seminal paper, in the mid forties, Gabor proposed to develop signals with respect to a family of Gaussian, translated and modulated (with discrete translations and modulations). The concept has evolved further, in several directions, yielding among other generalizations the continuous Gabor transform benin: submitted to World Scienti c on November 23, 1999

(CGT for short). The CGT essentially rst localizes the signal by multiplying it by a smooth and localized window, and then performs a Fourier transform.

More precisely, start from a function g 2 L 2 (R), such that jjgjj 6 = 0, and associate with it the following family of Gaborlets g (b;!) (t) = e i!(t b) g(t b) :

(12) The corresponding Gabor transform is de ned by DEFINITION 2.3 Let g 2 L 2 (R), kgk 6 = 0, be a window. The continuous Gabor transform of a nite-energy signal f 2 L 2 (R) is de ned by the integral transform G f (b; !) = hf; g (b;!) i = Z f(t) g(t b)e i!(t b) dt : (13) Gaborlets yield decomposition formulas for functions in L 2 (R), as follows.

THEOREM 2.1 Let g 2 L 2 (R) be a non trivial window (i.e. jjgjj 6 = 0.) Then every f 2 L 2 (R) admits the decomposition

f(t) = 1 2 jjgjj 2 Z 1 1 Z 1 1 G f (b; !)g (b;!) (t)dbd! ; (14)
where equality holds in the weak L 2 (R) sense.

In other words, the mapping L [START_REF] Ali | The Wigner operator and Wigner function for general Lie groups[END_REF] 

(R) 3 f , ! 1 jjgjj p 2 G f 2 L 2 (R 2
) is an isometry between L 2 (R) and L 2 (R 2 ), and the inverse mapping is provided by the adjoint mapping.

In the case of random time series, the CGT is de ned similarly.

DEFINITION 2.4 Let fX t ; t 2 Rg be a mean zero second order random time series, and let g 2 L 2 (R) be a window. The CGT of X t is the random timefrequency series de ned by G X (b; !) = hX; g (b;!) i (15) By de nition, the covariance operator C of the time series is de ned by its matrix elements hCf; gi = E fhX; gihf; Xig. Obviously,

E G f (b; !)G f (b 0 ; ! 0 ) = hCg (b 0 ;! 0 ) ; g (b;!) i (16) 
REMARK 2.5 The case where the time series fX t ; t 2 Rg under consideration is (second order) stationary is particularly interesting. By de nition, the covariance operator is in such a case a convolution operator, and one immediately sees that

E G f (b; !)G f (b 0 ; !) = 1 2 Z e i (b b 0 ) jĝ( !)j 2 d ( ) ;
where d ( ) stands for the spectral measure of the time series.

benin: submitted to World Scienti c on November 23, 1999

However, the main interest of the CGT lies in its potential for handling non stationary situations (in the stationary case, the covariance operator is a convolution operator, which is perfectly handled by Fourier methods). Particularly interesting is the case of the so-called locally stationary time series, which are basically random time series whose covariance operator is almost diagonal in an appropriate Gabor representation. Such a situation has been discussed by various authors in various contexts 27;31;11 . examples. The CGT and similar tools have been quite popular in the speech processing literature, because of its capability of handling the so-called locally harmonic signals, namely signals which may be modeled in the form

f(t) = K X k=1
A k (t)e i h (t) ; (17) where the local amplitudes a k (t) and the local frequencies ! k (t) = 0 k (t) are assumed to be slowly varying. Such signals are called locally harmonic when, in addition, the local frequencies are close to be integer multiples of a fundamental frequency (the pitch frequency: ! k (t) k! 1 (t).

