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Abstract 
 
We have calculated the enthalpy of formation and bulk modulus for 19 typical binary sigma compounds with different 
atomic order (i.e. atomic constituent distribution or site occupancy preference on inequivalent sites of a crystal structure) 
based on the experimental site occupancy as well as completely ordered and hypothetically disordered states by using the 
EMTO-CPA (Exact Muffin-Tin Orbitals - Coherent Potential Approximation) method. The calculation results show that at 
0 K the sigma phase in ordered state bears a lower enthalpy of formation and a larger bulk modulus than the ones in less 
ordered state.  
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1. Introduction 
 
The topologically close-packed (TCP) phases are one of the largest groups of intermetallic compounds, which are 
composed of metallic atoms with different atomic size. These atoms adapt each other forming a very complex crystal 
structure with high space utilization and high coordination number (CN). The characteristic of the structure is that it is 
stacked by coordination polyhedron of CN 12, 14, 15 and 16 [1]. TCP phase is common precipitation in Fe-, Ni-, Co- based 
superalloys and austenitic and duplex stainless steels [2–5]. The common members of TCP phases are sigma, chi, mu, laves, 
A15, R, P, delta and M phases [1,2]. A small amount of TCP precipitations can cause the effect of precipitation hardening 
and grain boundary strengthening [3,6]. However, in most cases, TCP phase is a detrimental phase in alloys. It is hard and 
brittle, which make alloys crack under the service conditions in tensile stress. Moreover, the TCP precipitation will lead to 
poor alloying elements in matrix, and thus decreases the mechanical properties and corrosion resistance of materials [2,3]. 
Therefore, accurate prediction and reasonable control of the precipitation of TCP phase is obviously the key to alloy design 
of iron-based, nickel-based, cobalt-based superalloys and stainless steels. 
 
The sigma phase is a typical example of TCP phases, which is with large homogeneity range and designated as tetragonal 



structure (space group 𝐷!"#$! -P42/mnm) with 30 atoms distributed on five inequivalent sites [7,8] as presented in Table 1. It 
can serve as a prototype of TCP phases. In the present work, the EMTO_CPA method was conducted to reveal the influence 
of atomic order (i.e. atomic constituent distribution or site occupancy preference on inequivalent sites of a crystal structure) 
on the enthalpy of formation and the bulk modulus of the sigma phase. To facilitate explanation, the ordered and disordered 
state is designated with atomic occupancy as presented in Table 1. All the binary sigma phase systems studied were 
designated as A-B where atom A holds a larger atomic size than atom B. 
 
Table 1. Crystal structure of the sigma phase with atomic occupancy corresponding to the ordered and disordered compounds A2B and 

AxB(1-x) (VA>VB, where VA and VB are the molar volumes of the constitutive elements in their hypothetic sigma phase structure from 

the CALPHAD assessments [9]). 

Space group P42/mnm (no. 136) 

Wyckoff position 2a 4f 8i1 8i2 8j 

Coordination number (CN) 12 15 14 12 14 

Ordered state (A2B) B A A B A 

Disordered state (AxB(1-x)) x·A x·A x·A x·A x·A 

 
2. Methodology and calculation details 
 
The first-principles calculations were performed using the exact muffin-tin orbitals (EMTO) method [10,11], with which, 
the Green’s function technique is used to solve the one electron Kohn-Sham equation. The optimized overlapping muffin-
tin approximation is used when dealing with the effective potential in the one-electron equation. Besides, the total energy 
is corrected with the full charge density (FCD) method [10]. The wave function is expanded by using the basis sets of the 
exact muffin-tin orbitals [10,11]. The coherent potential approximation (CPA) [12–14] is incorporated within the EMTO 
code.  
 
Green’s function has been calculated for 16 complex energy points distributed exponentially on a semicircular contour. 
We adopted the scalar-relativistic and soft-core approximations. The electronic exchange-correlation functional within 
the generalized-gradient approximation (GGA) as parametrized by Perdew et al. [15] has been used. The Brillouin zone 
is sampled by a uniform k-point mesh (3×3×6) without any smearing technique. 
 
3. Results and discussion 
 
3.1. Influence of atomic order on enthalpy of formation  
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Fig. 1. Enthalpy of formation of A-B binary sigma phase systems referred to the enthalpy of the pure elements in a hypothetic sigma 

phase structure calculated by EMTO-CPA method at 0 K.  

