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FRANCE
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We describe some aspects of time-frequency analysis, involving mainly two argu-

ments: time-frequency localization, and symmetry constraints. We show how such

arguments appear in the classical time-frequency transforms (Wigner transforms,

wavelet and Gabor transforms). Then we discuss deformed versions of one of these

transforms, namely the reassigned Gabor transform, and show that it may be a

promizing alternative to Wigner function.

1 Introduction

Time-Frequency analysis aims at providing representations for signals, involv-

ing simultaneously time and frequency descriptions. Classical signal analysis

is generally based upon a representation of functions, for example the usual

one (hereafter termed the �time representation�), or the Fourier representation

(�frequency representation�): one studies

^

f(!) =

Z

f(t)e

�i!t

dt ;

whenever such an expression makes sense. In fact, most representations may

be regarded as representations of functions by coe�cients with respect to some

�basis� (in some generalized sense if needed).

Among the representations, time-frequency representations have become

quite popular in the recent years. The �rst contributions seem to be due to

the engineer J. Ville on one hand, who proposed to use the Wigner distribu-

tion as a �time-frequency density�, and the physicist D. Gabor on the other

hand, whose approach was based upon decompositions into �time-frequency

atoms�, generated as time and frequency translates of a Gaussian function.

Since then, Ville's approach has led to the theory of quadratic time-frequency

representations, very popular in the signal analysis community. Gabor-type

expansions are also very popular, and have more recently enjoyed a renewed

interest, since the development of wavelet theory in the early eighties. For

completeness, let us also quote the contribution of M. Priestley

37

, who was
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the �rst to formulate the time-frequency representation problem in a random

situation.

A. Grossmann and J. Morlet realized in 1983 that any square-integrable

function may be expanded into wavelets of constant shape, shifted and scaled

copies of a single function (the mother wavelet), provided that the latter

possess some mild oscillation properties. This simple result, and the remark

that the corresponding expansions are in fact very close to Gabor's expansions,

showed that wavelet expansions had an important potential as a tool for

signal analysis. Grossmann and his collaborators also provided a beautiful

interpretation of wavelet and Gabor expansions in terms of square-integrable

group representations, emphasizing the importance of symmetry groups in the

construction.

More recently, interesting connections between wavelet and Gabor trans-

forms on one hand, and Wigner-Ville transforms and generalizations on the

other hand have been discovered, the former being some �blurred� versions of

the latter. The problem of restoring the time-freauency resolution from such

�blurred� transforms has then attracted some attention, in particular with the

systematic study of the so-called �reassignment methods� by P. Flandrin

18

and his collaborators, after the pioneering work of Kodera et al.f

26

. The

geometrical status of such methods also deserves some interest

15

.

The present contribution is a description of the relationship between the

above mentioned tools. We brie�y recall the basics of time-frequency analysis,

Wigner, Gabor and wavelet transforms. Then, we turn to a description of the

reassignment methods, in their geometrical version, and conclude with some

prospective remarks.

2 Time-frequency analysis

Continuous wavelet analysis was introduced

a

in a seminal article by A. Gross-

mann and J. Morlet

23

. The continuous wavelet transform is a prototype of

linear time frequency representations, which provide decompositions of func-

tions as superpositions of elementary waveforms. Those linear time-frequency

representations are often compared with the quadratic time-frequency repre-

sentations, a family of tools which are in some respect, more powerful, but

also lack of robustness in complex practical situations. We �rst give a short

account of the quadratic time-frequency representations.

a

In fact, several earlier contributions could be quoted, both in the signal processing and

mathematical literature, but wavelet transform was considered as such onmy since that

work.
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2.1 Wigner functions and quadratic time-frequency transforms

TheWigner-Ville distribution. The �rst instance of time-frequency trans-

form is the ambiguity function, familiar to radar specialists

9

. The (cross) am-

biguity function

b

A

f;g

of a pair of functions f and g may be introduced as a

method for solving a simple estimation problem. Suppose that g 2 L

2

(R) is a

reference signal, and that f be an observation, time and frequency shifted copy

of g (possibly perturbed): f(t) = Ag(t � �)e

i�t

. Here A is a constant and �

and � are the parameters to be estimated. It follows from the Cauchy-Schwarz

inequality that the parameters � and � may be obtained by maximizing with

respect to b and ! the square-modulus of the following quantity:

Z

f(t)g(t� b)e

�i!t

dt :

The latter is essentially a time-frequency cross-correlation of f and g, obtained

by considering scalar products of f with time and frequency shifted copies of

g of the form e

i!t

g(t�b) (with b; ! 2 R). Therefore, it measures how close f is

to time-frequency shifted copies of g. The same problem may be formulated in

a context of random signals. The de�nition of ambiguity function (including

the case of random time series) is given below.

