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26 HIGHLIGHTS

27 - Review of the geomorphology, regolith and age of the West African pediment systems

28 - Duricrusted and loose transported sediments are dominant on pediments

29 - Specific geomorphological exploration guides are required for lateritic pediment terrains

30 - Pediments typify slow (<10 m/Ma) denudation regimes and their stepping patterns are not 

31 gauges of regional uplift

32

33 Abstract

34 This paper is a contribution to the understanding of surface dynamics of tropical shields over 

35 geological timescales. Emphasis is put on the fundamental and applied implications of 

36 regolith production and dispersion processes through the formation, dissection and 

37 preservation of landforms. It is based on the case study of sub Saharan West Africa, which 

38 recorded Neogene stepwise dissection of its topography through the emplacement of three 

39 lateritic pediment systems, which still occupy most of its surface. Pediments are erosional / 

40 transportation slopes having been weathered and duricrusted. Pediment-regolith 

41 associations therefore depend on the parent rock, transport dynamics and preservation of 

42 the material having transited on their surface as well as on the intensity of their weathering / 

43 duricrusting. Iron oxy-hydroxide-cemented clastic sediments (detrital ferricretes) and 

44 unconsolidated clastic sediments are the dominant outcropping material, and as such 

45 represent a challenge for mineral exploration that relies on surface geochemical sampling to 

46 detect metal concentration in the bedrock. Landform-regolith mapping beyond the scale of 

47 modern interfluves combined with paleolandscape reconstitution are relevant to provide 

48 exploration guides for (i) interpreting geochemical anomalies on pediments, (ii) tracing their 

49 potential source when they have been “transported” on pediments and (iii) targeting 

50 suspected ore bodies concealed beneath pediment(s). Past and present latitudinal climatic 
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51 zonation of pedimentation and weathering patterns suggests a gradation of pedimentation 

52 process across the intertropical zone and explains why pediments may have been 

53 overlooked in equatorial environments, with implications for mineral exploration. 

54 Successive pediment systems adapted to uneven, knickzone bearing river networks, 

55 producing a spatially consistent and reduced (<80 m) stepping pattern of pediments 

56 independent from elevation or position in the drainage. Pediments / pediplains are therefore 

57 not proxies of uplift and their preservation over geological timescales typifies regions 

58 submitted to less than 10 m/My erosion rates. The identification and study of lateritic 

59 pediments bear important implications on shield sediment routing systems and a better 

60 access to the bedrock and its resources, which may still be underestimated in the tropics.

61

62 keywords: Pediment; Regolith; Landform evolution processes; Mineral exploration; Mega-

63 geomorphology

64

65 1. Introduction

66 Tropical shields of Africa, South America, India and Australia are mantled over large 

67 areas by regolith derived from rock weathering. Regolith is a weathered, unconsolidated or 

68 secondarily indurated cover that overlies fresh coherent bedrock (Scott and Pain, 2008). If 

69 preserved on its parental bedrock, regolith constitutes a weathering profile (Fig. 1), which 

70 acts as a filter for the chemical composition of the geological substrate. In this case, 

71 weathering concentrates some metals (Fe, Al, Ni, Cu, Au, Mn) in the regolith compared to the 

72 bedrock, which can result lateritic ore deposits (Nahon et al., 1992; Valeton, 1994; Freyssinet 

73 et al., 2005). Once transported by slope or alluvial processes, regolith may act as a mask for 

74 the underlying bedrock. As displaced regolith may undergo weathering after transport (Ollier 

75 and Pain, 1996), deciphering regolith production / dispersion scenarios through landscapes 
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76 is key for mineral exploration, which mostly relies on soil geochemical surveys (Butt et al., 

77 2000; Porto, 2016). Throughout the Cenozoic, shield surfaces outside the influence of 

78 glaciers have primarily evolved by landscape dissection, the process by which 

79 paleolandscapes become isolated as relics overlooking younger active landforms as a result 

80 of slow and unevenly distributed erosion. Thereby, the relief of shields increases through 

81 geological time (Thomas, 1989; Twidale, 1991), while landscape dissection is instrumental in 

82 exhuming regolith available to re-weathering and transportation. Therefore, the study of 

83 regolith distribution patterns over shield landscapes should not only provide exploration 

84 guides to better access bedrock geology and resources, but also constrain landform 

85 evolution processes and sediment delivery of very large cratonic river systems (Beauvais and 

86 Chardon, 2013; Grimaud et al., 2015, 2018). 

87 Pediments are common landforms that typically form during, and contribute to, the 

88 process of landscape dissection, especially over vast non-orogenic regions of the world (e.g., 

89 Dohrenwend and Parsons, 2009). In the broadest sense of the term, pediments may be 

90 considered as gently inclined slopes of transportation and/or erosion that truncate bedrock 

91 and/or regolith and connect eroding slopes or scarps to areas of sediment deposition or 

92 alluvial transportation at lower levels (definition adapted from Oberlander, 1997). 

93 Pedimentation involves the physic-chemical processes that concur to form pediments. As 

94 transportation slopes feeding rivers with clastic sediments, pediments are a regulating 

95 element of the sediment routing system. As transit landsurfaces, pediments also carry 

96 transported regolith that masks the geological substrate. They are therefore an obstacle to 

97 mineral exploration (Payne, 1969; Pease, 2015) but have not been recognized as such in 

98 lateritic environments by exploration geologists and geochemists. Through the work of King 

99 (1948, 1967), the pediment concept also contributed to landscape evolution theories 

100 (Summerfield, 1991, pp. 457-467). However, no general agreement exists on the recognition 
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101 criteria, regional correlation and the geomorphic meaning of paleo-pediments. Remaining 

102 questions are (i) whether and how pediplains (i.e., regional surfaces of coalescent 

103 pediments) can form and be preserved over geological time-scales (106-107 yr) and (ii) 

104 whether they may be gauges of continental deformation or whether they have another 

105 geological signification (e.g., Tricart in Twidale, 1983; Summerfield, 1985, 1996; Thomas and 

106 Summerfield, 1987; Twidale and Bourne, 2013; Dauteuil et al., 2015; Guillocheau et al., 2015, 

107 2017).

108 Relationships amongst pediment development and preservation and regolith 

109 production and remobilization are exceptionally exemplified over sub Saharan West Africa. 

110 Pediment systems formed by stepwise dissection of the region West of 10°E and South of 

111 20°N (Fig. 2) since the earliest Miocene (ca. 24 Ma) and still occupy an overwhelming part of 

112 its surface. They exclusively expose lateritic regolith and are commonly capped by ferricrete 

113 (a generic term used here for iron duricrust). The region hosts the southern West African 

114 craton, which is an important metallogenic province (Milési et al., 1992; Markwitz et al., 2016) 

115 and more specifically the largest Paleoproterozoic gold-producing region (Goldfarb et al., 

116 2017). The ubiquitous lateritic pediments of the region therefore pose an amazing 

117 exploration challenge (e.g., Bamba, 2009). Building on decades of geomorphological 

118 investigations throughout the sub region, recent progress made at dating, mapping and 

119 regionally correlating lateritic pediments and earlier paleolandscape elements left by relief 

120 dissection (Beauvais and Chardon, 2013) offered a new perspective for deciphering 

121 denudation chronologies and landscape evolution processes on a sub-continental scale. 

122 The present contribution is a review of the West African lateritic pediment systems 

123 from the landscape to the sub continental scale. It addresses pediment landform-regolith 

124 evolution processes to (i) evaluate the factors controlling the production and preservation of 

125 pediments over geological timescales and their geological meaning, (ii) call attention to 

241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300



6

126 geochemical exploration pitfalls in lateritic pediment dominated environments and provide 

127 adapted geomorphological exploration guides or strategies. The ubiquity of pediment-

128 dominated terrains in West Africa suggests that pediments occupy vast regions of the 

129 tropical belt and calls for geomorphic reassessment of shield surfaces from both a 

130 fundamental and applied perspective.

131

132 2. West African landscape-regolith evolution models for mineral exploration and the 

133 recognition/study of pediments

134 The “landscape geochemistry” approach to tropical geomorphology has prevailed 

135 for decades in the exploration and surface geochemistry communities (Butt, 2016). 

136 Following Zeegers and Leprun (1979), such an approach led to pedogenetic geochemical 

137 dispersion models elaborated for West African base metal deposits and various bedrock 

138 lithologies that consider ferricretes as forming the upper residuum of weathering profiles 

139 preserved on their parental bedrock (Butt and Zeegers, 1989; Zeegers and Lecomte, 1992; 

140 Lecomte and Zeegers, 1992; Freyssinet, 1993; Bowell et al., 1996; Tardy, 1997; Fig 1). 

141 Accordingly, ferricretes are inferred to display various degrees of geochemical dependency 

142 on the underlying bedrock via the successive horizons of the weathering profile i.e., from 

143 bottom to top: saprolite, mottled clays and carapace (Fig. 1). Within such a paradigm, 

144 variations in concentration and mode of occurrence of base metals or other elements from 

145 the bedrock to the ferricrete result from solute loss, vertical mass transfers and compaction 

146 of the residuum as a sole consequence of lateritic weathering, leading to the formation of 

147 geochemical dispersion halos (Roquin et al., 1990; Colin and Vieillard, 1991; Freyssinet, 1993; 

148 Freyssinet et al., 2005; Fig. 3). West African exploration models consider cases where 

149 weathering profiles were truncated by erosion and weathering horizons deeper than the 

150 ferricrete are exposed or cases where such truncated profiles are overlain by unconsolidated 
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151 colluviums (e.g., Bowell et al., 1996). But ferricretes are considered as formed from in-situ 

152 regolith. A consequence of such popular landscape evolution models is that both the role of 

153 pedimentation-driven relief dissection in redistributing regolith in the landscapes and 

154 potential detrital origin of ferricretes have been overlooked for decades of mineral 

155 exploration and geochemical investigations. However, among exploration geologists, 

156 Bolster (1999) suggested that some West African ferricretes were detrital. More recently, 

157 former advocates of the in-situ paradigm such as Butt and Bristow (2013) claimed that 

158 ferricretes were “Fe oxydes-cemented sediments” and that “relief inversion [was] a very 

159 widespread and important phenomenon” in West Africa (relief inversion being a case of relief 

160 dissection that leads the lower part of an ancient landscape to become the highest part of 

161 the new landscape; see Summerfield, 1991). Those findings were actually made 60 years ago 

162 and documentation on those topics has accumulated since then from investigations by 

163 geologists, soil scientists and geomorphologists.

164 Early geomorphological studies have shown that ferricretes occupying large surfaces 

165 of the sub region contained gravels and cobbles of Al-Fe crusts, quartz and bedrock that had 

166 no genetic relationships with their underlying saprolite or bedrock (Dresch, 1952a; Lamotte 

167 and Rougerie, 1953, 1962; Pélissier and Rougerie, 1953; Daveau et al., 1962). In the meantime, 

168 following reconnaissance by Pélissier and Rougerie (1953), Brammer (1955, 1956), Tricart et 

169 al. (1957), Michel (1959) and Vogt (1959a) showed that these detrital ferricretes capped 

170 generations of glacis - a French term for pediment(s). In his comprehensive geomorphic 

171 investigation of the Senegambia drainage basin, Michel (1959, 1973, 1974) deciphered and 

172 mapped the sequence of lateritic pediments over Central and Northern Guinea, 

173 Southwestern Mali and Senegal, (Fig. 2). More recently, glacis of Eastern Senegal and their 

174 regolith were investigated through combined petrological and near-surface geophysical 

175 investigations (electrical resistivity tomography and ground penetrating radar: Beauvais et 
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176 al., 1999, 2004). The lateritic glacis of Senegal extend in southern and central Mauritania, but 

177 they tend to be less iron-rich northward (Michel, 1977) and could even expose even 

178 pedogenic calcretes (Nahon et al., 1977). 