The CGT of such signals have been studied by several authors. Let us consider a simpler signal, of the form f(t) = A(t)e i (t) ; where A; 2 C 2 (R), and A and 0 are supposed slowly varying. Then, a simple application of Taylor's formula yields 30;16;38;11 

) G f (b; !) = A(b)e i (b) ĝ( 0 (b) !) 1 + R(b; !)] ; (18) 
where the remainder R(b; !) is bounded as jR(b; !)j K 1 jA 0 (b)j jA(b)j + K 2 sup u jA 00 (u)j jA(b)j + K 3 sup u j 00 (u)j jA(b)j :

Therefore, as soon as the amplitudes A(t) and frequencies 0 (t) are slowly varying enough, one may keep only the rst term, and G f (b; !) A(b)e i (b) ĝ( 0 (b) !) : Assuming that g(t) is a smooth function, located near the origin t = 0 (typically a Gaussian function.) Then for each value of the time variable b, the modulus of the CGT attains its maximum on a curve (the so-called ridge) of equation ! = 0 (b), i.e. describing the instantaneous frequency of the function f(t). a large number of numerical illustrations may be found in the book [START_REF] Carmona | Practical Time-Frequency Analysis: Gabor and wavelet transforms, with an implementation in S[END_REF] . We limit our illustrations to an example of speech signal, in which several benin: submitted to World Scienti c on November 23, 1999 and as soon as g is such that the various 0 k (b) 0 `(b) for `6 = k are small enough, the CGT of such a signal localizes itself near K di erent ridges. An example of such a behavior is given in Fig. 2, where we display 625 milliseconds of speech signal: (top) and the modulus of the CGT (middle). Observe the localisation near the ridges, which are more easily estimated thanks to the reassigned CGT (bottom), to be discussed below.

Continuous Wavelet Transform (CWT)

Continuous wavelet transform (CWT) may be presented as an alternative to CGT. In the CGT, one improves [START_REF] Grossmann | Decomposition of Hardy functions into square integrable wavelets of constant shape[END_REF] 

in the sense of strong L 2 (R)-convergence.

In particular, we also have energy conservation : if f 2 L 2 (R), then T f 2 L 2 (R R + ; db da a ), and jjT f jj 2 = c jjfjj 2 . Notice that in (21), the constant c can only depend on the sign of 2 R, therefore assuming independence wrt is a simple symmetry assumption. The fact that 0 < c < 1 implies that ^ (0) = 0, so that the wavelet (t) has to oscillate enough to be of zero mean.

The CWT has a behavior similar to that of the CGT in many respects. The main di erence lies in the fact that wavelets are extremely precise at small scales (where they lose frequency resolution), and more frequency localized at benin: submitted to World Scienti c on November 23, 1999 large scales (where time resolution is lost). A main application of this fact is the analysis of regularity (see below). A visualization of this e ect may be found in Fig. 2 (bottom), where we display the modulus of the CWT of the speech signal shown at the top of the gure. As may be seen, at large scales, the wavelets have a su cient frequency resolution to analyze carefully the rst harmonics (namely, the pitch frequency and the rst harmonic). For smaller scales, frequency resolution is lost, and the same wavelet is unable to separate several harmonic components. This results in interferences between the harmonic components, which yield the oscillations of the modulus in the b direction that appear on the image. We refer to [START_REF] Carmona | Practical Time-Frequency Analysis: Gabor and wavelet transforms, with an implementation in S[END_REF] for a more detailed analysis of such applications.

Higher dimensional generalizations

The constructions of wavelet and Gabor transforms are easy to generalize in arbitrary dimensions. The n-dimensional CGT is a mere generalization of the one-dimensional version. The case of wavelets is more interesting, as it allows one to introduce generalized dilations. Let us mention the construction of Murenzi's wavelets in two dimensions. Start from 2 L 2 (R 2 ), and consider the family of wavelets (b;a; ) , b 2 R 2 ; a 2 R + ; 2 0; 2 :

(b;a; ) (x) = 1 a r x b a : (23) 
Then, if is such that 0 < c = Z j ^ (k)j 2 dk jkj 2 < 1 ; any f 2 L 2 (R) may be decomposed as Such transforms have found many applications in image processing. We give below an application to the estimation of local frequencies in images presenting regular textures . In such a case, the local frequency of the texture may be estimated, and the corresponding component may be estimated as well, and resynthetized separately. The techniques used for such a work are fairly close to the ones described above in the one-dimensional CGT of speech signal. More details may be found in [START_REF] Gonnet | Local frequency analysis with two-dimensional benin: submitted to World Scienti c on November 23, 1999 wavelet analysis[END_REF] .