DEFINITION 2.1 1. Let f 2 L

2

(R). Its ambiguity function is de�ned by

A

f

(�; �) =

Z

f(t+ �=2)f(t� �=2)e

�i�t

dt : (1)

2. Let fX

t

; t 2 Rg a second order random time series. Then its ambiguity

function is de�ned by

A

X

(�; �) = E

�

Z

X

t+�=2

X

t��=2

e

i�t

dt

�

: (2)

REMARK 2.1 Clearly, if f 2 L

2

(R), then A

f

is a bounded function (with

jjA

f

jj

1

� jjf jj

2

). In addition, a direct calculation shows that if f 2 L

2

(R),

then A

f

2 L

2

(R

2

), and that jjA

f

jj

2

2

= 2�jjf jj

4

. In fact, a result due to E.

Lieb

28

shows that A 2 L

p

(R

2

) for all p 2 [1;1].

The de�nition of ambiguity function may be extended to cover the case

of distributions, and it may be shown that the �ambiguity distribution� of a

distribution � 2 S

0

(R) is a distribution A

�

2 S

0

(R

2

).

REMARK 2.2 The non-deterministic version may be given a similar interpre-

tation. Given a second order random time series fX

t

; t 2 Rg, the properties

b

It is in fact the narrow-band ambiguity function.
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of A

X

depend on the properties of the covariance operator C of the process,

de�ned by its matrix elements: for all f; g 2 D(R),

hCf; gi = E

n

hX; gihX; fi

o

: (3)

For example, if C extends to a Hilbert-Schmidt operator, which we denote by

C 2 L

2

, then A 2 L

2

(R

2

).

The ambiguity function A

f

(�; �), as a time-frequency autocorrelation,

provides estimates for the spreading of the function f in the joint time-

frequency plane. The Wigner-Ville distribution (WV), de�ned below, provides

informations on its localization in that space.

DEFINITION 2.2 1. Let f 2 L

2

(R). Its Wigner-Ville distribution is the

function of two real variables W

f

de�ned by

W

f

(b; !) =

Z

f(b+ �=2)f(b� �=2)e

�i!�

d� (4)

2. Let fX

t

; t 2 Rg a second order time series. Then its Wigner-Ville distri-

bution (or Wigner spectrum) is de�ned by

E

X

(b; !) = E

�

Z

X

b+�=2

X

b��=2

e

�i!�

d�

�

(5)

More generally, one also de�nes the cross Wigner-Ville function of f; g 2

L

2

(R) by

W

f;g

(b; !) =

Z

f(b+ �=2)g(b� �=2)e

�i!�

d� (6)

REMARK 2.3 The Wigner-Ville function and the ambiguity function are re-

lated via a symplectic Fourier transform

A(�; �) =

1

2�

Z Z

W(b; !)e

�i(�b�!�)

db d! ; (7)

W(b; !) =

1

2�

Z Z

A(�; �)e

i(�b�!�)

d� d� : (8)

The same holds true in the non-deterministic context. Therefore, the Wigner

function is square-integrable as soon as the ambiguity function is so, i.e. as

soon as f 2 L

2

(R). In fact, Lieb's estimates show that when f 2 L

2

(R),

W

f

2 L

p

(R

2

) for all p 2 [1;1].

REMARK 2.4 Like the ambiguity function, the Wigner-Ville distribution may

also be de�ned when f is a distribution. Indeed, if � 2 S

0

(R), it may be

shown

20

that W

�

2 S

0

(R

2

). In fact, the Wigner-Ville distribution is nothing

benin: submitted to World Scienti�c on November 23, 1999 4



but the Weyl symbol of the operator of orthogonal projection onto f , which

may be written:

P

f

g(t) =

1

2�jjf jj

2

Z

W

f

�

t+ b

2

; !

�

e

i!(t�b)

g(b)dbd! :

Properties of the Wigner-Ville distribution. The WV distributions

enjoy a set of quite remarkable properties.

1. Orthogonality relations

c

: let f; f

0

; g; g

0

2 L

2

(R). Then W

f;g

;W

f

0

;g

0

2

L

2

(R

2

) and

hW

f;g

;W

f

0

;g

0

i = 2�hf; f

0

i hg

0

; gi : (9)

The orthogonality relations of the Wigner-Ville coe�cients are a direct

consequence of the corresponding relations for ambiguity functions, and

the symplectic Fourier transform formulas (7) and (8).

2. Covariance: The WV distribution is covariant with respect to a certain

number of simple transformations. Namely:

� Translations: if g(t) = f(t� �), W

g

(b; !) =W

f

(b� �; !).

� Modulations: if g(t) = e

i�t

f(t), then W

g

(b; !) =W

f

(b; ! � �).

� Rescalings: if g(t) =

1

p

a

f

�

t

a

�

, then W

g

(b; !) =W

f

�

b

a

; a!

�

.