179 After Brückner (1955) and especially Hilton (1963) in Ghana (former Gold Coast), De 

180 Swardt (1964) led the way for detailed investigations of the extensive lateritic pediment 

181 systems of Nigeria that are correlated with the glacis sequence established in Guinea and 

182 Senegal (Fölster, 1969a, 1969b; Rohdenburg, 1969; Burke and Durotoye, 1971; Fölster et al., 

183 1971; Fig. 2). Geomorphic description, petrological characterization and mapping of glacis 

184 generations were undertaken over Burkina Faso (former Haute-Volta; Fig. 2) by Boulet (1970), 

185 Eschenbrenner and Grandin (1970), Grandin (1976), Bamba (1996), Bamba et al. (2002) and 

186 Grandin and Joly (2008). Works on glacis were also extended to the neighboring area of the 

187 Republic of Niger by Mensching (1966) and Gavaud (1977). More recently, the mapping of the 

188 glacis systems in Southwestern Burkina Faso by combinations of field surveys, airborne 

189 geophysics and remote sensing was undertaken by Grimaud et al. (2015) and Metelka et al. 

190 (2018).

191 In Côte d’Ivoire, intensive work was undertaken on glacis geomorphology and 

192 weathering in the 1970s (e.g., Bonvallot and Boulangé, 1970; Eschenbrenner and Grandin, 

193 1970; Boulangé et al., 1973; Grandin, 1976; Pèltre, 1977; see also Teeuw, 2002), whereas the 

194 same glacis systems were reported in Sierra Leone (Fig. 2) by Grandin and Hayward (1975) 

195 and studied by Thomas (1980, 1994), Thomas and Thorp (1985), Bowden (1987, 1997) and 

196 Teeuw (1987), although the two later authors did not explicitly refer to pediments, but to 

197 “footslope laterites (duricrust)” (e.g., Bowden, 1987). Reconnaissance by Dresch (1952b) 

198 indicates that the ferricrete-capped pediments of Niger and Burkina Faso extend over Benin 

199 (as confirmed by our field observations) as well as in Togo (Fig. 2), where they have been 

200 described as such and studied by soil scientists (e.g., Le Cocq, 1986; Meyer, 1992).
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201 Regional typologies and systematics of glacis were defined in the seminal 

202 monographs of Michel (1973) and Grandin (1976). Three successive glacis systems have been 

203 recognized, namely the High, Middle and Low glacis, stepwise landscape dissection being 

204 documented as the key process having allowed the preservation of relict bauxitic, 

205 Intermediate and pediment landforms of each generation (e.g., Grandin and Joly, 2008; see 

206 also Beaudet and Coque, 1994; Gunnell, 2003). Weathering patterns of the glacis sequence 

207 have been treated in the reviews of Tardy (1997) and Tardy and Roquin (1998). The pediment 

208 sequence was incorporated by Burke and Gunnell (2008) into their model of the African 

209 Surface, which encompasses the entire relief of the continent and would have been 

210 generated by deformation and correlative erosion of a initially flat and low lying continent-

211 wide surface since the Cretaceous. Remnants of each West African glacis system have been 

212 correlated and mapped regionally by combining regional field surveys, photointerpretation 

213 and the available literature (e.g., Beauvais and Chardon, 2013; Grimaud et al., 2014, 2018). 

214 The present work stems from the experience gained in the course of those regional 

215 correlations and compilations as well as our own field experience in Benin, Burkina Faso, 

216 Guinea, Côte d’Ivoire, Mali, Niger and Senegal (Fig. 2). By considering pediments and glacis in 

217 the broadest sense of the definition given above, the two terms are used here 

218 interchangeably. 

219

220 3. Pediments in the West African morphoclimatic sequence

221 The West African landscape is the end product of the stepwise dissection of an old, 

222 low relief topography called the African Surface (e.g., King, 1948; Boulangé and Millot, 1988; 

223 Chardon et al., 2016). This old landscape is mantled by bauxitic duricrusts resulting from a 

224 long period of intense weathering that culminated and ended in the Early and Middle Eocene 

225 (Millot, 1970; Valeton, 1991; Colin et al., 2005; Chardon et al., 2006; Beauvais et al., 2008; 
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226 Beauvais and Chardon, 2013). The African surface is now preserved mostly as bauxite-

227 capped mesas dominating the current landscape. The High, Middle and Low glacis mark the 

228 last main dissection stages of the African Surface. Remnants of a massive, nodular or 

229 pisolitic ferricrete-capped landscape found below bauxite relics and above the glacis have 

230 been used to define an Intermediate Surface (Michel, 1959, 1973; Vogt, 1959a). Bauxitic 

231 duricrusts of the African Surface and the ferricretes of the Intermediate Surface top thick (> 

232 80 m) weathering profiles that are preserved on their parental bedrock (Grandin, 1976; 

233 Boulangé, 1984, 1986; Boulangé and Millot, 1988; Valeton, 1991). 

234 Each glacis system in the West African sequence shows, in most cases, evidence for 

235 duricrusting (or induration), and lateritic weathering, after its formation. Pediments/glacis 

236 are the most conspicuous and common active landforms of dry or sub-humid regions of the 

237 world (e.g., Dohrenwend and Parsons, 2009). The successive shifts from pedimentation to 

238 lateritic weathering/duricrusting of the three glacis systems are indicative of repeated 

239 transitions from semi-arid to seasonally contrasted wet tropical climate over West Africa 

240 (Tricart et al., 1957; Michel, 1973; Grandin, 1976). Duricrusting took place during climate 

241 shifts toward dryer conditions at the ends of humid weathering periods, before 

242 abandonment and dissection of one glacis system and formation of a new one (Beauvais and 

243 Chardon, 2013). Systematic Ar-Ar geochronology of K-Mn oxides (cryptomelane) from the 

244 Mn-rich duricrust and weathering profile of each member of the West African landform-

245 regolith sequence allowed constraining their weathering and abandonment ages (Beauvais 

246 et al., 2008; Beauvais and Chardon, 2013; Fig. 4). The African and Intermediate regolith-

247 landform associations yielded 59-45 and 29-24 Ma age groups, respectively. The High, Middle 

248 and Low glacis weathered before abandonment at 18-11, 7-6 and around 3 Ma, respectively 

249 (Fig. 4). Those age groups would therefore restrain the main pedimentation periods to 24-18, 

250 11-7 and 6-3 Ma for the High, Middle and Low glacis, respectively (Fig. 4). Ages obtained on 
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251 alunite and jarosite (Vasconcelos et al., 1994), although indicative of lesser weathering 

252 intensities than cryptomelane, are compatible with the period of bauxite formation, 

253 weathering of the Intermediate landscape until the latest Oligocene (24 Ma) and the 18-11 

254 Ma period of High glacis weathering (Fig. 4).

255

256 4. Glacis landforms and landscape chronologies

257 4. 1. Type-landforms and their spatial arrangements 

258 The three generations of West African glacis remnants are best distinguished on the 

259 piedmonts of topographic massifs, which form up to hundreds of meters’ high residual 

260 reliefs that had not been leveled by pedimentation (Figs. 5 and 6a). Those massifs are 

261 typically made of greenstone belt material (andesite, basalt, gabbro, volcano sedimentary 

262 rocks) or early Mesozoic dolerite sills hosted by tabular sandstones and preserved from 

263 erosion thanks to their capping bauxites and/or Intermediate duricrusts. Glacis are graded 

264 upward-concave surfaces sloping away from the massifs (e.g., Grandin, 1976). The stepping 

265 of successive glacis relics attests to the polycyclic nature of the landscapes due to renewed 

266 periods of pedimentation (Fig. 6a). The uppermost portion of an early glacis (e.g., the High 

267 glacis) is commonly eroded in such a way that a peripheral hollow separates the glacis 

268 remnant from its upslope relict landscape (Fig. 6a and 7a; e.g., Beauvais et al., 1999). A later 

269 glacis (e.g., the Middle glacis) may shape the inner slopes of the peripheral hollow so that it 

270 can reach a higher elevation than the relics of the earlier glacis (Fig. 6a). Relative elevation 

271 alone is therefore not a reliable criterion to decipher glacis generations given their slopes 

272 and their dissection patterns. Careful investigation of the relative geomorphic position, 

273 lateral extension and age of landscape elements should therefore be preferred to establish a 

274 glacis landscape chronology.
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275 Massifs to which piedmont glacis are connected may be eroded by headward river 

276 erosion so that only an inselberg (i.e., a rocky topographic massif stripped from its regolith) 

277 remains as a relic of the former bauxitic / Intermediate topography. Such an inselberg may 

278 have a lower elevation than the piedmont glacis relicts (Fig. 7) and in many instances erosion 

279 may even totally erase the massif to which glacis were connected. Likewise, glacis relict 

280 surfaces carrying cobbles or boulders of bauxites are commonly preserved in areas where no 

281 bauxite massifs remain (Bamba, 1996; Fig 7). River valleys connected upstream to peripheral 

282 hollows generally have a lower slope gradient than the early (High) glacis (Fig. 7b). Later 

283 (Middle or Low) glacis settle on their valley sides (Fig. 7b) that dip at a high angle to the 

284 earlier glacis slope direction. This implies that slope direction – and therefore surface 

285 material transport direction on the pediment – not only varies spatially for a given glacis 

286 generation (for instance for the High glacis radiating around a residual topographic massif) - 

287 it varies also from one glacis generation to the next.

288 Over vast granitoid or tabular sandstone / siltstone terrains, the landsurface is a 

289 multi-convexo-concave plain that is occupied by undulating glacis encompassing the entire 

290 relief i.e., from the top of smooth convex interfluves to the lower part of their concave slopes 

291 (Fig. 6b). Following Rohdenburg (1969) in his review of Southern Nigerian pediment systems, 

292 the term of rolling pediplain is used here to describe such glacis landscape regions (see also 

293 Fölster, 1969a). They have 2 to 20 km wavelength and modest (< 30 m) amplitude and may 

294 preserve a relict - and often dismantled - ferricrete inherited from a former glacis surface on 

295 their interfluves (called, in this case, residual hills) (Fig. 6b). Rolling pediplains are by far the 

296 most common regional landform associations in today’s West Africa and are locally studded 

297 with relict glacis plateaus of limited extent that were not reduced to residual hills. They are 

298 mostly inherited from past glacis landscape stages. Middle glacis pediplains (Fig. 6b) are the 

299 best preserved in today’s landforms although the downslope portions of such 
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300 paleolandscapes are generally re-cut by the Low glacis (e.g., Fig. 6b). Regional correlations of 

301 glacis systems chronology may be deciphered along 10-100 km long transects going from 

302 piedmont contexts - where the pediment stepping pattern is well defined - to rolling 

303 pediplain contexts. Field investigations restricted to the scale of an interfluve or a few 

304 interfluves are indeed not sufficient to elaborate a landscape chronology given the lateral 

305 variability of the paleolandforms preservation patterns (see section 6.2).