benin: submitted to World Scienti c on November 23, 1999 

Linear transforms as approximations

Interestingly enough, there is a strong connection between the Wigner-Ville distributions and the linear decompositions we just reviewed (or more precisely their squared modulus). We express this in the following These results follow from an easy calculation. See e.g. [START_REF] Flandrin | Temps-Fr quence. Trait des Nouvelles Technologies, s rie Traitement du Signal[END_REF] for more details. This makes the connection between the spectrogram and the scalogram in one hand, and the Cohen's class and the a ne class in the other hand. This also provides an alternative interpretation of the unperfect time-frequency localization properties of these transforms: a blurring, resulting from the convolution products appearing in the above proposition. We shall come back to that point later on, when discussing reassignment methods.

Time-frequency transforms from group theory

We already emphasized the fact that the continuous (linear or quadratic) timefrequency transforms possess important built-in symmetry properties. Such covariance properties in fact characterize the transforms. This is a consequence of the geometrical origins of the transforms, which may be described in terms of of group-theoretical methods. As remarked by several authors 24;34;35 the set of simple transformations used to generate the wavelets from a single one in general inherits the structure of a group G (as is the case for instance for translations, modulations or dilations). The convenient language is the theory of square-integrable representations.

Square-integrable group representations

Accounts of the theory may be found in many textbooks as well as review articles on wavelets. We only brie y sketch the construction here. DEFINITION 3.1 Let G be a separable locally compact Lie group, and let be a unitary strongly continuous representation of G on the Hilbert space H. is said to be square-integrable if is irreducible, and if there exists at least a

vector v 2 H such that 0 < Z G jh (g)v; vij 2 d (g) < 1 : (27)
Such a vector is said to be admissible. benin: submitted to World Scienti c on November 23, 1999 Square-integrable group representations have been extensively studied in the literature, in particular for compact groups, locally compact unimodular groups and non-unimodular locally compact groups. The results may be summarized in the following theorem, due to Du o and Moore, and Carey independently: THEOREM 3.1 Let be a square-integrable strongly continuous unitary representation of the locally compact group G on H. Then there exists a positive self-adjoint operator C such that for any admissible vectors v 1 ; v 2 2 H and for any u 1 ;

u 2 2 H Z G hu 1 ; (g):v 1 ih (g):v 2 ; u 2 i d (g) = hC 1=2 v 2 ; C 1=2 v 1 i hu 1 ; u 2 i (28)
Moreover, the set of admissible vectors coincides with the domain of C.

Let : G ! U(L 2 (G)) be the left-regular representation of G: if f 2 L 2 (G), ( (h)f) (g) = f(h 1 g) : (29) 
Theorem 3.1 shows that a representation of G is square integrable if and only if is is unitarily equivalent to a subrepresentation of the left-regular representation . The corresponding intertwiners can be realized as follows. If v is an admissible vector in H, and v 0 2 H, introduce the Schur coe cients, i.e the matrix coe cients of elements of G:

c v;v 0 (g) = hv 0 ; (g)vi; g 2 G (30)
Let T be the left transform [START_REF] Grossmann | Transforms associated with square integrable group representations I[END_REF] , i.e. the map de ned by

T : u 2 H ! T u = c v;u ( ) 2 L 2 (G) (31) 
T intertwines and : T = T (32) Grossmann, Morlet and Paul suggested to use (28) and (31) for the analysis of functions, in the case where H is a function space. This was the starting point of many applications, especially in a signal analysis context. The left transform T is used to obtain another representation of functions, and (32) expresses the covariance of the transform. REMARK 3.1 The Du o-Moore theorem has been applied to several groups (including discrete groups), yielding many di erent generalizations of wavelets and Gabor transforms. Let us quote for the record the contributions of Bernier and Taylor 6 , F hr [START_REF] Hr | Wavelet frames and admissibilityin higher dimensions[END_REF] and Aniello et al [START_REF] Aniello | Wavelet transforms and discrete frames associated to semidirect products[END_REF] , who studied semi-direct products of the form H R n , where H is a closed subgroup of GL(n; R), with group law (h; b)(h 0 ; b 0 ) = (hh 0 ; b+hb 0 ). In such cases, the question of square-integrability benin: submitted to World Scienti c on November 23, 1999 is formulated in a simple way, and the Du o-Moore operator C may be written explicitely. REMARK 3.2 For non square integrable representations, it is still possible to modify the construction so as to obtain wavelet type decompositions. The price to pay is a loss of the full covariance with respect to the group action. These aspects are described in great details in [START_REF] Ali | Coherent states and their generalizations: an overview[END_REF] . We discuss below in more details the case of the Weyl-Heisenberg group. (34) In explicit form, we then have (b 0 ; ! 0 ' 0 )F(b; !; ') = F(b b 0 ; ! ! 0 ; ' ' 0 + ! 0 (b 0 b)) : (35) is a unitary representation, and is highly reducible.