� Time-frequency rotations: Let � be such that cos � 6= 0, and set

g

�

(t) =

1

p

cos �

1

2�

Z

e

i tan �(t

2

+�

2

)=2

e

it�= cos �

^

f(�)d� :

Then

W

g

�

(b; !) =W

f

(b cos � + ! sin �;�b sin � + ! cos �) :

The Wigner transform is actually covariant under a general group

of transformations, called the metaplectic group. We refer to the

textbook of Folland

20

for more details.

3. Time-frequency localization: Let us start with simple examples, namely

the case of the pure oscillations, i.e. the distribution of the form f(t) =

e

i�t

. The WV transform of such an f(t) has to be de�ned as a two-

dimensional distribution, and one easily shows that W

f

(b; !) = 2��(! �

�), which has sharp localization in the time-frequency space.

c

also known as Moyal's formula.
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Figure 1. Example of a WV transform: the case of a linear chirp (coded with gray levels).

Such optimal localization properties are preserved by the simple trans-

formations alluded to in the previous section. While the e�ect of transla-

tions, modulations and rescalings are easy to visualize, let us pay special

attention to the consequences of the time-frequency rotations covariance.

It is easily shown that the so-called linear chirps, i.e. the distributions

with a linearly time-varying frequency e

i�t+�t

2

=2

may be obtained by ap-

propriate translation, modulation, rescaling and time-frequency rotation

of a pure oscillation. Hence, its WV distribution inherits the perfect lo-

calization properties from those of the pure oscillations, and one obtains

W

f

(b; !) = 2��(!� (�+�b)). An example of such a behavior is provided

in Fig. 1, which represents the WV distribution of a linear chirp.

Interferences. As a quadratic functional of the function f(t), the WV

distribution yields interference terms. Namely, let f

1

; f

2

2 L

2

(R), and let

f = f

1

+ f

2

. Then one immediately sees that

W

f

(b; !) =W

f

1

(b; !) +W

f

2

(b; !) + 2< (W

f

1

;f

2

(b; !)) :

Even in the case where both W

f

1

(b; !) and W

f

2

(b; !) are sharply localized in

the (b; !) plane, the �cross term� 2<W

f

1

;f

2

(b; !) introduces an extra compo-

nent in the WV transform of f , which degrades the resolution.

The treatment of such interference terms has received a considerable at-

tention in the signal processing literature during the past 10 years. Interfer-

ences terms are generally attenuated by appropriate smoothings of the WV

benin: submitted to World Scienti�c on November 23, 1999 6



distribution. Examples are provided by the following classes of time-frequency

distributions:

1. Usual smoothings: given a kernel � 2 L

1

(R

2

), one may associate with it

the following time-frequency distribution

�

f

(b; !) =

Z

�(�; �)W(b� �; ! � �)d�d� : (10)

�

f

(b; !) is smoother than the Wigner-Ville distribution. In addition, the

interference terms of the Wigner distribution are generally much smaller

in �

f

. In addition, since �

f

is obtained from a WV distribution via a two-

dimensional convolution (a translation invariant operation), it inherits

from W(b; !) the time-frequency translations covariance. The family of

�

f

generated in that way is called the Cohen's class.

2. A�ne smoothings: Given a function of two variables �(b; !), introduce

�

f

(b; a) =

Z

�(�; �)W

�

b� �

a

; a�

�

d�d� : (11)

�

f

(b; a) is a time-scale representation of f . With the same arguments as

before, it may be shown that it inherits from the WV distributions its

properties of covariance with respect to translations and rescalings. The

family of representations generated in that way is called the a�ne class.

Generalized Wigner functions. The covariance properties are an im-

portant ingredient in the construction of Wigner functions. In fact, it may be

shown that the Wigner function is the only quadratic representation possess-

ing the covariance properties described above. This suggests that imposing

di�erent covariance conditions would yield generalized Wigner functions. This

program has been achieved in a number of situations, in particular in the work

of Bertrand and Bertrand

8

, who constructed generalized Wigner functions,

covariant with respect to 3-dimensional extensions of the a�ne group (see P.

Flandrin's book

18

for more details on signal processing applications). Let us

also mention the more abstract recent contribution of Ali et al.

2

, who extend

the concept to general type one Lie groups.

2.2 Continuous Gabor transform (CGT)

In his seminal paper, in the mid forties, Gabor proposed to develop signals

with respect to a family of Gaussian, translated and modulated (with discrete

translations and modulations). The concept has evolved further, in several di-

rections, yielding among other generalizations the continuous Gabor transform

benin: submitted to World Scienti�c on November 23, 1999 7



(CGT for short). The CGT essentially �rst localizes the signal by multiplying

it by a smooth and localized window, and then performs a Fourier transform.

More precisely, start from a function g 2 L

2

(R), such that jjgjj 6= 0, and

associate with it the following family of Gaborlets

g

(b;!)

