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Abstract

Background

DNA methylation is affected by the activities of the key enzymes and intermediate metabo-

lites of the one-carbon pathway, one of which involves homocysteine. We investigated the

effect of the well-known genetic variant associated with mildly elevated homocysteine:

MTHFR 677C>T independently and in combination with other homocysteine-associated

variants, on genome-wide leukocyte DNA-methylation.

Methods

Methylation levels were assessed using Illumina 450k arrays on 9,894 individuals of Euro-

pean ancestry from 12 cohort studies. Linear-mixed-models were used to study the associa-

tion of additive MTHFR 677C>T and genetic-risk score (GRS) based on 18 homocysteine-

associated SNPs, with genome-wide methylation.

Results

Meta-analysis revealed that the MTHFR 677C>T variant was associated with 35 CpG sites

in cis, and the GRS showed association with 113 CpG sites near the homocysteine-associ-

ated variants. Genome-wide analysis revealed that the MTHFR 677C>T variant was associ-

ated with 1 trans-CpG (nearest gene ZNF184), while the GRS model showed association

with 5 significant trans-CpGs annotated to nearest genes PTF1A, MRPL55, CTDSP2,

CRYM and FKBP5.

Conclusions

Our results do not show widespread changes in DNA-methylation across the genome, and

therefore do not support the hypothesis that mildly elevated homocysteine is associated

with widespread methylation changes in leukocytes.

Introduction

DNA methylation, an important epigenetic mechanism has gained interest in the field of can-

cer and aging over the last decade [1, 2]. DNA methylation is affected by the activities of the

key enzymes and intermediate metabolites of the one-carbon pathway, one of which involves

homocysteine (Hcy).

Our aim was to investigate the role of genetically defined Hcy levels on genome-wide DNA

methylation. A number of earlier studies have reported a link between Hcy and DNA methyla-

tion [3]. In these studies, DNA methylation was quantified as a global measure, that represents

the total methyl cytosine content of the DNA. In animal models, both diet- and genetically-

induced elevated Hcy have been related to altered global methylation patterns in tissues of

aorta, brain, liver and colon. In human subjects, global DNA methylation in blood was not

consistently altered with elevated Hcy. The relationship between Hcy and methylation can be

subject to substantial bias, given the strong relationship between several lifestyle factors, dis-

eases and Hcy. A way to circumvent this bias is to use genetic factors determining Hcy concen-

trations as an instrument to study the relationship between Hcy and methylation. The use of

Homocysteine-associated variants and DNA methylation
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genetically defined elevated Hcy eliminate the effects that are possibly caused by measurement

errors, confounding and reverse causality. One of the most consistent genetic variants causing

elevated Hcy is the MTHFR 677C>T (rs1801133), which explains 5.3% variance in Hcy [4].

Furthermore, we recently published 18 variants including MTHFR 677C>T to be robustly

associated with Hcy [5]. The Genetic Risk Score (GRS) of these 18 Hcy-associated variants

explained 5.9% variance in Hcy [5]. In the current study, we used MTHFR 677C>T indepen-

dently and the combined weighted GRS of these 18 variants, to test whether genetically defined

elevated Hcy concentrations are associated with DNA methylation changes in blood cells.

A number of studies [3] have examined the relationship between the MTHFR 677C>T vari-

ant and global DNA methylation in humans. In 5 studies, individuals with the MTHFR 677TT

genotype were compared to those with the MTHFR 677CC genotype [6–10]. Lower global meth-

ylation in blood cells was observed in two studies [6, 7]. The remaining three studies showed no

association in the lymphocyte or colonic tissue. All published studies until now had small sample

sizes of less than 200. To the best of our knowledge, associations of genetically defined Hcy with

site-specific CpG methylation on a genome-wide scale have not been done up to now. In order

to investigate this, we analyzed DNA methylation data measured with the Infinium Illumina

450k arrays, in a large meta-analysis of 9,894 individuals comprising 12 cohorts. We hypothesize

that genetically defined elevated Hcy is associated with altered DNA methylation.

Materials and methods

Study population

All participants provided a written informed consent, and each study was approved at the rele-

vant organizations by their respective ethics review committees [RS, Institutional review board

(Medical Ethics Committee) of the Erasmus Medical Center; LLS, Ethical committee of the

Leiden University Medical Center; LL, Ethics committee of the University Medical Centre

Groningen; NTR, Central Ethics Committee on Research Involving Human Subjects of the

VU University Medical Centre; CODAM, Medical Ethical Committee of the Maastricht Uni-

versity; MARTHA, “Departement santé de la direction générale de la recherche et de l’innova-

tion du ministère” (Projects DC: 2008–880 & 09.576); EGCUT; Research Ethics Committee of

the University of Tartu; F5L, Research ethics boards of the University of Toronto and the

Ottawa Hospital Research Institute; FHS, IRB (institutional review board); KORA, Local Eth-

ics Committee; LBC1921, Lothian Research Ethics Committee (Wave 1: LREC/1998/4/183);

LBC1936, Multi-Centre Research Ethics Committee for Scotland (Wave 1: MREC/01/0/56),

and the Lothian Research Ethics Committee (Wave 1: LREC/2003/2/29)].