The in nitesimal generators of n are also of interest: introduce the differential operator r = ( @ b ; @ ! ) t , where for any smooth enough function F, we set @ b F(b; !) = @ b F(b; !)

@ ! F(b; !) = @ ! F(b; !) ibF(b; !) : (37) benin: submitted to World Scienti c on November 23, 1999

Then we have that for all F 2 L 2 (R 2 ), (v b ; v )F](b; !) = e v b @ b e v! @! F(b; !) :

(38) The right regular representation is introduced similarly:

(g)F(h) = F(hg) : (39) One may also de ne, on L 2 (R 

@! F(b; !) = @ ! F(b; !) :

Then we have that for all F 2 L 2 (R 2 ),

(v b ; v ! )F](b; !) = e v b @b e v! @! F(b; !) : (43) 
4 Time-frequency localization and reassignment

We have seen earlier that the spectrogram and the scalogram may be interpreted as blurred versions of the Wigner transform. This lack of resolution however goes together with an improvement of other aspects of the transform, which become almost interference free. EXAMPLE 4.1 As an illustration, we give in Fig. 4 an example of reassiged CGT. The signal is a simple linear chirp, with a Gaussian envelope, and we display the square modulus of its CGT and its reassigned CGT. Notice the improvement of time-frequency localization near the instantaneous frequency line.

However, even though such a formulation yields remarkable numerical results, its mathematical interpretation is somewhat di cult. We describe below a formalism which allows us to interpret it from rst principles.

Before going to the geometric interpretation, let us rst give a short account of the di erential reassignment method, introduced by E. Chassande-Mottin and coworkers [START_REF] Chassande-Mottin | Di erential Reassignment[END_REF] . The idea of di erential reassignment is to make use of the vector eld v obtained in (45) to construct a dynamical system on the time-frequency space. The spectrogram (or CGT) coe cients are then displaced following that vector eld. Such a procedure has found several applications in signal processing. We shall show below interesting interpretations in terms of the action of the Weyl-Heisenberg group on the time-frequency plane.

Constant Phase Deformations

Let us now return to the problem of reassigning, or deforming, a CGT. The results of this section have been published in [START_REF] Daudet | Time-frequency and time-scale vector elds for deforming time-frequency and time-scale representations[END_REF] . Our goal is to provide a geometrical interpretation of the reassignment maps proposed and studied in [START_REF] Kodera | Analysis of time-varying signals with small BT values[END_REF] and 5 for the CGT. Let us rst set the problem. We are interested in nding a vector eld v :

(b; !) ! v(b; !) = (v b (b; !); v ! (b; !)) t 2 R 2
de ned on the phase space, such that the argument of the CGT remains unchanged under the in nitesimal action of the Weyl-Heisenberg group. More benin: submitted to World Scienti c on November 23, 1999 precisely, we ask for invariance with respect to the right regular action n ( v), at rst order in > 0.

Let F be a smooth function de ned on the plane. For > 0 and v 2 R 2 , let v ( ) : L 2 (R 2 ) ! L 2 (R 2 ) denote the operator de ned by where 2 R is a real number. We notice that this expression coincides (for = 1) with the prescription given in (44) and (45).