(t) = e

i!(t�b)

g(t� b) : (12)

The corresponding Gabor transform is de�ned by

DEFINITION 2.3 Let g 2 L

2

(R), kgk 6= 0, be a window. The continuous

Gabor transform of a �nite-energy signal f 2 L

2

(R) is de�ned by the integral

transform

G

f

(b; !) = hf; g

(b;!)

i =

Z

f(t) g(t� b)e

�i!(t�b)

dt : (13)

Gaborlets yield decomposition formulas for functions in L

2

(R), as follows.

THEOREM 2.1 Let g 2 L

2

(R) be a non trivial window (i.e. jjgjj 6= 0.) Then

every f 2 L

2

(R) admits the decomposition

f(t) =

1

2�jjgjj

2

Z

1

�1

Z

1

�1

G

f

(b; !)g

(b;!)

(t)dbd! ; (14)

where equality holds in the weak L

2

(R) sense.

In other words, the mapping L

2

(R) 3 f ,!

1

jjgjj

p

2�

G

f

2 L

2

(R

2

) is an isometry

between L

2

(R) and L

2

(R

2

), and the inverse mapping is provided by the adjoint

mapping.

In the case of random time series, the CGT is de�ned similarly.

DEFINITION 2.4 Let fX

t

; t 2 Rg be a mean zero second order random time

series, and let g 2 L

2

(R) be a window. The CGT of X

t

is the random time-

frequency series de�ned by

G

X

(b; !) = hX; g

(b;!)

i (15)

By de�nition, the covariance operator C of the time series is de�ned by its

matrix elements hCf; gi = E fhX; gihf;Xig. Obviously,

E

�

G

f

(b; !)G

f

(b

0

; !

0

)

	

= hCg

(b

0

;!

0

)

; g

(b;!)

i (16)

REMARK 2.5 The case where the time series fX

t

; t 2 Rg under considera-

tion is (second order) stationary is particularly interesting. By de�nition, the

covariance operator is in such a case a convolution operator, and one imme-

diately sees that

E

�

G

f

(b; !)G

f

(b

0

; !)

	

=

1

2�

Z

e

i�(b�b

0

)

jĝ(� � !)j

2

d�(�) ;

where d�(�) stands for the spectral measure of the time series.
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However, the main interest of the CGT lies in its potential for handling

non stationary situations (in the stationary case, the covariance operator is a

convolution operator, which is perfectly handled by Fourier methods). Par-

ticularly interesting is the case of the so-called locally stationary time series,

which are basically random time series whose covariance operator is �almost

diagonal� in an appropriate Gabor representation. Such a situation has been

discussed by various authors in various contexts

27;31;11

.

examples. The CGT and similar tools have been quite popular in the

speech processing literature, because of its capability of handling the so-called

locally harmonic signals, namely signals which may be modeled in the form

f(t) =

K

X

k=1

A

k

(t)e

i�

h

(t)

; (17)

where the local amplitudes a

k

(t) and the local frequencies !

k

(t) = �

0

k

(t)

are assumed to be slowly varying. Such signals are called locally harmonic

when, in addition, the local frequencies are close to be integer multiples of a

fundamental frequency (the pitch frequency: !

k

(t) � k!

1

(t).

The CGT of such signals have been studied by several authors. Let us

consider a simpler signal, of the form

f(t) = A(t)e

i�(t)

;

where A; � 2 C

2

(R), and A and �

0

are supposed slowly varying. Then, a

simple application of Taylor's formula yields

30;16;38;11

)

G

f

(b; !) = A(b)e

i�(b)

ĝ(�

0

(b)� !) [1 +R(b; !)] ; (18)

where the remainder R(b; !) is bounded as

jR(b; !)j � K

1

jA

0

(b)j

jA(b)j

+K

2

sup

u

jA

00

(u)j

jA(b)j

+K

3

sup

u

j�

00

(u)j

jA(b)j

:

Therefore, as soon as the amplitudes A(t) and frequencies �

0

(t) are slowly

varying enough, one may keep only the �rst term, and

G

f

(b; !) � A(b)e

i�(b)

ĝ(�

0

(b)� !) :

Assuming that g(t) is a smooth function, located near the origin t = 0 (typ-

ically a Gaussian function.) Then for each value of the time variable b, the

modulus of the CGT attains its maximum on a curve (the so-called ridge) of

equation ! = �

0

(b), i.e. describing the instantaneous frequency of the function

f(t).

a large number of numerical illustrations may be found in the book

11

.

We limit our illustrations to an example of speech signal, in which several
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Figure 2. CGT (middle) and reassigned CGT (bottom) of a few milliseconds of speech

signal (top).

such components are present. Thanks to the linearity of the CGT, the CGT

of a signal of the type (17) is of the form

G

f

(b; !) �

K

X

k=1

A

k

(b)e

i�

k

(b)

ĝ(�

0

k

(b)� !) ;

and as soon as g is such that the various �

0

k

(b) � �

0

`

(b) for ` 6= k are small

enough, the CGT of such a signal localizes itself near K di�erent ridges. An

example of such a behavior is given in Fig. 2, where we display 625 milliseconds

of speech signal: (top) and the modulus of the CGT (middle). Observe the

localisation near the ridges, which are more easily estimated thanks to the

reassigned CGT (bottom), to be discussed below.