The analyses comprised of large population with 9,894 participants from 12 cohorts of

European ancestry. Most of the cohorts were part of either the Cohorts for Heart and Aging

Research in Genomic Epidemiology (CHARGE) consortium [11] and/or Biobank-based Inte-

grative Omics Studies (BIOS) consortium [12]. All participants provided a written informed

consent for the DNA collection and its use for genetic analyses. Each study was approved at

the relevant organizations by their respective ethics review committees. Cohort-specific char-

acteristics are provided in the S1 Text and S1 Table.

MTHFR 677C>T and homocysteine-associated SNPs

18 independent Hcy-associated SNPs from our GWAS meta-analysis [5], were selected to

assess the relationship between mildly elevated Hcy concentrations and genome-wide DNA

methylation. The genotypes of these SNPs were extracted from the genotyping data. Cohort-

specific details of the quality control and the SNP imputation methods are provided in the S2

Table.

Homocysteine-associated variants and DNA methylation
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DNA methylation assessment

Whole blood samples were collected from the participants for DNA extraction. The genomic

DNA was bisulfite converted using the Zymo EZ-96 DNA-methylation kit (Zymo Research,

Irvine, CA, USA). Methylation profiling was performed using the Infinium Illumina Human-

Methylation 450k BeadChip arrays (Illumina Inc., San Diego, USA) according to the manufac-

turers’ protocol. Beta values from 0 to 1, which represent the percentage of methylation, were

calculated from the extracted raw methylated (M) and unmethylated (U) probe intensities and

a default alpha (α) of 100. This is defined by the formula of β = M/(M+U+α). Normalization

was performed on these raw beta values using DASEN [13] or SWAN [14] methods. Poor

quality probes were excluded based on the detection p-values mostly>0.01 in>5% of samples.

Cohort-specific data preprocessing methods are provided in the Table 1. Global methylation

levels per sample was calculated by the mean of all CpGs as well as mean according to CpG

islands, shores, shelves or non-coding regions [15].

Statistical analysis

Two models were run independently by each participating study. Firstly, an additive model for

MTHFR 677C>T alone was used to investigate its independent association with genome-wide

DNA methylation in a linear manner. For the MTHFR 677C>T variant, genotypes were coded

as CC = 0, CT = 1 and TT = 2 to study the effect in methylation per MTHFR 677T allele.

In the second analysis, a weighted Genetic Risk Scores (GRS) was constructed from all the

18 Hcy-associated variants to investigate their combined and additive effect on genome-wide

DNA methylation. Weighted GRS were calculated on the basis of their effect sizes [5] and

number of corresponding risk alleles. The product of the two was calculated for each SNP and

then summed up for all SNPs. The GRS was calculated using the equation below, where N is

the number of elevated Hcy causing risk alleles for each SNP (0, 1 or 2 per genotype).

GRS ¼ 0:1583 x Nðrs1801133 : AÞ þ 0:0542 x Nðrs2275565 : GÞ þ 0:0718 x Nðrs234709 : CÞþ

0:0435 x Nðrs4660306 : TÞ þ 0:0453 x Nðrs1801222 : AÞ þ 0:101 x Nðrs12134663 : CÞþ

0:0529 x Nðrs12780845 : AÞ þ 0:056 x Nðrs2851391 : TÞ þ 0:0449 x Nðrs9369898 : AÞþ

0:0422 x Nðrs838133 : AÞ þ 0:0864 x Nðrs7422339 : AÞ þ 0:1242 x Nðrs7130284 : CÞþ

0:0963 x Nðrs154657 : AÞ þ 0:0597 x Nðrs548987 : CÞ þ 0:0395 x Nðrs42648 : GÞþ

0:0512 x Nðrs2251468 : CÞ þ 0:045 x Nðrs957140 : GÞ þ 0:090 x Nðrs12921383 : CÞ

ð1Þ

Both the analyses were based on linear mixed models of lme4 package in R. We also ana-

lyzed the effect of MTHFR 677C>T and GRS on global methylation levels, where we calculated

the overall mean levels per individual as well as categorized the means as per CGI annotations

[15]. The models were adjusted for technical covariates and biological covariates like age, sex

and differential white blood cell (WBC) counts (see S1 Table for details about covariates for

each cohort). The technical covariates were cohort-specific and treated as random effects.