Back to the reassignment problem

We have described above a formulation (developed in [START_REF] Daudet | Time-frequency and time-scale vector elds for deforming time-frequency and time-scale representations[END_REF] ) which derives the reassignment eld as a Hamiltonian vector eld, obtained from the argument of the CGT. The use of such a vector eld for the reassignment of the CGT itself is illustrated in Fig. 4 (for an academic signal), and in Fig. 2 (in the case of a real signal). As may be seen, reassigning the CGT itself (and not only the spectrogram), by handling carefully its argument, improves the timefrequency localization of the representation. An important issue is that of extending such an analysis to di erent timefrequency transforms, such as wavelet transforms in 1D or higher dimensions. Prescriptions for reassignment elds have been proposed in the 1D wavelet case, none of which seems to t into the formalism we developed.

Another important question regards the completeness of the representation provided by the reassigned CGT. In other words, does there exist reconstruction formulas for signals from reassigned transforms. To our knowledge, there is no general formulation for that problem. However, there are examples for which reconstruction formulas may be derived (even though the reassignment prescriptions they are derived for do not t into the formalism we just developed), for example in the case of the synchrosqueezed wavelet transform 14 . As an illustration, we display in Fig. 5 a reconstruction of the speech signal of Fig. 2 from its reassigned CGT, following the lines of [START_REF] Daubechies | A nonlinear squeezing of the continuous wavelet transform based on auditory nerve models[END_REF] . As may be seen, the numerical results are extremely promizing. benin: submitted to World Scienti c on November 23, 1999 

REMARK 2 . 3

 23 The Wigner-Ville function and the ambiguity function are re-)e i( b ! ) d d :

Time-frequency rotations: Let be such that cos 6

 6 (t 2 + 2 )=2 e it = cos f( )d : Then W g (b; !) = W f (b cos + ! sin ; b sin + ! cos ) :

Figure 1 .

 1 Figure 1. Example of a WV transform: the case of a linear chirp (coded with gray levels).

  2. A ne smoothings: Given a function of two variables (b; !), introduce f (b; a) = Z ( ; )W b a ; a d d :

Figure 2 .

 2 Figure 2. CGT (middle) and reassigned CGT (bottom) of a few milliseconds of speech signal (top).

  the time resolution of Gabor transform, benin: submitted to World Scienti c on November 23, 1999 by changing the rule for generating the basis functions . The modulation is replaced with a scaling operation. More precisely, let 2 L 2 (R) be a xed function, called the analyzing wavelet. The corresponding family of wavelets is the family f (b;a) ; b 2 R; a 2 R + g of shifted and scaled copies of de ned as follows. If b 2 R and a 2 b;a) can be viewed as a copy of the original wavelet rescaled by a and centered around the time b. Given an analyzing wavelet , the associated continuous wavelet transform is de ned as follows (we give the de nition in the case of L 2 (R) signals. The CWT of random time series is de ned similarly to their CGT).DEFINITION 2.5 Let 2 L 2 (R) be an analyzing wavelet. The continuous wavelet transform (CWT for short) of a nite-energy signal f(t) is de ned by the integral: T f (b; a) = hf; (b;a) i = wavelets may form complete sets of functions in L 2 (R), and we have in particular THEOREM 2.2 Let 2 L 2 (R), be such that the number c de ned by:

Figure 3 .

 3 Figure 3. Top: Textured image with regular texture, and estimation of the local frequencies (right). The two components and displayed in the bottom gures.

PROPOSITION 2 . 1 1 . 2 .

 2112 Let f 2 L 2 (R), and let T f ; G f and W f denote respectively its CWT, CGT and WV transforms. Then the following two properties are true: The squared modulus jG f (b; !)j 2 of the CGT is a smoothed version of the benin: submitted to World Scienti c onNovember 23, 1999 WV distribution W f of f: jG f (b; !)j[START_REF] Ali | The Wigner operator and Wigner function for general Lie groups[END_REF] The squared modulus jT f (b; a)j 2 of the CWT is an a ne smoothing of the WV distribution W f of f: jT f (b; a)j 2