306

307 4. 2. Relief dissection patterns

308 Repeated relief dissection favored the stepping of successive glacis in piedmont 

309 contexts (Figs. 8a and 8b). The relative elevation between successive glacis does not 

310 systematically decrease downslope i.e. away from the residual massif (Fig. 8a) contrary to 

311 the common slope evolution models (e.g., Summerfield, 1991, pp. 457-467). It may increase 

312 downslope toward the main drainage axes (Grandin and Joly, 2008; Fig. 8b). The dissection 

313 of rolling pediplains leads to more complex stepping patterns owing to whether erosion 

314 focused on residual hills or valleys from one glacis landscape stage to the next (Figs. 8c to 8e). 

315 Inselbergs are locally preserved on granitoid terrains. They seem to have formed by a 

316 combination of geological factors among which rock structural control, the original relief of 

317 an old and thick weathering profile and the polycyclic denudation history are the most 

318 important (Thomas, 1978, 1994).

319 In case where a glacis is not strictly stepped into an older glacis, mostly as a 

320 consequence of limited base-level fall (i.e., river down-cutting) during its development, a 

321 composite (i.e., polygenic) landsurface forms. Slight oblique leveling of the early glacis up to 

322 a certain elevation by the younger glacis may lead to a more or less expressed change of 

323 slope in that landsurface (Fig. 6). Polygenic development is also mostly expressed in the 

324 downslope parts of two successive glacis that merge into a single graded (and often 

721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780



14

325 functional) surface, whereas they are stepped higher up in the landscape (e.g., Fig. 6a). 

326 Polygenic High/Middle glacis are observed but the most common cases of polygenic 

327 developments are between the Middle and Low glacis, particularly in dry regions (Boulet, 

328 1970; Eschenbrenner and Grandin, 1970). In the Sahelian zone (Fig. 2) where base-level fall 

329 has been limited between the Intermediate Surface and the High glacis approaching the 

330 Niger River (e.g. Grimaud et al., 2014), polygenic glacis development is common between 

331 these two landscape systems (see also Fig. 5).

332 Relief dissection and denudation did not allow a good preservation of High glacis 

333 stage rolling pediplains of significant regional extent with the exception of specific areas of 

334 flat sandstones. Those rolling pediplains generally have longer (>10 km) wavelength than 

335 those of the Middle glacis. Low glacis pedimentation did not produce rolling pediplains. 

336 From the Soudanian zone southward (Fig. 2), Low glacis systems mostly contributed to re-

337 cut or straighten downslope portions of Middle glacis landscapes (often producing a 

338 polygenic surface). Further north, the Low glacis system largely developed and is still 

339 functional (see below). 

340

341 4. 3. Sequential landscape development

342 The High glacis pedimentation period has produced a multi-concave pediplain over 

343 granite-greenstone terrains or dolerite sills provinces. The pediplain was studded with 

344 relictual reliefs inherited from the bauxitic and/or the Intermediate landscape stages 

345 (Grimaud et al., 2015; Figs. 7 and 9). In other geological provinces, the High glacis landscape 

346 consisted in a rolling pediplain of long (>10 km) wavelength (e.g., Fig. 8c). Middle and Low 

347 glacis pedimentation cycles generally formed narrower valleys than those of the High glacis 

348 landscape (e.g., Figs. 8d and 8e), especially within and south of the Soudanian zone (Fig. 2). 

349 Figure 10 summarizes the sequential development of a type West African landscape. Each of 
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350 the successive landscape stages incorporates relict landforms of various earlier generations. 

351 It is a composite landsurface comprising inselbergs (not shown on the Figure), relics of the 

352 bauxitic and/or Intermediate landscapes and former glacis (Fig. 10). The Middle and Low 

353 glacis landscape stages therefore integrate increasing complexity compared to earlier 

354 landscapes. This is explained by a decreasing pedimentation efficiency manifested by 

355 generally narrower glacis widths and would be consistent with the decreasing duration of 

356 pedimentation periods through time i.e., 6, 4 and 1 My for the High, Middle and Low glacis, 

357 respectively (Beauvais and Chardon, 2013). Relics of the entire West African paleolandscape 

358 sequence are not always preserved on a 10-100 km scale (Fig. 10). Besides an evolving 

359 drainage density, landscape stages succession implies slope direction changes or reversals 

360 (Fig. 10), with implication for material transit patterns on glacis slopes through time (section 

361 7.2). 

362 Multi-concave pediplains are mostly restricted to granite-greenstone terrains or 

363 areas of mafic substrate owing to iron-rich lithologies, which are more alterable than felsic 

364 rocks. They tend therefore to produce thick and massive duricrusts, which have a protective 

365 effect once the landscape they cap is submitted to dissection. The development of piedmont 

366 glacis is favored below scarp-bounded relict paleolandscapes, the scarp being armored by 

367 the ferricrete. In such contexts, glacis are also prone to dissection because their capping 

368 ferricretes are mostly cemented debris of Al-Fe crusts inherited from the older, inverted 

369 landsurfaces and are therefore iron-rich and resistant even though they are not underlain by 

370 mafic rocks (see section 5). Over iron-poor lithologies and away from mafic sources, both the 

371 lower iron content and thickness of the duricrusts reduce their strength. Pedimentation is 

372 therefore more efficient at leveling interfluves to produce rolling pediplains and no strict 

373 relief inversion takes place. 

374
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375 4. 4. Summary

376 Notwithstanding the regional spatial variability of the glacis stepping patterns 

377 described above, each glacis system has type-geomorphic characteristics that may be 

378 summarized as follows (Grandin and Joly, 2008).  Relics of the High glacis are abandoned as 

379 plateaus or residual hills that rarely occupy more than 20 % of the current landsurface over 

380 100 x 100 km areas. They can attain heights of more than 100 m above the local base level for 

381 the upslope portion of very large relics and not more than 30 m for their lowermost portions 

382 along the main drainage axes. Middle glacis are generally eroded downslope and are still 

383 connected to their upslope reliefs. They are preserved as low plateaus or relictual hills in dry 

384 regions (Fig. 2), where the Low glacis developed at their expense. Large Middle glacis 

385 remnants may still be functional i.e., currently subjected to runoff and sediment transport. 

386 Low glacis occupy a large part of the landsurface and are still functional in dry climatic zones, 

387 where they are connected to the local base level. Elsewhere, river alluviums usually mask the 

388 incision of Low glacis of a few meters. 

389 Excavation of the Bauxitic African Surface varies from ca. 500 m in central Côte 

390 d’Ivoire to less than 30 m near the Niger River in Central Mali, with a mean value around 300 

391 m (Beauvais and Chardon, 2013; Grimaud et al., 2014; Fig. 2). Incision of the High glacis is 

392 typically of 50-80 m, whereas the High glacis pedimentation period contributed to 40-130 m 

393 of incision of the Intermediate landscape (Grimaud et al., 2018). The three pedimentation 

394 cycles therefore contributed as much excavation of the African bauxitic Surface (90-210 m) 

395 as the Intermediate period of erosion (75-200 m; Grimaud et al., 2018) over comparable time 

396 spans of 22-24 My (Fig. 2), leading to a long-term denudation rate of 3-9 m/My. 

397 Pedimentation efficiency decreased over the Neogene in West Africa. Given the glacis widths 

398 and ages in the Guinean and Soudanian zones (Grimaud et al., 2015; Fig. 2), lateral growth 

399 rate ranges of glacis would typically be of 0.75-3 km/My and 0.15-1 km/My for the High and 
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400 Middle glacis system, respectively. Given its restricted development in the same climatic 

401 zones (e.g., Fig. 7), the Low glacis system grew at lower rates (0.03-0.75 km/My), which are 

402 those of the Plio-Quaternary Southwestern United States’ pediments (0.03-0.36 km/My; 

403 Dohrenwend and Parsons, 2009). 

404

405 5.  Glacis regolith and weathering patterns

406 Similarly to pedimentation efficiency, the intensity of weathering and duricrusting of 

407 the glacis decreases generally from the High to the Low glacis (Boulangé et al., 1973; Grandin, 

408 1976; Tardy and Roquin, 1998).  This decrease is consistent with long-term Neogene climate 

409 cooling and the progressively shorter duration of humid periods required for the weathering 

410 of the glacis material (Beauvais et al., 2008; Beauvais and Chardon, 2013; Fig. 4).  The spatial 

411 and temporal variability in the nature of glacis surfaces and regolith (Fig. 11) is further 

412 controlled by the interplay of three main factors, which are (i) the nature of the substrate cut 

413 by pedimentation, (ii) the nature, transport dynamics and degree of preservation of clastic 

414 sedimentary material that has been transiting on the glacis and (iii) the nature and intensity 

415 of weathering and duricrusting undergone by the glacis after their formation. Figures 12 to 

416 14 illustrate field examples of the main types of glacis regolith / ferricretes and Figure 15 

417 represents various types of regolith associations on glacis. A synthetic model of the relations 

418 between pedimentation and weathering is provided in Figure 16.

419

420 5. 1. Conglomeratic regolith, ferricrete and slope processes

421 Remarkable and common glacis ferricretes derive from cementation of 

422 conglomeratic material transiting on the glacis surface. The most spectacular ones are 

423 matrix- or block supported debris flows. Depending on the landscape having been stripped 

424 off and the pedimentation regime, conglomerates’ elements range from gravel to boulder 
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425 and consist of bauxite, Intermediate ferricrete, earlier glacis ferricrete, iron oxy-hydroxide 

426 nodules and/or quartz debris (Figs. 12b to 12e). Conglomerates’ matrixes comprise reworked 

427 weathering profile materials ranging from clays to sands (former saprolite) and gravels made 

428 of ferruginous nodules and quartz debris. Apart from quartz, the occurrence of fresh bedrock 

429 clasts in debris flows is extremely rare, indicating that mostly regolith was stripped-off 

430 and/or submitted to landsliding to produce debris flows. When present in glacis transported 

431 regolith, bedrock clasts are almost always highly ferruginized to the point of being a massive 

432 ferricrete preserving bedrock structures such as schistosity. Such ferricretes are typical of 

433 the Intermediate weathering profile (Fig. 12d).

434 Lower-slope alluvial sedimentary facies are also common, especially in the 

435 downslope parts of glacis, even though ferruginization contributed to alter sedimentary 

436 structures in glacis alluviums such as parallel and oblique stratifications and cross beds. The 

437 occurrence of rounded quartz pebbles in the most distal parts of glacis near river drains 

438 indicates that glacis pass downslope to alluvial terraces (the “glacis-terrasse” concept of 

439 Michel (1959, 1973) and Vogt (1959a)). Erosional unconformities and disconformities at the 

440 base or within the glacis sedimentary cover are consistent features of truncation and 

441 deposition by channelized to sheet flow down the glacis slopes. The most obvious (and best 

442 preserved) alluvial features are channels identifiable along the basal erosional surface of the 

443 glacis sedimentary layer (Fig. 12f). Beddings are also observed as separating successive 

444 debris flows or within sedimentary units. 

445 Sedimentary patterns vary spatially from coarse flows to braided channels at the 

446 scale of single large glacis relics. This indicates space-time interplay of debris flows and 

447 sheet floods comparable to those observed on Quaternary or functional alluvial fans and 

448 pediments of arid or semi-arid regions of the world (Bull, 1977; Oberlander, 1997; 

449 Dohrenwend and Parsons, 2009). Besides, functional glacis in the Soudanian and Sahelian 
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450 zones (Fig. 2) provide an actualistic perspective onto the sedimentary patterns and 

451 alluvial/colluvial processes having operated on the past West African glacis before 

452 duricrusting (Grandin and Joly, 2008). Water and sediment transport modes on glacis 

453 precluded the maintenance of ramified river networks but instead favored dense and 

454 unstable channel networks that were active only during rainy episodes. Rivers maintained 

455 their courses only at the downslope junctions of converging glacis, where alluvial 

456 sedimentary facies can be found (e.g., Figs. 8, 9 and 10).