WBC counts were either used as measured counts, or they were imputed based on the House-

man method as implemented in the minfi package [17], or the modified version of the House-

man method (Documentation and R script: https://github.com/mvaniterson/wbccPredictor)

that uses partial least-squares [18] to handle multivariate responses and high-dimensional

covariates and has been previously used [19]. This method from van Iterson used the R pack-

age pls [18] to fit the linear model based on the DNA methylation data, to predict the white

blood cell composition as percentages that sum up to almost 100%. Age and gender were used

as covariates.

Homocysteine-associated variants and DNA methylation
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Meta-analysis

Summary statistics for the two models were obtained from each study. Because of the different

probe exclusions in each cohort [Table 1], we removed probes that were present in�4 studies.

We also excluded probes with SNPs at single base extension site, and probes with improper

binding [12], leaving a total of 465,694 probes for the meta-analysis. Meta-analysis was per-

formed using the fixed effect model in METAL [20], with the classical approach that uses effect

size estimates and standard errors as input obtained from the individual study summary statis-

tics for each CpG probe. The output of meta-analysis gave the combined effect size estimates,

standard errors and p-values per probe. These p-values were corrected using the Benjamini

Hochberg method of false discovery rate (FDR), where FDR <0.05 was considered statistically

significant. For the MTHFR 677C>T model, positive effect sizes correspond to percentage

increase in methylation per MTHFR 677T allele. For the GRS model, positive effect sizes corre-

spond to percentage increase in methylation per unit increase in GRS. We also took into

account heterogeneity of the meta-analysis by I2 which was calculated using METAL per probe

and excluded significant probes if I2<40. We also calculated the genomic inflation factor (λ)

[21] to estimate the inflation in test statistics that may be caused by population structure or

other unknown confounding factors. This λ was estimated for the distribution of p-values

using the median method, which is defined as the ratio of the observed median of the test sta-

tistic distribution and the expected median 0.455 [21, 22].

Genomic Regions Enrichment of Annotations Tool (GREAT) was used for annotating

CpGs for nearby genes, that assigns a basal regulatory region to extend up to 5 kb upstream

and 1 kb downstream from its transcription start site and a maximum extension distance up to

1 Mb [23], as defined by UCSC [24]. Furthermore, strength of the instrument or allele score

was calculated using the F-statistics, using the tool, mRnd [25]. We took into account cohort

heterogeneity I2 and excluded significant probes if I2<40.

Identifying cis- and trans-CpG effects

We defined the CpGs as “cis” when the CpG was annotated within 1Mb upstream or down-

stream of the SNP. Trans-CpGs were defined as CpGs that were associated with the SNP, and

were annotated >1Mb apart. We defined the CpGs in the GRS model the same way by

accounting for the bp distance of the CpGs from each of the 18 SNPs. For the significant trans-
CpGs that were 1-5Mb apart from any of the 18 SNPs, we performed a conditional analysis

adjusting for that SNP to investigate whether they were trans-CpGs associated with Hcy GRS

or long range cis-CpGs driven by the nearby SNPs that were part of the GRS. In the conditional

analysis, if the bonferroni corrected p-values were no longer significant, we considered those

trans-CpGs as long-range cis-CpGs. For the significant trans-CpGs that were >5Mb apart

from any of the 18 SNPs, we looked up for their tested individual association with each of the

18 SNPs in our previous trans-CpG mapping analysis [12]. This is to see whether the associa-

tion of these trans-CpGs was Hcy GRS driven or driven by a single SNP that was a part of

GRS. In order to confirm these trans-CpG effects, we performed a similar conditional analysis

by including the respective SNP as a covariate in the model. Both conditional analyses were

performed on a subset of 3,786 samples from 6 cohorts, and the results were compared with

the unconditional analysis in the same subset.

H19/IGF locus

Three Differentially Methylated Regions (DMRs) of IGF2/H19 locus at chromosome 11 have

been reported to be related with homocysteine [26, 27]. We identified seven CpGs on the 450k

array that were underlying the three DMRs of this locus, for their association with MTHFR

Homocysteine-associated variants and DNA methylation
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677C>T variant or GRS. Bonferroni method was applied on these 7 CpGs to check for multi-

ple testing.

Enrichment of folate-associated CpGs

We further focused our analysis on the 443 previously identified CPGs, of which methylation

in cord blood of newborns were associated with maternal plasma folate levels [28]. We com-

pared the p-values of these 443 CpGs from the MTHFR 677>T and the GRS results, and com-

pared them to the p-values of 100 random CpGs with 1000 permutations, to check for their

significant enrichment, using the Fisher’s exact test.

Results

Population characteristics

The meta-analysis included 9,894 adults from 12 cohorts. Studies were population-based,

except for the Cohort on Diabetes and Atherosclerosis Maastricht, MARseille THrombosis

Association study and the French-Canadian family study, where individuals were selected

based on mildly increased diabetes mellitus type 2 and cardiovascular risk factors, cases of

venous thrombosis and probands with venous thromboembolism, respectively.