3. 2 2 L 2 (

 222 The case of the Gabor transformThe CGT revisited. We consider the one-dimensional Weyl-Heisenberg group G WH = R 2 S 1 , with group operation (b; !; ') (b 0 ; ! 0 ; ' 0 ) = (b + b 0 ; ! + ! 0 ; ' + ' 0 + !b 0 mod 2 ])(33) The Stone-Von-Neumann theorem states that any irreducible unitary representations of G WH is unitarily equivalent to one of the following form(see 29;39 ). If f 2 L 2 (R n ) (b; !; ') f] (t) = e i (' !:(t b)) f(t b)for some 2 Z . For the sake of simplicity, we assume = 1. The representation is square-integrable, and the corresponding left transform is the Gabor transform described in De nition 2.3, up to a phase factor e i' . More precisely, the Gaborlets read g (b;!) = (b; !; 0)g : More on the Weyl-Heisenberg group. As stated by the general theory, the Gabor transform intertwines the representation with the leftregular representation of G WH on L 2 (G WH ), de ned as follows: if F G WH ), (g)F(h) = F(g 1 h) :

  2 ): (b 0 ; ! 0 )F(b; !) = e i!b 0 F(b + b 0 ; ! + ! 0 ) (40) Again, the in nitesimal generators of the right regular representation are of interest. As before, we introduce the modi ed derivative b r = ( @b ; @! ) t , where for any smooth enough function F, we set @b F(b; !) = @ b F(b; !) i!F(b; !)

4. 1 2 R

 12 Generalities on reassignmentIn a seminal paper[START_REF] Kodera | Analysis of time-varying signals with small BT values[END_REF] , Kodera and his coworkers propose a procedure for de-blurring the transforms. They propose an extremely original idea, which essentially amounts to move CGT coe cients in the time-frequency plane, so as to put them back where they should be . To give a more precise meaning to such a statement, they propose a prescription for computing the new location of a coe cient G f (b; !): b(b; !) !(b; !) = b ! v(b; !) ; (44) where v(b; !) = @ ! (b; !) ! @ b (b; !) where (b; !) is the argument of the CGT: (b; !) = arg G f (b; !) : (46) Remarkably enough, such expressions may also be obtained from the Wigner function: W f ( ; ) W g ( b; !)d d : Given such a prescription, the reassigned transform is de ned, formally, as follows: M r (b; !) = X (b 0 ;! 0 ):( b;!)=(b;!) jG f (b; !)j 2 :(47) REMARK 4.1 While the signi cance of such an expression is clear in a discrete context, some care is needed for de ning it in for continous transforms.

REMARK 4 . 2

 42 As proposed by Kodera et al., we give in (47) the expression for reassigning the spectrogram. An alternative amounts to reassign the CGT itself.

Figure 4 .

 4 Figure 4. Example of CGT (middle) and reassigned CGT (bottom): the case of a linear chirp (top) .

  v ( )F(b; !) = n ( v(b; !)) F(b; !) : (48) At rst order in , we have v ( )F(b; !) = F(b; !) v(b; !) b rF(b; !) + O( 2 ) ; (49) where the symbol stands for the scalar product in C 2 . Let now f 2 L 2 (R), and let G f denote its CGT. Let us write G f (b; !) = jG f (b; !)j e i (b;!) ; (50) where (b; !) = arg(G f (b; !)). One immediately sees that, again at rst order in , v ( )G f (b; !)=G f (b; !) G f (b; !) v jrG f (b; !)j jG f (b; !)j +iv r m (b; !) +O( 2 ); (51) where we have introduced the modi ed gradient r m , de ned by r m (b; !) that the argument of G f (b; !) be unchanged imposes that the vector eld v be of the form v(b; !) = @ m ! (b; !) @ m b (b; !) = @ ! (b; !) ! @ b (b; !) ;(53)

Figure 5 .

 5 Figure 5. Reconstruction from a reassigned CGT: the case of a speech signal.

a In fact, several earlier contributions could be quoted, both in the signal processing and mathematical literature, but wavelet transform was considered as such onmy since that work.benin: submitted to World Scienti c on[START_REF] Zygmund | Trigonometric Series[END_REF] 

b It is in fact the narrow-band ambiguity function.benin: submitted to World Scienti c on[START_REF] Zygmund | Trigonometric Series[END_REF] 

benin: submitted to World Scienti c on[START_REF] Zygmund | Trigonometric Series[END_REF] 

(45) benin: submitted to World Scienti c on[START_REF] Zygmund | Trigonometric Series[END_REF]