2.3 Continuous Wavelet Transform (CWT)

Continuous wavelet transform (CWT) may be presented as an alternative to

CGT. In the CGT, one improves

23

the time resolution of Gabor transform,

benin: submitted to World Scienti�c on November 23, 1999 10



by changing the rule for generating the �basis functions�. The modulation is

replaced with a scaling operation.

More precisely, let  2 L

2

(R) be a �xed function, called the analyzing

wavelet. The corresponding family of wavelets is the family f 

(b;a)

; b 2 R; a 2

R

�

+

g of shifted and scaled copies of  de�ned as follows. If b 2 R and a 2 R

�

+

we set:

 

(b;a)

(t) =

1

a

 

�

t� b

a

�

; t 2 R : (19)

The wavelet  

(b;a)

can be viewed as a copy of the original wavelet  rescaled

by a and centered around the �time� b. Given an analyzing wavelet  , the

associated continuous wavelet transform is de�ned as follows (we give the

de�nition in the case of L

2

(R) signals. The CWT of random time series is

de�ned similarly to their CGT).

DEFINITION 2.5 Let  2 L

2

(R) be an analyzing wavelet. The continuous

wavelet transform (CWT for short) of a �nite-energy signal f(t) is de�ned by

the integral:

T

f

(b; a) = hf;  

(b;a)

i =

1

a

Z

f(t) 

�

t� b

a

�

dt : (20)

Like Gaborlets, wavelets may form complete sets of functions in L

2

(R), and

we have in particular

THEOREM 2.2 Let  2 L

2

(R), be such that the number c

 

de�ned by:

c

 

=

Z

1

0

j

^

 (a�)j

2

da

a

(21)

is �nite, nonzero and independent of � 2 R. Then every f 2 L

2

(R) admits

the decomposition

f(t) =

1

c

 

Z

1

�1

Z

1

0

T

f

(b; a) 

(b;a)

(t)

da

a

db ; (22)

in the sense of strong L

2

(R)-convergence.

In particular, we also have �energy conservation�: if f 2 L

2

(R), then T

f

2

L

2

(R �R

�

+

; db

da

a

), and jjT

f

jj

2

= c

 

jjf jj

2

. Notice that in (21), the constant c

 

can only depend on the sign of � 2 R, therefore assuming independence wrt

� is a simple symmetry assumption. The fact that 0 < c

 

< 1 implies that

^

 (0) = 0, so that the wavelet  (t) has to oscillate enough to be of zero mean.

The CWT has a behavior similar to that of the CGT in many respects.

The main di�erence lies in the fact that wavelets are extremely precise at small

scales (where they lose frequency resolution), and more frequency localized at
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large scales (where time resolution is lost). A main application of this fact

is the analysis of regularity (see below). A visualization of this e�ect may

be found in Fig. 2 (bottom), where we display the modulus of the CWT of

the speech signal shown at the top of the �gure. As may be seen, at large

scales, the wavelets have a su�cient frequency resolution to analyze carefully

the �rst harmonics (namely, the pitch frequency and the �rst harmonic). For

smaller scales, frequency resolution is lost, and the same wavelet is unable to

�separate� several harmonic components. This results in interferences between

the harmonic components, which yield the oscillations of the modulus in the b

direction that appear on the image. We refer to

11

for a more detailed analysis

of such applications.

2.4 Higher dimensional generalizations

The constructions of wavelet and Gabor transforms are easy to generalize in

arbitrary dimensions. The n-dimensional CGT is a mere generalization of the

one-dimensional version. The case of wavelets is more interesting, as it allows

one to introduce generalized dilations. Let us mention the construction of

Murenzi's wavelets in two dimensions. Start from  2 L

2

(R

2

), and consider

the family of wavelets  

(b;a;�)

, b 2 R

2

; a 2 R

+

; � 2 [0; 2�[:

 

(b;a;�)

(x) =

1

a

 

�

r

��

x� b

a

�

: (23)

Then, if  is such that

0 < c

 

=

Z

j

^

 (k)j

2

dk

jkj

2

<1 ;

any f 2 L

2

(R) may be decomposed as

f =

1

c

 

Z

hf;  

(b;a;�)

i 

(b;a;�)

da db d�

a

2

: (24)

Such transforms have found many applications in image processing. We give

below an application to the estimation of local frequencies in images presenting

�regular textures�. In such a case, the local frequency of the texture may be

estimated, and the corresponding component may be estimated as well, and

resynthetized separately. The techniques used for such a work are fairly close

to the ones described above in the one-dimensional CGT of speech signal.

More details may be found in

22

.
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Figure 3. Top: Textured image with regular texture, and estimation of the local frequencies

(right). The two components and displayed in the bottom �gures.