 
Fig. 1 presents the enthalpy of formation of the sigma phase calculated by using the EMTO_CPA method. EMTO-CPA-ord, 

EMTO-CPA-exp and EMTO-CPA-x% represent results for enthalpy calculated with site occupancies corresponding to that of completely 

ordered state, experimental measurements [8,16–20] and completely disordered state, respectively. The binary systems of interest 
are Cr-Co, Cr-Fe, Cr-Mn, Mo-Co, Mo-Mn, Mo-Os, Mo-Re, Nb-Al, Nb-Ir, Os-Cr, Re-Cr, Re-Mn, Re-V, Ru-Cr, Ta-Al, V-
Co, V-Fe, V-Mn and V-Ni binary systems. 
 
Based on Liu et al.’s work [21], these systems have been labelled SMe, SMs-SMe, LAs-SMe, LAs, LAs-LAe or X-Al 
(X=Nb, Ta) according to the difference in total number of electron shells and total number of valence electrons between A 
and B atoms (see Fig.1). LAs and LAe mean that atom A has larger total number of electron shells and larger number of 
valence electrons than atom B, respectively. SMs and SMe mean that atom A has smaller total number of electron shells 
and smaller number of valence electrons than atom B, respectively. The calculation results indicate that the sigma 
compound in a more ordered state holds a lower enthalpy of formation (more negative), i.e. the ordered structure is more 
stable than the less ordered ones at 0 K.  
 
Besides, it has been found out that the formation enthalpy of the sigma phase depends on both the volume difference and 
the electron configuration of its constitutive elements. Table 2 presents the volume difference between the two constitutive 
elements (A and B) and the enthalpy of formation of the A66.7B33.3 sigma phase in ordered and disordered states calculated 
by EMTO-CPA method at 0 K.  
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It indicates that for SMe and SMs-SMe categories, generally, the enthalpy of formation for compounds in both ordered and 
disordered states decreases with increasing the size difference between the two constitutive elements (except for V-Fe and 
V-Ni systems between which inversion is observed). For LAs and LAs-LAe categories, the enthalpy of formation in 
disordered state for systems with large size difference (Re-Mn and Re-Cr systems), is positive, which indicates a less stable 
state. This behavior is related to the fact that the effects of the size and electrons factors (LAs or LAe factors) on atomic 
order for these categories are contradictory see Ref. [21]. On the one hand, by considering the size factor, atom A tends to 
occupy large CN sites, namely 4f, 8i1, 8j; on the other hand, by considering LAs (i.e. Atom A is with the larger total number 
of electron shells than atom B) or LAe (i.e. Atom A is with the larger number of valence electrons than atom B) factors, 
atom A tends to occupy small CN sites, namely 2a, 8i2. For LAs-SMe category, due to the influence of LAs factor and the 
large size difference, for both Mo-Co and Mo-Mn systems, the enthalpy of formation in disordered state is also positive.  
 
Moreover, the enthalpy of formation for Mo-Co system is smaller than that for Mo-Mn system, due to the large effect of 
SMe factor (i.e. Atom A is with the smaller number of valence electrons than atom B, which makes atom A tend to occupy 
large CN sites [21]) for Mo-Co system reduces the effect of LAs factor on atomic order. By considering electron loss and 
gain, X-Al (X= Nb, Ta) category behave similarly as LAs-SMe category [21]. The strong effect of LAs factor and a 
relatively large size difference for Ta-Al system cause the enthalpy of formation in disordered state to be positive. 
 
In addition, calculations considering magnetism were conducted for Cr-Fe and V-Fe systems as presented in Fig. 1 (b, e). 
The calculation results show that at 0 K when magnetism is accounted for compounds are more stable than those for which 
magnetism is not accounted for, especially for compounds with high content in Fe, which is agree with the experimental 
measurements [22,23].  
 