457 Glacis conglomeratic ferricretes are usually underlain by a carapace and/or a 

458 mottled clays horizon (Fig. 15a), implying that duricrusting is confined to the conglomeratic 

459 layer. In other cases, thick conglomeratic covers are duricrusted only superficially, meaning 

460 that part of their thickness became a carapace. Glacis conglomeratic overburdens are not 

461 necessarily cemented (Fig. 12a), allowing to access original sedimentary textures that have 

462 not been obscured by iron segregation and cementation. The conglomerates and their 

463 matrixes consist almost exclusively of reworked Al-Fe duricrusts, carapace, mottled clays 

464 and saprolite, which are all rich in iron oxy-hydroxides. Large quantities of iron are therefore 

465 available in the conglomerates. Remobilization of that iron should favor cementation of the 

466 glacis sedimentary overburden by oxy-hydroxides to form ferricretes. Such cementation 

467 scenarios are attested to by the common examples of glacis ferricretes directly overlying 

468 fresh bedrock. This shows that ferricretes do not result from the sole relative accumulation 

469 of iron in a horizon of the weathering profile having successively gone through bedrock, 

470 saprolite, mottled clays and carapace stages. In other words, lateritic weathering is not a 

471 necessary condition for duricrusting (Grandin, 2008). 

472

473 5. 2. Non-conglomeratic ferricretes, relationships with the underlying regolith
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474 Some glacis ferricretes are composite, comprising an upper conglomeratic layer and 

475 a lower layer that results from iron aggradation/segregation and induration of the 

476 underlying carapace (Figs. 13 and 15b). In this case, duricrusting appears to have taken place 

477 beyond the base of the sedimentary overburden and the relative contributions of in-situ iron 

478 accumulation (from segregation within the carapace) and absolute iron input from the 

479 clastic sediments would be difficult to assess. Conglomeratic ferricretes are also seen to rest 

480 directly atop a saprolite or a saprock (i.e., basal core stone-bearing saprolite; e.g., Figs. 12b, 

481 12f and 15c) or even the bedrock. This indicates that pedimentation truncated a weathering 

482 profile by removing its mottled clays, carapace or part or the entire thickness of its saprolite. 

483 Those truncations are currently seen in the field and have been also imaged by geophysics 

484 (e.g., Beauvais et al., 2003). The formation of iron nodules and/or iron segregation may be 

485 observed immediately under the conglomerate in the truncated weathering profile, 

486 indicating that ferruginization was not restrained to the transported sedimentary layer and 

487 that iron originated from the conglomeratic cover. Whether the weathering horizons 

488 underlying a conglomeratic ferricrete developed onto a preexisting saprolite or from pristine 

489 weathering of bedrock exhumed by pedimentation would be difficult to assess in the field. 

490 Glacis ferricretes developed from fine-grained material (clay, silt, sand or a mix of 

491 those) have vermicular to nodular structures (Fig. 14) typically resulting from the maturation 

492 of mottled clays by iron concretion/segregation (Tardy, 1997; Fig. 15d). Those ferricretes are 

493 preferentially found on the distal parts of wide glacis and are ubiquitous in rolling pediplain 

494 contexts i.e., on lower-gradient slopes than the debris flows, which are mostly restricted to 

495 piedmont contexts. In conglomeratic ferricretes, matrixes are vermicular, as is the 

496 duricrusted material underlying conglomeratic layers of composite ferricretes (e.g., Fig. 13). 

497 If a comprehensive succession of weathering horizons exists under the vermiform/nodular 

498 ferricrete down to the bedrock, the glacis surface could be considered as erosional, and the 
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499 ferricrete as genetically linked to the underlying bedrock (e.g., Fig. 15d). But weathering of a 

500 composite section made of bedrock and/or saprolite topped by a fine-grained glacis 

501 overburden would end up producing a comparable profile (Fig. 15e). Fine-grained 

502 overburdens being mostly reworked saprolite, it would be difficult to locate the boundary 

503 between the in-situ and transported portions of the section, which would have been further 

504 obscured by weathering after pedimentation, unless a major break in lithology or 

505 granulometry be identified (Fig. 15e). The very large areas of functional glacis exposing 

506 alluviums composed of clays, silts and sands suggest analog fine-grained overburdens for 

507 past glacis systems. Weathering/duricrusting of such overburdens should end up forming a 

508 typical vermicular / nodular ferricrete that may top weathering horizons mimicking those 

509 produced on bedrock (e.g., Fig. 13). Most weathering profiles of West African ferricrete-

510 capped glacis weathering profiles may therefore be composed of fine-grained transported 

511 material instead of resulting from weathering of bedrock even though the ferricrete is not 

512 conglomeratic. 

513 There is commonly a spatial variability in the nature of the surface at the scale of a 

514 single glacis that comprises ferricrete-free surface areas and (erosional or detrital) ferricrete-

515 capped surface areas (Fig. 11). In other words, the detrital layer does not systematically 

516 cover an entire glacis and duricrusting does not necessarily affect an entire glacis surface. 

517 Ferricrete-free glacis surfaces may be erosional and expose exhumed regolith developed 

518 from bedrock (Fig. 15f). However, the possibility that they actually expose transported (fine-

519 grained) saprolite that escaped duricrusting is not precluded (Fig. 15g). In this case, only a 

520 detailed petro-geochemical investigation would allow distinguishing an in-situ saprolite 

521 from an overlying transported layer. 

522 Contrary to the inselbergs and residual massifs they contributed to exhume, West 

523 African glacis do not expose bedrock but regolith. This could suggest that weathering has 
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524 turned bedrock leveled by pedimentation into regolith. But observations along river cuts 

525 and in trenches indicate that glacis are essentially cut into a saprolite previously formed 

526 during an earlier weathering period (e.g., Figs. 11, 12b and 15). Observations of the steep 

527 stripped flanks of bauxite plateaus of dry regions show that the relief carved into the bauxitic 

528 surface by the glacis is entirely made of saprolite more than 40 m thick (e.g., Fig. 6a). With 

529 the exception of inselbergs, the lower flanks of residual massifs and low-lying outcrops 

530 exhumed after abandonment of the Low glacis, bedrock is mostly exposed in riverbeds. 

531 The ubiquity of glacis systems throughout West Africa is explained by the fact that they were 

532 easily cut through regolith instead of bedrock, as also shown for the pediments of Central 

533 Australia by Mabbutt (1966). Most of the regolith thickness available for stripping by 

534 pedimentation was likely produced by the Bauxitic (and Intermediate) periods(s) of intense 

535 lateritic weathering (Grimaud et al., 2015). The thin (< 20 m) weathering profiles genetically 

536 linked to each glacis would suggest that weathering phases following pedimentation periods 

537 produced a regolith layer available for stripping during the next pedimentation period (e.g., 

538 Millot, 1980). This hypothesis would apply to the lowermost parts of glacis cut into bedrock 

539 (e.g., cross-section, Fig. 15) and would be supported by the comparable heights of the 

540 weathering profile and the vertical separation between successive glacis.

541 Notwithstanding the spatial variability in the nature of individual glacis surfaces and 

542 associated regolith, main type-characteristics of ferricretes and weathering patterns of each 

543 glacis system may be synthetized as follows (Grandin, 2008). The High glacis ferricrete can 

544 reach 10 m in thickness in piedmont contexts and the underlying weathering profile rarely 

545 exceeds 20 m. Middle glacis ferricretes do not exceed 5 m and are generally limited to 1 to 2 

546 m. Their underlying weathering profile is reduced to a few meters and is not as kaolinite rich 

547 as that of the High glacis. Ferricretes of functional Middle glacis often show evidence for 

548 dissolution and end up acquiring vacuolar to cavernous textures (Leprun, 1979).  The Low 
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549 glacis bear a thin (< 1 m) ferricrete or, more generally, at best a carapace. Carbonate 

550 concretions may develop under its erosional surface or in its sedimentary overburden and 

551 neo-formed clays are mostly smectites. 

552

553 5. 3. Recently remobilized regolith and alluviums

554 Low glacis are commonly overlain by unconsolidated alluvial and aeolian sediments 

555 (Fig. 15h), which are actively reworked by pedimentation during each rainy season 

556 (especially in the Soudanian and Sahelian zones; Fig. 2). It is also the case for large functional 

557 Middle glacis. Active alluvial fans also occupy upslope sections of functional glacis in 

558 piedmont contexts, at least in the dry zones (e.g., Fig. 5). Streams that have incised the glacis 

559 sedimentary overburden generally flow atop the ferricrete or the carapace and expose 

560 sections that commonly exceed 2 m in thickness. Overburdens occupy huge areas and 

561 develop soils that are exploited for agriculture. But those soils almost never derive from 

562 weathering profiles connected to the underlying bedrock because they are transported and 

563 almost always overly conglomeratic ferricretes (Fig. 15h).   

564 Post-Low glacis (i.e., Quaternary) river alluviums are preserved along the drainage 

565 network and often correlate with the unconsolidated glacis cover (Fig. 11; Fig. 15, upper 

566 cross-section). The oldest and most remarkable alluvial terrace of regional extent has been 

567 reported and correlated from the main rivers of Northern Guinea, Senegal, Southwestern 

568 Mali, Ivory Coast and Burkina Faso (Vogt, 1959a, 1959b; Michel, 1969, 1973; Eschenbrenner 

569 and Grandin, 1970; Grandin, 1976). This terrace is floored by a cemented conglomerate (the 

570 “graviers sous-berge”) that occupies the riverbeds and has been incised of less than a few 

571 meters (Fig. 15). Aggradation/incision cycles younger than the conglomerate have been 

572 recognized but no systematic regional patterns have been deciphered yet (Thomas and 
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573 Thorpe, 1985; Hall et al., 1985; Thomas et al., 1985; Teeuw et al., 1991; Ouangrawa et al., 

574 2000).

575

576 6. Extent and variability of the glacis record in West Africa

577 6. 1. Geomorphic provinces and areal extent of glacis

578 The compilation of a regional landform-regolith map (Fig. 17) shows that the relics of 

579 the three glacis systems occupy an overwhelming areal proportion of the landsurface, with 

580 the exception of a few regions of specific geological substrate, topography or active 

581 sedimentation. Laterally continuous bauxite-capped landforms of the African Surface form 

582 mappable units restrained to some highly-elevated (> 500 m) areas of Pre-Cenozoic 

583 sandstones and/or high concentration of dolerite sills (Fig. 17). Paleolandscapes capped by 

584 the Intermediate ferricrete are well preserved on Cenozoic sedimentary basins and their 

585 margins, as well as on Pre-Cenozoic tabular sandstones flanked by rock escarpments (Fig. 

586 17). 

587 The Archean and Paleoproterozoic granite-greenstone terrains, their adjoining 

588 mobile belts and the remaining tabular sediments of the sub-Saharan area are characterized 

589 by glacis composite landscapes (Fig. 17) such as those illustrated on Figures 5- 8, 10 and 15. 

590 In those landscapes, the High glacis system always occurs as relict plateaus or hills. Distant 

591 relict massifs of the Bauxitic and/or Intermediate landscape and inselbergs remain (e.g., Fig. 