2.5 Linear transforms as approximations

Interestingly enough, there is a strong connection between the Wigner-Ville

distributions and the linear decompositions we just reviewed (or more precisely

their squared modulus). We express this in the following

PROPOSITION 2.1 Let f 2 L

2

(R), and let T

f

; G

f

and W

f

denote respectively

its CWT, CGT and WV transforms. Then the following two properties are

true:

1. The squared modulus jG

f

(b; !)j

2

of the CGT is a smoothed version of the
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WV distribution W

f

of f :

jG

f

(b; !)j

2

=

1

2�

Z

W

f

(�; �)W

g

(� � b; � � !)d�d� (25)

2. The squared modulus jT

f

(b; a)j

2

of the CWT is an a�ne smoothing of the

WV distribution W

f

of f :

jT

f

(b; a)j

2

=

1

2�

Z

W

f

(�; �)W

 

�

� � b

a

; a�

�

d�d� (26)

These results follow from an easy calculation. See e.g.

18

for more details.

This makes the connection between the spectrogram and the scalogram in

one hand, and the Cohen's class and the a�ne class in the other hand. This

also provides an alternative interpretation of the unperfect time-frequency

localization properties of these transforms: a blurring, resulting from the

convolution products appearing in the above proposition. We shall come back

to that point later on, when discussing reassignment methods.

3 Time-frequency transforms from group theory

We already emphasized the fact that the continuous (linear or quadratic) time-

frequency transforms possess important built-in symmetry properties. Such

covariance properties in fact characterize the transforms. This is a conse-

quence of the geometrical origins of the transforms, which may be described in

terms of of group-theoretical methods. As remarked by several authors

24;34;35

the set of simple transformations used to generate the wavelets from a single

one in general inherits the structure of a group G (as is the case for instance

for translations, modulations or dilations). The convenient language is the

theory of square-integrable representations.

3.1 Square-integrable group representations

Accounts of the theory may be found in many textbooks as well as review

articles on wavelets. We only brie�y sketch the construction here.

DEFINITION 3.1 Let G be a separable locally compact Lie group, and let � be

a unitary strongly continuous representation of G on the Hilbert space H. �

is said to be square-integrable if � is irreducible, and if there exists at least a

vector v 2 H such that

0 <

Z

G

jh�(g)v; vij

2

d�(g) < 1 : (27)

Such a vector is said to be admissible.
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Square-integrable group representations have been extensively studied in the

literature, in particular for compact groups, locally compact unimodular

groups and non-unimodular locally compact groups. The results may be

summarized in the following theorem, due to Du�o and Moore, and Carey

independently:

THEOREM 3.1 Let � be a square-integrable strongly continuous unitary rep-

resentation of the locally compact group G on H. Then there exists a positive

self-adjoint operator C such that for any admissible vectors v

1

; v

2

2 H and

for any u

1

; u

2

2 H

Z

G

hu

1

; �(g):v

1

ih�(g):v

2

; u

2

i d�(g) = hC

1=2

v

2

; C

1=2

v

1

i hu

1

; u

2

i (28)

Moreover, the set of admissible vectors coincides with the domain of C.

Let � : G! U(L

2

(G)) be the left-regular representation of G: if f 2 L

2

(G),

(�(h)f) (g) = f(h

�1

g) : (29)

Theorem 3.1 shows that a representation � of G is square integrable if and

only if is is unitarily equivalent to a subrepresentation of the left-regular rep-

resentation �. The corresponding intertwiners can be realized as follows. If v

is an admissible vector in H, and v

0

2 H, introduce the Schur coe�cients, i.e

the matrix coe�cients of elements of G:

c

v;v

0

(g) = hv

0

; �(g)vi; g 2 G (30)

Let T be the left transform

24

, i.e. the map de�ned by

T : u 2 H ! T

u

= c

v;u

(�) 2 L

2

(G) (31)

T intertwines � and �:

T � � = � � T (32)

Grossmann, Morlet and Paul suggested to use (28) and (31) for the analysis

of functions, in the case where H is a function space. This was the starting

point of many applications, especially in a signal analysis context. The left

transform T is used to obtain another representation of functions, and (32)

expresses the covariance of the transform.

REMARK 3.1 The Du�o-Moore theorem has been applied to several groups

(including discrete groups), yielding many di�erent generalizations of wavelets

and Gabor transforms. Let us quote for the record the contributions of Bernier

and Taylor

6

, Führ

21

and Aniello et al

3

, who studied semi-direct products of

the form H � R

n

, where H is a closed subgroup of GL(n;R), with group law

(h; b)(h

0

; b

0

) = (hh

0

; b+hb

0

). In such cases, the question of square-integrability
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is formulated in a simple way, and the Du�o-Moore operator C may be written

explicitely.