Table 2. Size difference between the constitutive elements (A and B) and enthalpy of formation (Hf) of the A66.7B33.3 sigma phase in 

both ordered and disordered states calculated by EMTO-CPA method at 0 K. VA and VB are the molar volumes of element A and B in 

their hypothetic sigma phase structure from the CALPHAD assessments [9]. 

category A-B 
(VA-

VB)/VA 

Hf, kJ/mol 
category A-B 

(VA-

VB)/VA 

Hf, kJ/mol 

ordered disordered ordered disordered 

SMe 
Cr-

Mn 
0.0147 -7.88 -1.37 

SMs-

SMe 
Nb-Ir 0.2126 -69.05 -43.13 

SMe Cr-Fe 0.0588 -15.62 -5.04 
LAs-

SMe 

Mo-

Mn 
0.2386 -13.08 13.68 

SMe 
V-

Mn 
0.1052 -16.67 -6.77 

LAs-

SMe 

Mo-

Co 
0.3087 -29.83 4.27 

SMe 
Cr-

Co 
0.1053 -18.79 -7.79 LAs 

Re-

Mn 
0.2006 -15.53 9.68 

SMe V-Fe 0.1453 -29.54 -13.90 
LAs-

LAe 
Re-V 0.1065 -23.29 -13.54 

SMe V-Ni 0.1739 -27.26 -12.35 
LAs-

LAe 

Ru-

Cr 
0.1298 -9.94  

SMe V-Co 0.1876 -37.06 -19.56 
LAs-

LAe 

Re-

Cr 
0.1887 -18.09 1.32 

SMs-

SMe 

Mo-

Re 
0.0476 -11.33 -3.87 X-Al 

Nb-

Al 
0.143 -39.69 -10.63 



SMs-

SMe 

Mo-

Os 
0.0856 -28.18 -13.85 X-Al 

Ta-

Al 
0.1454 -30.54 0.97 

 
3.2 Influence of atomic order on bulk modulus 
 
The bulk modulus of the sigma phase in the Cr-Co, Cr-Fe, Cr-Mn, Mo-Co, Mo-Fe, Mo-Mn, Mo-Os, Mo-Re, Nb-Al, Nb-
Ir, Re-Cr, Re-Mn, Ta-Al, V-Co, V-Fe, V-Mn and V-Ni systems has also been evaluated by fitting the Birch-Murnaghan 
equation of state [24,25]. The corresponding results are listed in Table 3. For most systems, sigma phase in ordered state 
has a large bulk modulus and a small molar volume, which indicates a strong binding between atoms and a compact 
structure, respectively. Only for Mo-Re system, sigma phase in ordered state has a large bulk modulus but a large molar 
volume, which indicates a strong binding between atoms but a loose structure, respectively.  
 

Table 3. EMTO_CPA calculated bulk modulus (B0) and corresponding molar volume (Vm) of the A66.7B33.3 sigma phase in both 

ordered and disordered states at 0 K.  

AxBy 
B0, Gpa Vm, 10-6 m3/mol 

ordered disordered ordered disordered 

Cr66.7Co33.3 251.345 242.347 6.799 6.869 

Cr66.7Fe33.3 257.813 249.913 6.801 6.855 

Cr66.7Mn33.3 255.737 250.914 6.921 6.950 

V66.7Co33.3 206.275 195.199 7.467 7.566 

V66.7Fe33.3 212.796 203.138 7.491 7.562 

V66.7Mn33.3 209.324 203.167 7.643 7.675 

V66.7Ni33.3 195.071 183.190 7.588 7.700 

Mo66.7Os33.3  283.269 274.343 9.478 9.491 

Mo66.7Re33.3  273.023 268.617 9.644 9.614 

Nb66.7Ir33.3 222.794 207.189 10.345 10.417 

Mo66.7Co33.3  246.252 225.691 8.482 8.771 

Mo66.7Mn33.3 250.635 232.845 8.633 8.808 

Re66.7Mn33.3 330.679 311.432 8.310 8.539 

Re66.7Cr33.3 319.851 306.083 8.493 8.706 

Re66.7V33.3 296.475 288.341 8.794 8.994 

Nb66.7Al33.3 151.447 136.561 10.493 10.870 

Ta66.7Al33.3 169.286 152.224 10.505 10.944 

 
4. Conclusion 
The influence of atomic order on both the enthalpy of formation and bulk modulus of the sigma phase has been studied 
by using the EMTO_CPA calculations. At 0 K, the sigma phase in the ordered state bears a low enthalpy of formation, 
which indicates that the ordered structure is more stable than the less ordered ones. Besides, the sigma phase in the 
ordered state bears a large bulk modulus, which indicates a strong binding between atoms. On the other hand, we found 
that the formation enthalpy of the sigma phase depends on the size difference and the electron configuration between the 
two constitutive elements. 
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