592 6a). A large part of the composite glacis landscape geomorphic province is a Middle-Low 

593 glacis rolling pediplain locally preserving High glacis remnants as interfluves (e.g., Figs. 6b). 

594 The relative extent of the Low glacis system tends to grow northward going across the 

595 Soudanian zone to become maximal in the Sahelian zone where a Low glacis province is 

596 defined (Figs. 1 and 17b) as a vast and very flat pediplain with tens of kilometers-wide glacis 

597 that are functional. The efficiency of pedimentation is favored by both the Sahelian climate 
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598 and the limited (< 40 m) local relief left since the abandonment of the bauxitic African 

599 surface along the considered portion of the Niger River Valley (Grimaud et al., 2014; Chardon 

600 et al., 2016).

601 In the Saharan zone (Figs. 1 and 17b), low lands consist of active regs, dune fields 

602 (ergs) and fluvio-aeolian sandplains that mostly blanket the subdued Intermediate or Low 

603 glacis landscapes, whilst crystalline substrate generally crops out. South of the Sahelian 

604 zone, bedrock is exposed mostly on the steep dissected slopes of regional topographic 

605 massifs upon basement substrate (Figs. 1 and 17). 

606 The bauxitic African Surface was an etchplain i.e., a low-relief continental scale 

607 landsurface underlain by a thick regolith resulting from a protracted period of intense 

608 weathering and correlatively subdued mechanical erosion. As a result of stepwise dissection 

609 of that landsurface by pedimentation, most of its regolith mantle has been removed so that 

610 sub Saharan West Africa has become a stripped etchplain, whose remnants are preserved 

611 only in a few patches of relict bauxitic landscapes (Fig. 17) and individual occurrences 

612 scattered over the sub region (Beauvais and Chardon, 2013; Chardon et al., 2016). The glacis 

613 composite landscape province (Fig. 17) constitutes the stripped African etchplain. 

614

615 6. 2. Climatic zonation of paleo-glacis systems and glacis degradation processes

616 The preservation of each glacis system depends on (i) the efficiency of planation (i.e., 

617 the capacity of pedimentation to form wide glacis), (ii) the intensity of duricrusting and (iii) 

618 the magnitude of glacis dismantling (Grandin, 1976). Those three factors are chiefly 

619 dependent on latitude (Fig. 18). Their spatial variations from one glacis system to the next 

620 could suggest an evolving latitudinal climatic zonation of West Africa over the last ca. 25 Ma 

621 notwithstanding the duration of each glacis cycle (Fig. 18). 
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622 Under dry climate, glacis tend to be preserved in such a way that duricrusting 

623 molded their pristine shape and pedimentation-driven landscape dissection leads to 

624 plateaus with sharp edges. On-going pedimentation can eventually turn the plateau into a 

625 residual hill (Fig. 19a) flanked by concave glacis slopes. Weathering is subdued during this 

626 process and mechanical dismantling of the ferricrete takes place while pedimentation 

627 disperses its erosional products downslope. Such a morphogenesis typically produces 

628 rolling pediplains (Fig. 6b). In zones of intense pedimentation, residual hills are ultimately 

629 erased to produce very low amplitude pediplains made of wide glacis. Under humid climates, 

630 and typically in the forest, weathering assists degradation of the plateau-flanking slopes that 

631 evolve by a combination of compaction of the residuum, creep and colluvial processes to 

632 acquire convex profiles, while the ferricrete is being dissolved and dismantled and collapses 

633 onto its underlying weathering profile that is reactivated (Fig. 19b). The combination of 

634 those processes produces a common type of stone line i.e., a layer of angular or sub-

635 rounded quartz gravels and pebbles, which result from the dislocation of quartz veins by 

636 compaction. The resulting residual hills are “demi-oranges” (Thomas, 1994) that form 

637 multiconvex plains typical of today’s shields’ tropical rain forest (e.g., Rohdenburg, 1982; 

638 Lecomte, 1988; Bitom et al., 2004). 

639 Recent morphogenesis (i.e., having taken place after duricrusting of the Low glacis 

640 around 3 Ma ago) tends to degrade relict High and Middle glacis. Semi-arid climates of the 

641 Sahelian and southern Saharan zones favor the development of very flat pediplains, whereas 

642 the sub-equatorial humid climate of the Forest zone drives degradation of glacis to form 

643 multi-convex plains. A latitudinal gradient must exist between these two modes of modern 

644 morphogenesis across the Soudanian and especially the Guinean zones (Grandin, 1976; Figs. 

645 1 and 17). A somewhat comparable latitudinal morphoclimatic gradient applied to each 

646 paleo-glacis system, although with potentially contrasted climatic zone widths (Fig. 18). 
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647 Such a gradient explains systematic limited planation and duricrusting in the South (Fig. 18), 

648 further enabling past and recent “humid” morphogenesis in today’s Forest zone. 

649 Forest, savanna and semi-arid tropical environments have long been considered as 

650 contrasted morphoclimatic contexts (e.g., Büdel, 1982). The latitudinal climatic zonation of 

651 both past pediment systems and today’s landform evolution processes over West Africa 

652 argues for a continuous spatial pattern of pedimentation - considered as the combination of 

653 all slope shaping processes – between an arid end-member and a humid Equatorial end-

654 member across the inter-tropical zone (e.g., Holmes, 1955; Millot, 1980, 1983; Rohdenburg, 

655 1969, 1982).

656

657 6. 3. Morphoclimatic specificity of West Africa, comparison with neighboring regions

658 The remarkable preservation of the West African glacis systems is related to the sub 

659 region having remained for more than 100 Ma in the zone of optimal weathering conditions 

660 for the production of Fe and Al crusts (Tardy and Roquin, 1992, 1998; Fig. 2). Such a 

661 latitudinal stability is due to the pinning down of the African plate’s rotation pole near the 

662 Coast of Guinea (Tardy and Roquin, 1998). Optimal duricrusting worked in two ways for the 

663 preservation of glacis. First, weathering/duricrusting produced a major original stock of iron 

664 during the bauxitic weathering period i.e., from the Late Cretaceous to the mid Eocene (with 

665 a peak between 55 and 45 Ma). This original iron stock was then recycled in the Intermediate 

666 landscape and by each glacis system (Grandin, 1976). Second, optimal conditions favored 

667 duricrusting of Al-Fe crust dispersed on glacis to form protective duricrusts that favored 

668 landscape dissection and paleo-glacis preservation. 

669 Regions located further to the East and encompassing the same current latitudinal 

670 band as sub Saharan West Africa have undergone a greater northward shift across the inter 

671 tropical zone (and beyond) since the Late Cretaceous that likely resulted in a contrasted 
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672 morphoclimatic record. Nevertheless, those regions preserve a record of stepped pediment 

673 systems that may correlate with those of West Africa (e.g., Fölster, 1964). A “High” glacis 

674 system has been reported regionally under what appears as the remnants of the 

675 Intermediate ferricrete-capped paleolandscape (De Swardt, 1964; McFarlane, 1976, and 

676 references therein) but no systematic correlation scheme has emerged yet. Further South in 

677 Central Africa, pediment systems occupy large regions around and within the Congo Basin 

678 (Ruhe , 1956; Guillocheau et al., 2015). The latter authors proposed a tentative correlation 

679 between their 9-planation surfaces model (among which the 5 latest are pediment systems) 

680 and the West African morphoclimatic sequence as synthetized by Beauvais and Chardon 

681 (2013). Degradation of glacis systems in Equatorial Africa under perhumid climates would be 

682 a challenge for regional morphoclimatic correlation across the intertropical belt.

683

684 7. Implications for mineral exploration

685 The great extent and spatial variability of the West African glacis landform-regolith 

686 associations (Fig. 17) prompt caution when targeting suitable spots for surface sampling that 

687 would reflect bedrock geochemistry as accurately as possible. Glacis regolith profiles are 

688 indeed composite and polycyclic, resulting from uneven weathering and duricrusting of 

689 slopes cut into a pre-existing regolith and/or the bedrock and overlain by discontinuous 

690 detrital sedimentary layers. 

691

692 7. 1.  Accessibility to the geological substrate 

693 Glacis ferricretes all represent an obstacle to access bedrock geochemistry. There 

694 are three main reasons for this. First, they often represent sedimentary covers that are 

695 allochtonous (Figs. 15a-15c, 15e) and do not derive from their underlying regolith by 

696 weathering. Second, even if formed exclusively in-situ, and as the most evolved product of 
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697 weathering, ferricretes would have lost most of the geochemical characteristics of the 

698 bedrock (e.g., Tardy et al., 1988; Boeglin and Mazaltarim, 1989; Roquin et al., 1990). Third, 

699 solute elemental transfers through the regolith and sedimentary cover down the glacis slope 

700 can contribute to absolute elemental accumulation in the ferricrete, especially in iron 

701 (Maignien, 1958, 1966; Ollier and Galloway, 1990, Beauvais, 1999; Brown et al., 2003). 

702 Therefore, vertical geochemical mass balances through ferricrete-capped glacis weathering 

703 profiles are often misleading indicators of weathering-controlled dispersion of bedrock 

704 elemental concentrations. Ferricrete-free glacis surfaces pose another sizable exploration 

705 issue. Only erosional portions of such surfaces would provide direct access to a saprolite 

706 preserved on its parental bedrock (Fig. 15f), providing they are identified as such and not 

707 mistaken for transported saprolite (Fig. 15g). Loose sedimentary glacis overburdens (Fig. 

708 15h) mask their substrate. They are commonly thick (> 2m), overly a detrital ferricrete and 

709 may be mistaken for soils. It is why even sampling at 50 cm depth - as often undertaken in 

710 such material - is not appropriate to attain the saprolite preserved on its parental bedrock. 

711 Only sampling of the bedrock or the in-situ preserved saprolite is reliable for 

712 characterizing the geological substrate’s geochemistry (propitious locations would be edges 

713 of glacis plateaus that expose weathering horizons under the ferricrete).  In all other 

714 situations, a surface geochemical anomaly on a glacis can have several meanings. In the best 

715 case, the surface is erosional and ferricrete-free, the anomaly signing an underlying bedrock 

716 concentration (e.g., Au, Pt, Zn, Cu). The present work however suggests that such 

717 configuration is rarely demonstrated. In all other - most common - cases, the anomaly would 

718 be ambiguous. It may have been “transported” with the sedimentary cover on the glacis by 

719 pedimentation (e.g., Sanfo et al., 1992) or may be the expression of a potentially complex 

720 and very wide dispersion halo having been elongated downslope. Such a halo could also at 

721 least partly result from geochemical dispersion of a bedrock anomaly through a transported 
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722 overburden by biological, gazeous or capillarity processes (Anand et al., 2014). Conversely, 

723 the absence of a surface anomaly would not preclude the occurrence of an anomaly in the 

724 underlying bedrock.  In any case, landform-regolith mapping and establishment of a glacis 

725 landscape chronology are required around the sampling sites in order to (i) constrain the 

726 geomorphological context of the anomaly for locating its potential distant source or (ii) 

727 identify glacis covers that mask potential bedrock resource(s) (Bamba, 2009).

728

729 7. 2. Geomorphological exploration guides

730 Gold anomalies in detrital glacis ferricretes overlying barren bedrock are common.  

731 Studies combining detailed landform-regolith mapping, trench studies, geochemistry and 

732 gold particles characterization allowed documenting km-scale downslope displacement of 

733 gold particles from their bedrock sources (Sanfo et al., 1992, 1993; Parisot et al., 1995; 

734 Ouangrawa et al., 1996; Bamba et al., 2002). For such investigations cannot be undertaken 

735 systematically, the geomorphological approach may prove rewarding in constraining the 

736 potential bedrock source area of a transported anomaly based on the assumption that it has 

737 been displaced down the slopes of a considered glacis.