REMARK 3.2 For non square integrable representations, it is still possible to

modify the construction so as to obtain wavelet type decompositions. The

price to pay is a loss of the full covariance with respect to the group action.

These aspects are described in great details in

1

.

We discuss below in more details the case of the Weyl-Heisenberg group.

3.2 The case of the Gabor transform

The CGT revisited. We consider the one-dimensional Weyl-Heisenberg

group G

WH

= R

2

� S

1

, with group operation

(b; !; ') � (b

0

; !

0

; '

0

) = (b+ b

0

; ! + !

0

; '+ '

0

+ !b

0

[mod 2�]) (33)

The Stone-Von-Neumann theorem states that any irreducible unitary rep-

resentations of G

WH

is unitarily equivalent to one of the following form

(see

29;39

). If f 2 L

2

(R

n

)

[�(b; !; ') � f ] (t) = e

i�('�!:(t�b))

f(t� b)

for some � 2 Z

�

. For the sake of simplicity, we assume � = 1. The rep-

resentation is square-integrable, and the corresponding left transform is the

Gabor transform described in De�nition 2.3, up to a phase factor e

i'

. More

precisely, the Gaborlets read

g

(b;!)

= �(b; !; 0)g :

More on the Weyl-Heisenberg group. As stated by the general

theory, the Gabor transform intertwines the representation � with the left-

regular representation � of G

WH

on L

2

(G

WH

), de�ned as follows: if F 2

L

2

(G

WH

),

�(g)F (h) = F (g

�1

h) : (34)

In explicit form, we then have

�(b

0

; !

0

'

0

)F (b; !; ') = F (b� b

0

; ! � !

0

; '� '

0

+ !

0

(b

0

� b)) : (35)

� is a unitary representation, and is highly reducible.

The in�nitesimal generators of �

n

are also of interest: introduce the dif-

ferential operator

�

r = (

�

@

b

;

�

@

!

)

t

, where for any smooth enough function F , we

set

�

@

b

F (b; !) = @

b

F (b; !) (36)

�

@

!

F (b; !) = @

!

F (b; !)� ibF (b; !) : (37)
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Then we have that for all F 2 L

2

(R

2

),

[�(v

b

; v

�

)F ](b; !) = e

�v

b

�

@

b

e

�v

!

�

@

!

F (b; !) : (38)

The right regular representation � is introduced similarly:

�(g)F (h) = F (hg) : (39)

One may also de�ne, on L

2

(R

2

):

�(b

0

; !

0

)F (b; !) = e

�i!b

0

F (b+ b

0

; ! + !

0

) (40)

Again, the in�nitesimal generators of the right regular representation are of

interest. As before, we introduce the modi�ed derivative

b

r = (

^

@

b

;

^

@

!

)

t

, where

for any smooth enough function F , we set

^

@

b

F (b; !) = @

b

F (b; !)� i!F (b; !) (41)

^

@

!

F (b; !) = @

!

F (b; !) : (42)

Then we have that for all F 2 L

2

(R

2

),

[�(v

b

; v

!

)F ](b; !) = e

v

b

^

@

b

e

v

!

^

@

!

F (b; !) : (43)

4 Time-frequency localization and reassignment

We have seen earlier that the spectrogram and the scalogram may be inter-

preted as blurred versions of the Wigner transform. This lack of resolution

however goes together with an improvement of other aspects of the transform,

which become almost interference free.

4.1 Generalities on reassignment

In a seminal paper

26

, Kodera and his coworkers propose a procedure for

�de-blurring� the transforms. They propose an extremely original idea, which

essentially amounts to �move� CGT coe�cients in the time-frequency plane,

so as to �put them back where they should be�. To give a more precise

meaning to such a statement, they propose a prescription for computing the

�new location� of a coe�cient G

f

(b; !):

�

~

b(b; !)

~!(b; !)

�

=

�

b

!

�

� v(b; !) ; (44)

where

v(b; !) =

�

@

!


(b; !)

! � @

b


(b; !)

�

(45)
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where 
(b; !) is the argument of the CGT:


(b; !) = argG

f

(b; !) : (46)

Remarkably enough, such expressions may also be obtained from the Wigner

function:

(

~

b(b; !) =

1

2�jG

f

(b;!)j

2

R

�W

f

(�; �)W

g

(� � b; � � !)d�d� ;

~!(b; !) =

1

2�jG

f

(b;!)j

2

R

�W

f

(�; �)W

g

(� � b; � � !)d�d� :

Given such a prescription, the reassigned transform is de�ned, formally, as

follows:

M

r

(b; !) =

X

(b

0

;!

0

):(

~

b;~!)=(b;!)

jG

f

(b; !)j

2

: (47)

REMARK 4.1 While the signi�cance of such an expression is clear in a discrete

context, some care is needed for de�ning it in for continous transforms.

REMARK 4.2 As proposed by Kodera et al., we give in (47) the expression

for reassigning the spectrogram. An alternative amounts to reassign the CGT

itself.