738 In rolling pediplain contexts, tracing the potential upslope source of a transported 

739 anomaly should be straightforward, providing the glacis landscape has not been 

740 significantly dissected and preserved its original interfluve (e.g., Figs. 6b and 6c-6e). In such a 

741 case, the source of the transported particles cannot be located beyond the preserved glacis 

742 interfluve. In dissected rolling pediplains and particularly piedmont contexts, upslope 

743 portions of glacis are rarely preserved (e.g., Figs. 6a; 7; 10). Paleolandscape reconstruction at 

744 the time the sampled glacis was functional is necessary to evaluate the potential path 

745 followed by the glacis sedimentary cover during pedimentation.  Instead of a cross-sectional 

746 approach, a three-dimensional landscape reconstruction (e.g., Fig. 7) is suitable to take into 
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747 account the entire upslope drainage area that could have supplied mineralized debris to the 

748 anomaly on a glacis. For instance, an anomaly documented in the lowermost portion of a 

749 relictual glacis i.e., close to or along a river active at the time of pedimentation, can be 

750 sourced from the erosion of all the glacis that were connected downslope to that drain 

751 upstream. For functional glacis, delimitation of the upslope area that contributed to a 

752 sampling site would be straightforward because this area is constrained by the present-day 

753 topography. 

754 Maximal transportation distance on a glacis corresponds to the upslope distance 

755 between the considered sampling site and the drainage divide at the end of the activity of 

756 the glacis (i.e., before its abandonment and dissection). Reconstruction of the High glacis 

757 landscape suggests that paleo-glacis widths have exceeded 20 km (Grimaud et al., 2015; Fig. 

758 10), prompting to undertake landform-regolith mapping and paleolandscape reconstruction 

759 on a larger scale than that of the immediate surrounding of the anomaly-bearing glacis relic. 

760 South of the Sahelian zone (Fig. 2), dissection of the High glacis pediplain has generally 

761 created narrower (1-10 km) Middle and Low glacis flanking subsequent valleys that are often 

762 perpendicular to the earlier main river drain delimitating High glacis (Fig. 7). Potential 

763 maximal transportation distances on those pediments are therefore reduced compared to 

764 those of the High glacis and the transport direction at a high angle to that of the preexisting 

765 glacis. The same reasoning as that exposed above applies to the tracking of the source of 

766 transported regolith upslope on the Middle and Low glacis, bearing in mind that the cover of 

767 these glacis can carry elements that may have previously been transported on an earlier 

768 glacis. Potential divide migration from one glacis landscape stage to the next should also be 

769 taken into account (e.g., Fig. 8). A given bedrock mineral concentration could indeed have 

770 been subjected to pedimentation by successive glacis of contrasting slope directions and 

771 therefore may not have always belonged to the same drainage sub-basin (Fig. 20). 
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772 Stream sediment surveys going up river would still be valid in glacis environments, 

773 providing that once propitious channel sections are selected, the upslope source tracing 

774 protocol described above for glacis environment is applied. The geomorphological 

775 exploration guides considered here do not only apply to resources transported as particles 

776 such as gold, platinum or diamond, but also to ore deposits such as copper or manganese, 

777 which can accumulate by downslope solute transfers through glacis cover (e.g., Sillitoe, 

778 2005; Riquelme et al., 2018). 

779

780 7. 3. Targeting concealed resource

781 Glacis being mostly screens over the bedrock and given their extension, the biggest 

782 West African exploration challenge is to detect the resources they potentially mask. A way to 

783 contribute to targeting such resources is to identify glacis units potentially masking 

784 mineralized bedrock lithologies, structures or dikes that were first identified and mapped 

785 independently from scattered outcrops or boreholes. By combining the geological map and 

786 a landform-regolith map, one obtains by a GIS overlay operation the intersection between 

787 polygons representing glacis ferricrete units, on the one hand, and polylines or polygones 

788 representing mineralized faults, dykes or rock units, on the other hand. As an illustration of 

789 such a GIS request, Figure 21 shows gold, copper and manganese indices over Southwestern 

790 Burkina Faso as well as the High glacis ferricrete relics overlying (i.e., intersecting) bedrock 

791 lithological units bearing those indices. This representation allows (i) targeting High glacis 

792 ferricrete relics potentially masking deposits and (ii) adapting a sampling or drilling strategy 

793 accordingly. Those targeted glacis ferricrete units should then be studied in details and 

794 eventually be drilled across to attain the projected trace of the mineralized structure under 

795 the glacis cover. Such a protocol would typically reveal lateral extensions of ore bodies and 
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796 may be applied from a regional (10-100 km) (Fig. 21) to a prospect scale (0.1-1 km) if 

797 landform-regolith maps of appropriate resolution are produced.

798

799 7. 4. Other geomorphic exploration pitfalls and overlooked resources

800 The pervasive occurrence and preservation of convexo-concave rolling pediplains 

801 south of the Sahelian zone and the degradation of glacis into concave residual hills under 

802 equatorial environments explain why glacis may have been overlooked, especially by 

803 workers who did not investigate landforms outside the Forest zone, contrary to Grandin 

804 (1976), who worked across an entire regional latitudinal corridor. Exploration geologists 

805 have indeed implicitly interpreted residual hills as “demi-oranges” (e.g., Freyssinet, 1993; 

806 Freyssinet et al., 2005) although they may result from pedimentation in the case of rolling 

807 pediplains or from the degradation of older glacis into convex hills. A consequence of such 

808 restrictive interpretation is that ferricretes / lateritic residua are considered as formed and 

809 preserved essentially in-situ, whereas they could host material transported prior to 

810 weathering/duricrusting. A residual hill can result from the dismantling of a wide glacis on 

811 which material has been transported over several kilometers if not tens of kilometers i.e., on 

812 a much larger scale than the size of the residual hill. However, detailed exploration 

813 geochemical investigations or models are restricted to the slope of a single residual hill (e.g., 

814 Zeegers and Lecomte, 1992; Freyssinet, 1993; Butt, 2016). In glacis landscapes such as those 

815 of West Africa, landform-regolith mapping and the establishment of a landscape chronology 

816 should therefore be undertaken on a larger scale (1-20 km) than that of the considered 

817 anomaly-bearing relief (0,1-1 km). 

818 Given the alluvial nature of glacis overburdens, placers must be common on 

819 pediments. Detailed work by Thomas and Thorp (1985) or Teuuw (1987, 2002) suggests that 

820 alluvial diamonds are hosted by paleo-glacis systems’ residual hills. Recent unconsolidated 
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821 glacis overburden is commonly mined for gold placers. Those artisanal mines are valuable 

822 proxies of upslope bedrock mineralizations by using the geomorphological guides provided 

823 above. Downslope parts of Low glacis and alluvial terraces host gold and diamond placers 

824 (e.g., Hall et al., 1985; Teeuw et al., 1991; Ouangrawa et al., 1996). But older glacis ferricretes 

825 should also bear numerous unsuspected alluvial placers. Although weathering of the High 

826 glacis has contributed locally to elluvial gold concentrations, it is mostly the thick and 

827 mature weathering profiles of the Bauxitic and Intermediate paleolandsurfaces that have a 

828 high - and still largely overlooked - potential of hosting supergene ore concentrations others 

829 that those that are known and actively mined for (Al, Mn and Au).

830

831 8. Pediments, pediplains and the topographic evolution of shields

832 8. 1. Implications for pedimentation in lateritic landscapes

833 Thanks to the protective effect of the ferricretes and limited regional denudation, 

834 there is a significant spatial and temporal variability in the glacis record from the scale of a 

835 single pediment to that of the African sub region. As composite landform-regolith 

836 associations, pediments erode, collect, transport, sort, transform and store regolith through 

837 space and time. An overwhelming part the of the West African pediments are cut exclusively 

838 in a thick (>20 m) preexisting regolith mantle and a single pediment may be both cut through 

839 preexisting regolith upslope and through bedrock downslope. The very common occurrence 

840 of rolling pediplains also shows that pediments encompass the entire regional relief and 

841 therefore cap interfluves. The West African case study therefore suggests that lateritic 

842 pediments may not be appropriately distinguished by morphogenic classifications based on 

843 (i) the shape or position of pediments in the lansdcape (Cook and Mason, 1973), (ii) the 

844 relations between regolith and the bedrock as criteria of the pedimentation process 

845 (Twidale, 1983), (iii) the nature of the material being cut (Dresch, 1957; Tricart, 1972; 
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846 Oberlander, 1989) or (iv) the thickness of the transported overburden (Applegarth, 2004) (see 

847 Dohrenwend and Parsons, 2009 for review). Likewise, a comprehensive definition of the 

848 physical and chemical processes involved in pedimentation would be therefore, to our view, 

849 vain. Pre-Neogene weathering was instrumental at preparing the thick regolith mantle made 

850 available to stepwise pedimentation. But evaluation of the role of weathering during the 

851 formation of glacis would not be straightforward given the imprint of the post 

852 pedimentation weathering and duricrusting of the pediments. At best, an increasing 

853 activation / influence of the pedogenetic processes is expected in pedimentation across the 

854 latitudinal gradient towards the Equator (e.g., Millot, 1980, 1983; Rohdenburg, 1969, 1982). 

855

856 8. 2. Relations to epeirogeny

857 Pediment systems carved the African surface while it was being submitted to long 

858 wavelength (103 km) deformation that contributed to the growth of the basin-and-swell 

859 topography of the continent after 40 Ma (Burke and Gunnell, 2008; Chardon et al., 2016). The 

860 most prominent element of that physiography in West Africa is the Hoggar swell; but more 

861 subtle uplift is also suggested along the marginal upward that constituted the eastern 

862 extension of the Guinean rise up to the Jos Plateau (Grimaud et al., 2014, 2018; Chardon et 

863 al., 2016; Fig. 2). The stepping patterns of pediment systems may not be used as a proxy of 

864 that deformation because glacis have a roughly spatially consistent and reduced (< 80 m) 

865 elevation range above local base level, which itself varies with river networks from sea level 

866 to above 1300 m for the highest regional topographic massifs excluding the Hoggar 

867 (Grimaud et al., 2014; Fig. 2). In details, the stepping pattern of successive glacis has been 

868 compartmentalized amongst sub drainage areas due to spatially variable incision of river 

869 segments bounded by stationary knickzones, which were already part of the West African 

870 landscape before settlement of the High glacis pediplain for most of them (Grimaud et al., 
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871 2014). Furthermore, glacis systems did not level out regional rock escarpments, which were 

872 already imprinted in the Paleogene Bauxitic and (mostly) Intermediate landscapes and 

873 remained almost stationary since then (De Swardt, 1964; Grandin and Delvigne, 1969; Burke 

874 and Gunnell, 2008; Grandin and Joly, 2008; Grimaud et al., 2014, 2015; Fig. 17). Glacis 

875 systems therefore adapted their slopes to differentiated and uneven river levels and 

876 contributed in this way to distributed landscape dissection and dismantling down to the 

877 scale of lowermost-order drains a few kilometers long (e.g., Figs. 8, 9, 10). In other words, 

878 outside the provinces of relict African and Intermediate landscapes (Fig. 17), virtually no 20 x 

879 20 km area of the West African topography escaped settlement of new glacis during the main 

880 pedimentation periods, with the exception of Low glacis pedimentation at lowermost 

881 latitudes (Fig. 18).

882 Thorough documentation of stepwise Cenozoic dissection of the West African sub 

883 region therefore precludes the stepping of successively younger pediplains bounded 

884 upstream by escarpments, which would produce continental-scale staircase patterns of 

885 pediplains from the crest of swells down to sea level or the base level of intracratonic basins. 

886 Such a model is suggested by Burke and Gunnell (2008, their Figure 16A) on the crest and 

887 slopes of the Guinean Rise (Fig. 2). Staircase pediplains models derive from that of King 

888 (1948, 1967) in which continent-wide and flat pediplains graded to sea level form by 

889 escarpment/knickzone retreat far inland. For King, a pediplain is abandoned as a 

890 consequence of uplift by the formation of a subsequent pediplain below a new retreating 

891 escarpment, which will ultimately bound and protect the relic of the early pediplain in the 

892 continental interior. King’s paradigm is also explicit in the procedure that would allow 

893 retrieving long-term continental uplift histories from the inversion of current river 

894 longitudinal profiles (Paul et al., 2014). This procedure is indeed based on a quantitative 

895 model that explicitly requires inlandward retreat of river knickzones in response to uplift and 
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896 is therefore invalidated by the well-documented West African case study (Grimaud et al., 

897 2014). A staircase model of pediplains has also been proposed by Guillocheau et al. (2015, 

898 2017) for the Congo basin and its surrounding swells and by Dauteuil et al. (2015) for 

899 Namibia. The definition of a pediment system by these authors as a flat pediplain connected 

900 upslope to pediments (pediment valleys) and higher up to rivers incising the older 

901 upstanding landsurface across escarpments (e.g., Guillocheau et al., 2015) therefore 

902 contrasts with that implied by the West African case study. The difference between the two 

903 models is not only conceptual. Regional correlations of West African glacis systems are 

904 based on well-preserved regolith-landform associations and geomorphic criteria, whereas 

905 those of Central and Southwestern Africa have to rely mostly on topographic correlations 

906 and escarpment identification in contexts of advanced degradation of the regolith-landform 

907 associations or in absence of type-regolith-landform associations in arid Southwestern 

908 Africa. The topographic approach would intrinsically favor a Kingian model and vice-versa.

909 The West African case study indicates that pediments achieved local planation and 

910 formed from the development of the drainage network instead of by dominant range retreat. 

911 The difficulty to relate the regional stepping patterns of pediment systems to an inferred 

912 pattern of uplift over West Africa suggests that shield landscape dissection schemes would 

913 primarily be driven by long-term climatic oscillations driving pedimentation / weathering 

914 periods along low-abrasion capacity river networks (e.g., Tricart 1959; Beauvais and Chardon, 

915 2013).

916

917 8. 3. Pediment landscape evolution processes and the sediment routing system

918 Surface process models suggest that non-orogenic continental surfaces such as that 

919 of Africa develop non-steady state (transient) landscapes with a Davisian behavior of long-

920 term decreasing slope angle (Davis, 1899; Bishop, 2007). African landscapes saw their relief 
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921 increasing throughout the Cenozoic and should then be considered as transient over the 

922 very long term. But the punctuated pedimentation scheme they developed does not match 

923 that of the Davisian cycle of erosion. The main specificity of the West African landscape 

924 dissection patterns by pedimentation is a progressively reduced area submitted to abrasion 

925 through time, leaving increasingly wider relict surfaces of limited or no denudation as a 

926 result of landscape dissection (Fig. 10). The stepping patterns of pediment systems have no 

927 clear dependency on sea level variations and/or epeirogeny and contribute to limited (3-9 

928 m/My) and distributed denudation. In contexts of enhanced uplift and correlatively higher 

929 denudation such as the upper slope of the Hoggar swell (surface uplift and denudation > 30 

930 m/My since ca. 35 Ma; Chardon et al., 2016; Grimaud et al., 2018), pediplains could not form 

931 or be preserved on geological time scales.

932 Once duricrusted and/or abandoned as a result of dissection, pediments preserve 

933 the underlying regolith from erosion. Regional-scale pediment systems (pediplains) form 

934 and maintain over geological timescales in environments submitted to low river incision or 

935 erosion rates (<10 m/Ma) and limited epeirogenic uplift. Under that condition, the 

936 maintenance of very slowly evolving pediment landscapes poses the chicken-and-egg issue 

937 of knowing whether the low erosional efficiency of pedimentation dictates the limited 

938 transport and incision capacity of the river network or vice-versa. In any case, pediments are 

939 buffer landsurfaces between the regolith mantles they contribute to exhume and the rivers 

940 they feed with reworked regolith (Grimaud et al., 2015). Pedimentation is transport-limited 

941 given the large amount of (old) regolith still being stored in West African landscapes, which 

942 generates subdued and nearly constant erosion fluxes over the long-term (< 0.01 

943 km3/km2/My). Above a 10 m/My incision/erosion rate threshold, rupture of the 

944 pedimentation regime is expected, paleo-landforms being erased. It is only above several 

945 tens of meters per million years of long-term erosion that denudation would potentially 
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946 become measurable by low-temperature thermochronology (Beauvais et al., 2016). The 

947 regional preservation of pediments / pediplains indicative of very slow denudation should 

948 then prevent retrieval of denudation scenarios from low-temperature thermochronology for 

949 periods encompassing pediments timespan of formation and over periods following their 

950 abandonment. Dated relict pediments should be used instead as strict constraints on the 

951 late temperature-time exhumation path provided by low-temperature thermochronology.

952

953 8. Conclusions

954 Throughout its surface, Sub Saharan West Africa preserves three Neogene (24-3 Ma) 

955 lateritic pediment systems as well as functional pediments along the southern fringe of the 

956 Sahara. A review of the landform-regolith associations, landscape chronologies, ages and 

957 stepping patterns of the pediments as well as their spatial distribution and active 

958 degradation modes bears implications for the long-term landscape evolution processes of 

959 shields and mineral exploration strategies in the tropical belt. Those implications may be 

960 summarized as follows.

961 1 – Pediments occupy an overwhelming surface of the sub region and contributed to 

962 removal of a thick lateritic regolith mantle resulting from intense pre-Neogene weathering. 

963 Each pediment system formed by the process of relief dissection and incorporated 

964 landforms inherited from earlier landscapes. Depending on the nature of the geological 

965 substrate, pediment paleolandscape stages comprised regions of multiconcave pediplains 

966 and regions of multi-convexo-concave pediplains (called rolling pediplains). 

967 2 - A great spatial diversity exists in the pediments regolith associations owing to the nature 

968 of the substrate pediments have leveled, the origin, transport dynamics and preservation of 

969 the materials that have been transiting on their surface and the intensity of weathering and 

970 duricrusting their have undergone.  However, detrital ferricretes and loose clastic sediments 
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971 constitute by far the most common type of pediment surface. Fe-duricrusting and ferricretes 

972 constitute a necessary condition for glacis dissection and preservation of relictual 

973 landscapes. 

974 3 – Lateritic pediment surfaces are not suitable for geochemical sampling aiming at 

975 obtaining reliable information about the composition of the bedrock or an elemental 

976 concentration anomaly. The two main reasons for this are (i) the transported nature of the 

977 material exposed at the surface and (ii) the lost of the geochemical characteristics of the 

978 bedrock through the weathering processes. 

979 4 - Landform-regolith mapping beyond the scale of modern interfluves followed by 

980 reconstitution of past pediment landscape stages provides geomorphological exploration 

981 guides for interpreting surface geochemical anomalies on pediments and tracing their 

982 potential sources in case they have been “transported” on pediments. Mapping of landform-

983 regolith associations may also be used to target pediments masking suspected 

984 mineralizations. 

985 5 - Past and present latitudinal climatic zonation of pedimentation and weathering at the 

986 scale of the sub region suggests a gradient of pedimentation processes from an arid to a 

987 perhumid end-member across the intertropical zone. They also explain why pediments may 

988 have been overlooked in humid equatorial environments, with important implications for 

989 mineral exploration. 

990 6 – Successive pediment systems have affected progressively reduced area over time, 

991 preserving increasingly wider relictual landsurfaces. Climatic oscillations dictated 

992 pedimentation-driven, local planation that adapted slopes to very large, spatially 

993 differentiated, knickzone bearing river networks. The spatially consistent and limited (< 80 

994 m) stepping pattern of pediments is independent from elevation or distance to base level. 

995 Hence, pediments and pediplains may not be used as gauges of uplift except near coastlines. 
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996 Pediments form and are preserved regionally over geological timescales only for < 10 m/My 

997 erosion regimes and are therefore indicators of very slow shield denudation. 

998 7 – Lateritic pediments have been overlooked in the tropical belt because lateritic 

999 duricrusted landscapes refer exclusively to in-situ weathering of bedrock for most geologists 

1000 and geochemists. Further investigations will hopefully help deciphering pediment landform-

1001 regolith associations for a better access to the geological substrate of tropical shields and its 

1002 resources that may still be underestimated. Investigating pediments as markers of past 

1003 morphogenesis is a powerful tool for understanding surface dynamics of shields and their 

1004 sediment routing system, which contribute to a significant proportion of the Earth 

1005 sedimentary budget and global biogeochemical cycles.

1006
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1380 Figure captions

1381

1382 Figure 1. Definition of the main elements of a lateritic weathering profile.

1383

1384 Figure 2. Topography, drainage, climatic zonation and political borders of Sub-Saharan 

1385 West Africa. Climatic zones are adapted from Aubréville (1949). Savannas typically 

1386 encompass the Guinean and Soudanian zones. For convenience, the Saharan, Sahelian and 

1387 Soudanian zones are grouped in the present work as “dry regions”. Al: Algeria; Be: Benin; BF: 

1388 Burkina Faso; C: Cameroon; G: Gambia; GB: Guinea Bissau; Gu: Guinea; IC: Ivory Coast; L: 

1389 Liberia; Ma: Mali; Mau: Mauritania; Mo: Morocco; Na: Nigeria; Ni: Niger; Se: Senegal; SL: Sierra 

1390 Leone; T: Togo.

1391

1392 Figure 3. Gold dispersion model through the regolith for ferricrete-capped West African 

1393 landscapes (adapted from Freyssinet et al., 2005). The model is mostly based on the 

1394 examples of the Syama mine (e.g., Fig. 2) and Banankoro prospect (Mali). 

1395

1396 Figure 4. Synthetic representation (a) and Ar-Ar chronology (b) of the West African landform-

1397 regolith sequence (modified after Beauvais and Chardon, 2013 and Grimaud et al., 2015). Ar-

1398 Ar dates (solid circles) are from Beauvais et al. (2008) for cryptomelane samples from 

1399 Tambao locality (Fig. 2). Ar-Ar dates from Syama (Southern Mali) are from Vasconcelos et al. 

1400 (1994) (Fig. 2). Colored vertical stripes correspond to the weathering periods of each 

1401 generation of landform-regolith association as deduced from Ar-Ar dating in Tambao. 

1402

1403 Figure 5. Remnants of the West African morphoclimatic sequence as exposed in the Goren 

1404 greenstone belt near Kaya, Central Burkina Faso. Above: east-looking GoogleEarth view; 
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1405 below: interpretation based on field survey and photointerpretation (vertical exaggeration: 

1406 x3). Areas in white are steep post-High glacis incision slopes exposing saprolite. Position of 

1407 the 501 m height spot is 13.040825°N / 1.211588°E.