EXAMPLE 4.1 As an illustration, we give in Fig. 4 an example of reassiged

CGT. The signal is a simple linear chirp, with a Gaussian envelope, and we

display the square modulus of its CGT and its reassigned CGT. Notice the

improvement of time-frequency localization near the instantaneous frequency

line.

However, even though such a formulation yields remarkable numerical

results, its mathematical interpretation is somewhat di�cult. We describe

below a formalism which allows us to interpret it from �rst principles.

Before going to the geometric interpretation, let us �rst give a short ac-

count of the di�erential reassignment method, introduced by E. Chassande-

Mottin and coworkers

12

. The idea of di�erential reassignment is to make

use of the vector �eld v obtained in (45) to construct a dynamical system

on the time-frequency space. The spectrogram (or CGT) coe�cients are then

�displaced� following that vector �eld. Such a procedure has found several ap-

plications in signal processing. We shall show below interesting interpretations

in terms of the action of the Weyl-Heisenberg group on the time-frequency

plane.

4.2 Constant Phase Deformations

Let us now return to the problem of reassigning, or deforming, a CGT. The

results of this section have been published in

15

. Our goal is to provide a
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Figure 4. Example of CGT (middle) and reassigned CGT (bottom): the case of a linear

chirp (top) .

geometrical interpretation of the reassignment maps proposed and studied

in

26

and

5

for the CGT. Let us �rst set the problem. We are interested in

�nding a vector �eld

v : (b; !)! v(b; !) = (v

b

(b; !); v

!

(b; !))

t

2 R

2

de�ned on the phase space, such that the argument of the CGT remains

unchanged under the in�nitesimal action of the Weyl-Heisenberg group. More
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precisely, we ask for invariance with respect to the right regular action �

n

(�v),

at �rst order in � > 0.

Let F be a smooth function de�ned on the plane. For � > 0 and v 2 R

2

,

let �

v

(�) : L

2

(R

2

) ! L

2

(R

2

) denote the operator de�ned by

�

v

(�)F (b; !) = �

n

(��v(b; !))F (b; !) : (48)

At �rst order in �, we have

�

v

(�)F (b; !) = F (b; !)� �v(b; !) �

b

rF (b; !) +O(�

2

) ; (49)

where the symbol � �� stands for the scalar product in C

2

.

Let now f 2 L

2

(R), and let G

f

denote its CGT. Let us write

G

f

(b; !) = jG

f

(b; !)j e

i
(b;!)

; (50)

where 
(b; !) = arg(G

f

(b; !)). One immediately sees that, again at �rst order

in �,

�

v

(�)G

f

(b; !)=G

f

(b; !)��G

f

(b; !)

�

v �

jrG

f

(b; !)j

jG

f

(b; !)j

+iv � r

m


(b; !)

�

+O(�

2

);

(51)

where we have introduced the modi�ed gradient r

m

, de�ned by

r

m


(b; !) =

�

@

m

b


(b; !)

@

m

!


(b; !)

�

=

�

@

b


(b; !)� !

@

!


(b; !)

�

(52)

Therefore, imposing that the argument of G

f

(b; !) be unchanged imposes that

the vector �eld v be of the form

v(b; !) = �

�

@

m

!


(b; !)

�@

m

b


(b; !)

�

= �

�

@

!


(b; !)

! � @

b


(b; !)

�

; (53)

where � 2 R is a real number. We notice that this expression coincides (for

� = 1) with the prescription given in (44) and (45).

4.3 Back to the reassignment problem

We have described above a formulation (developed in

15

) which derives the

reassignment �eld as a Hamiltonian vector �eld, obtained from the argument

of the CGT. The use of such a vector �eld for the reassignment of the CGT

itself is illustrated in Fig. 4 (for an academic signal), and in Fig. 2 (in the

case of a real signal). As may be seen, reassigning the CGT itself (and not

only the spectrogram), by handling carefully its argument, improves the time-

frequency localization of the representation.
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Figure 5. Reconstruction from a reassigned CGT: the case of a speech signal.

An important issue is that of extending such an analysis to di�erent time-

frequency transforms, such as wavelet transforms in 1D or higher dimensions.

Prescriptions for reassignment �elds have been proposed in the 1D wavelet

case, none of which seems to �t into the formalism we developed.

Another important question regards the completeness of the representa-

tion provided by the reassigned CGT. In other words, does there exist recon-

struction formulas for signals from reassigned transforms. To our knowledge,

there is no general formulation for that problem. However, there are ex-

amples for which reconstruction formulas may be derived (even though the

reassignment prescriptions they are derived for do not �t into the formalism

we just developed), for example in the case of the synchrosqueezed wavelet

transform

14

. As an illustration, we display in Fig. 5 a reconstruction of the

speech signal of Fig. 2 from its reassigned CGT, following the lines of

14

. As

may be seen, the numerical results are extremely promizing.
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