1408

1409 Figure 6. Sketch cross-sections of the two main glacis landscapes in West Africa. (a) 

1410 Piedmont of a bauxite-capped mesa in greenstone belt terrain (inspired from field surveys in 

1411 the Kongoussi area, Northern Burkina Faso). Dashed lines represent the maximum original 

1412 extent of each glacis surfaces. (b) Rolling pediplain of the Middle glacis over granitoid or 

1413 sandstone terrains. Bedrock is shown in grey and saprolite in yellow. Note the different 

1414 scales in (a) and (b).

1415

1416 Figure 7. Three successive glacis landscape stages of West African granite-greenstone 

1417 terrains (modified after Eschenbrenner and Grandin, 1970). (a) High glacis stage. (b) Early 

1418 settlement of the Middle glacis (yellow). (c) Installation of the Low glacis (light blue). The 

1419 model is based on regional field surveys in Northern Ivory Coast and Southwestern Burkina 

1420 Faso across the Guinean and Soudanian zones (Fig. 2).

1421

1422 Figure 8. Dissection patterns of West African glacis systems (modified after Grandin and Joly, 

1423 2008). (a) Piedmont configuration of downslope-decreasing incision through time. (b) 

1424 Piedmont configuration of downslope-increasing incision through time. Patterns (b) are 

1425 favored along main river segments of enhanced/accelerated down cutting (i.e., base-level 

1426 lowering), as opposed to patterns in (a) that are produced along main river segments of 

1427 mitigated/reduced down cutting (see Grimaud et al., 2014). (c)-(e) dissection scenarios of a 

1428 rolling pediplain. A High glacis rolling pediplain (c) may be degraded in two main types of 

1429 landscapes depending on where dissection focuses. Landscape (d) results if erosion 
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1430 predominates along the main river drains of the initial rolling plain. Landscape (e) results if 

1431 erosion predominates in crestal regions of the initial rolling plain (black arrows point to the 

1432 main river drain i.e., the local base level). In (d), the main slope portions of former glacis are 

1433 preferentially preserved. In (e), mostly valley bottoms of the former rolling pediplain are 

1434 preserved. In this case, the relief inversion concept strictly applies, as lower parts of the 

1435 ancient landscape become the highest parts of the new landscape.

1436

1437 Figure 9. (a) High glacis ferricrete relicts over southwestern Burkina Faso. (b) Corresponding 

1438 geomorphic map reconstitution of the High glacis pediplain (modified after Grimaud et al., 

1439 2015). 

1440

1441 Figure 10. Idealized cross-sections of the successive landscape stages in West Africa. Black 

1442 arrows locate the main river drains and white arrows the drainage divides. Such a landscape 

1443 evolution model would typify the Soudanian or Sahelian zones (Fig. 2), where the original 

1444 shapes of High and Middle glacis inverted landforms are preferentially preserved as plateaus 

1445 (see Fig. 19).

1446

1447 Figure 11. Detailed cross-section of a Middle glacis near Bania, ca. 100 km south of the Ivory 

1448 Coast – Burkina Faso border (modified from Eschenbrenner and Grandin, 1970). Upslope 

1449 part of the Middle glacis is an erosional, ferricrete-free surface exposing exhumed (old) 

1450 saprolite that was turned into mottled clays at the surface. Downslope part of the glacis is 

1451 erosional in the sense that it stripped-off the saprolite, but is depositional in the sense that it 

1452 carries a detrital colluvial layer that passes downslope to river alluviums. The ferricrete 

1453 developed by duricrusting of most of the transported material. A thin weathering layer 

1454 developed into the bedrock under the downslope portion of the glacis. 
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1455

1456 Figure 12. Field illustrations of glacis conglomeratic overburdens. (a) Block-supported 

1457 debris flow (High glacis near Timbou, Guinea). The cobble is a bauxite. (b) Heterogeneous 

1458 debris-flow facies underlain by dolerite core stones (High glacis near Kokoro, Burkina Faso). 

1459 Cobbles are made of bauxite. The fine-grained saprolite and mottled clay horizons are 

1460 missing from this weathering profile, suggesting its truncation by the debris flow. (c) Debris-

1461 flow with bauxite (light colored) and Intermediate ferricrete clasts in a matrix made of iron 

1462 oxy-hydroxide nodules and pebbles (High glacis, near Basnéré, Burkina Faso). (d) 

1463 Conglomerate comprising exclusively Intermediate ferricrete clasts (Middle glacis, near Kaya, 

1464 Burkina Faso). (e) Matrix-supported debris flow with Intermediate ferricrete cobbles 

1465 (carapace of the Low glacis, near Matam, Senegal). (f) Basal alluvial channel carved in a 

1466 sandstone saprolite (High glacis, south of Bobo Dioulasso, Burkina Faso). Channel material 

1467 consists of quartz pebbles and iron nodules in a kaolinite-rich silty clay matrix. Cementation 

1468 increases upward in the channel. Only cases (b) to (d) are ferricretes.

1469

1470 Figure 13. Photograph (left) and interpretation (right) of a composite glacis ferricrete 

1471 composed of a conglomeratic layer overlying a vermiform facies developed from the 

1472 underlying mottle clays (High glacis, near Tikaré, Burkina Faso). The fine-grained material is 

1473 likely preserved on its parental bedrock from which it derived by weathering. However, a 

1474 transported origin cannot be precluded (see text for further explanation).

1475

1476 Figure 14. Glacis ferricretes derived from fine-grained material. (a) and (b) are exposed 

1477 weathered surfaces and (c) and (d) are fresh cuts. (a) Fine-grained nodular ferricrete (Middle 

1478 glacis, near Kedougou, Eastern Senegal). (b) Nodular ferricrete (High glacis, Niokolo Koba 

1479 national park, Eastern Senegal). (c) Vermiform ferricrete (High glacis, near Kongoussi, 
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1480 Central Burkina Faso). (d) Proto-nodular ferricrete (High glacis, near Tambakounda, Eastern 

1481 Senegal). The iron oxy-hydroxides nodules are in dark grey / black. Nodular and vermiform 

1482 ferricretes, and especially those exposed on weathered surfaces, should not be mistaken for 

1483 conglomeratic ferricretes. Nodules generally have amoeboid / knucklebone shapes that 

1484 distinguish them from gravels or cobbles.

1485

1486 Figure 15. Type-logs of West African glacis. Bottom cross-sections illustrate potential 

1487 geomorphic contexts of the logs. In (a), the ferricrete is confined to the cover conglomerate 

1488 and underlain by a weathering profile derived from bedrock. (b) Same as (a) but with the 

1489 ferricrete extending beyond the base of the conglomerate (the conglomerate may also 

1490 occupy part, or the entire thickness of, the carapace). (c) The ferricrete is restrained to the 

1491 cover conglomerate that rests upon a truncated weathering profile. (d) Weathering profile 

1492 developed from exhumed bedrock. (e) The glacis weathering profile affects both a fine-

1493 grained transported cover and the underlying bedrock. (f) Erosional surface exposing a 

1494 truncated weathering profile (mottled clays formed at the surface). (g) Fine-grained cover 

1495 overlying a truncated weathering profile. (h) Detrital sediments overlying a conglomeratic 

1496 ferricrete. Question marks indicate contacts that may not be readily detected between 

1497 comparable saprolites of contrasted origins (in-situ and transported). Emoticons refer to the 

1498 suitability of the surface sampling medium for bedrock exploration geochemistry. The 

1499 problem in (d) is that the ferricrete may not be distinguished from that in (e) (see text for 

1500 further explanation). On the bottom cross-section, the residuum (mostly ferricrete and 

1501 carapace) is shown by a single reddish color. Cover material and weathering horizons 

1502 distribution patterns may be more uneven than shown on the cross-sections and further 

1503 complexity may arise from later dissection / denudation. 
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1505 Figure 16. Denudation / weathering scenario for the establishment of a typical West African 

1506 lateritic glacis system. (a) Cross-section of a common landform-regolith association. The old 

1507 surface is preserved as a mesa capped by a duricrust topping in-situ formed weathering 

1508 profile I (i.e., for instance, the Bauxitic or Intermediate landsfurface). The younger surface is 

1509 a glacis whose development led to relief dissection of the upper/older surface. (b) Sequential 

1510 development of the regolith profile for a given column located in (a). Stage 1 results from 

1511 older weathering (and therefore dominant “chemical” denudation) leading to the 

1512 establishment of landscape I and its underlying weathering profile (I). Stage 2 shows the 

1513 configuration after shaping of the glacis by pedimentation, which has stripped off 

1514 weathering profile I and eroded part of the underlying bedrock. Stage 3 shows the 

1515 configuration after the weathering (II) and ultimate duricrusting of the glacis surface 

1516 (ferricrete is restricted here to the transported overburden; e.g., case of Figs. 15a-15c) as a 

1517 consequence of climate change. Columns in (a) and (b) are not to scale. Paleolandscape I 

1518 could as well be a preexisting glacis. In this case, weathering profile I could already be 

1519 composite (with an in-situ and a transported part).

1520

1521 Figure 17. Simplified geology (a) and regolith-landform map (b) of West Africa. Landform-

1522 regolith provinces are distinguished on the basis of the generation of landform-regolith 

1523 association best preserved in the present-day landscape. (a) is adapted from Ye et al. (2017); 

1524 (b) is from the present work. See Figure 2 for comparison with topography and climatic 

1525 zonation. The sedimentary cover is overwhelmingly silico-clastic and mainly consists of 

1526 sandstones and siltstones. The main rivers are shown both in (a) and in (b).

1527

1528 Figure 18. Paleo-zonation of the development and preservation patterns of the West African 

1529 glacis systems (modified after Grandin, 1976).
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1530

1531 Figure 19. Comparative scenarios of glacis ferricrete plateau degradation leading to a 

1532 residual hill. (a) Under arid or semi-arid climate. (b) Under humid climate typical of rainforest 

1533 environments (modified after Grandin, 1976).

1534

1535 Figure 20. Cross-section illustrating transport of mineralized material on successive glacis to 

1536 form “transported” geochemical anomalies. The black star represents a surface geochemical 

1537 anomaly expressed through a weathering profile and the white stars represent anomalies 

1538 mechanically transported on glacis. Large grey arrows show material transport paths on 

1539 glacis. Mineralization B first produced a dispersion halo and a surface anomaly through the 

1540 old weathering profile. This mineralized weathering profile was then stripped off by 

1541 pedimentation to form glacis 1, eventually leading to a transported anomaly on the new 

1542 glacis surface. Formation of glacis 2 later led to reworking of the same mineralization that 

1543 was still preserved under glacis 1. But this time, because of the creation of a new drainage 

1544 divide, mineralized elements were transported in an opposite direction down the glacis 2 

1545 slope. Bedrock mineralization B is currently concealed under glacis 2.  

1546

1547 Figure 21. Gold and copper occurrences and High glacis ferricrete remnants overlying 

1548 mineralized bedrock map units, Southwestern Burkina Faso (same map area as Fig. 9). 

1549 Sources are Baratoux et al. (2011) and Metelka et al. (2012) for bedrock geology and Castaing 

1550 et al. (2003) and the 1/200,000 scale geological maps for mineral occurrences (artisanal and 

1551 industrial mining sites, prospects and soil geochemical anomalies). Specific mineralized 

1552 bedrock map units such as detrital sediments and ultramafic rocks are too small to be 

1553 represented at this scale (4 and 0.4 km2 for the entire map area, respectively).
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