Meta-analysis of MTHFR 677C>T and GRS model

The explained variance in Hcy by MTHFR 677C>T is 5.3% [4] and by GRS is 5.9% [5]. For a

sample size of 9,894, the F-statistics of the additive MTHFR 677C>T and GRS was 554 and

621, respectively. Meta-analysis of 456,694 probes identified 35 cis- [S3 Table] and 1 trans- [S5

Table, Table 2] CpGs for the MTHFR model [Fig 1] and 113 cis- [S4 Table] and 30 trans-

Table 2. Genome-wide trans-CpGs with FDR<0.05; associated with the MTHFR 677C>T model or Genetic Risk Score of 18 Hcy-associated

variants.

CpG N Beta SE P FDR I2 Beta SE P Nearest Genes Chr Bp

MTHFR 677C>T model LOOKUP in GRS model

cg05411165 9894 -0.005 0.001 1.02E-

06

1.40E-

02

0 -0.0095 0.0038 1.16E-

02

ZNF184 (-25414), HIST1H2BL

(+309398)

6 27466334

GRS model LOOKUP in MTHFR

677C>T model

cg12805629 6277 -0.018 0.004 3.15E-

06

1.23E-

02

0 -0.0023 0.0011 3.81E-

02

MRPL55 (+6698), ARF1 (+19954) 2 11565653

cg08586216+ 9894 -0.002 0.001 1.49E-

05

4.89E-

02

37.6 -0.0003 0.0001 4.17E-

02

TULP1 (-131681), FKBP5 (+44391) 6 35612351

cg00620062 9894 0.004 0.001 2.83E-

06

1.12E-

02

0 0.0007 0.0003 3.36E-

03

PTF1A (+6292) 10 23487775

cg00677455* 9334 -0.003 0.001 8.76E-

06

3.09E-

02

0 -0.0004 0.0002 3.63E-

02

CTDSP2 (-269) 12 58241039

cg01259782 6194 0.015 0.004 1.33E-

05

4.52E-

02

0 0.0021 0.0010 2.68E-

02

CRYM (+454) 16 21313973

Beta: Regression coefficients

SE: Standard errors of the regression coefficients

FDR: False discovery rate adjusted P-value, threshold = 0.05

I2: Heterogeneity I2 parameter

*Promoter-associated
+Enhancer-associated, Enhancer annotation from Illumina 450k annotation

https://doi.org/10.1371/journal.pone.0182472.t002
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[Table a in S6 Table, Table a in S7 Table and S8 Table] CpGs for the GRS model [Fig 2]. The λ
was 1.01 for the MTHFR 677C>T SNP and 0.92 for GRS [S1 Fig].

Cis-CpGs

Meta-analysis on 465,694 CpGs of the MTHFR 677C>T variant showed association with 35

cis- CpGs on chromosome 1 with FDR<0.05 [Fig 1, S3 Table]. These cis-CpGs showed a range

from 2.4% increase to 1.7% decrease in methylation per MTHFR 677T allele. The nearest genes

associated with this cis-region included MTHFR itself, AGTRAP, CLCN6, NPPA, NPPB,

PLOD1, MFN2 and TNFRSF8. For the GRS model, we observed 113 cis-CpGs with FDR<0.05

[Fig 2, S4 Table]. Out of the 113, 16 cis-CpGs showed overlap with the MTHFR 677C>T analy-

sis, which involved a smaller region of 238 Kb [Fig 3].

Fig 1. Manhattan plot. Association between MTHFR 677C>T (rs1801133) and genome-wide DNA methylation in 9,894 samples, with 35 cis-

meQTLs at chromosome 1 (black/grey) and 1 trans-meQTL at chromosome 6 (green) with FDR<0.05.

https://doi.org/10.1371/journal.pone.0182472.g001
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Trans-CpGs

For the MTHFR 677C>T model, meta-analysis of 465,694 CpGs identified 1 significant trans-
CpG which was located on chromosome 6 [Fig 1, S5 Table]. This trans-CpG (cg05411165)

showed 1% decrease in methylation per MTHFR T allele. It was annotated near ZNF184
(25414 bp upstream) and HIST1H2BL (309398 bp downstream). For the GRS model, we

observed 30 significant trans-CpGs [Fig 2]. These trans-CpGs showed a range from 5.6%

increase to 5.1% decrease in methylation per 0.1 unit increase in GRS. Of these 30 trans-CpGs,

23 were negatively associated with the GRS model. To assess overlap between two models, we

evaluated association of the trans-CpG of the MTHFR 677 C>T model within the GRS model.

This trans-CpG (cg05411165) showed a 10% decrease in methylation in the GRS model but

was not FDR significant (raw p-value = 0.01).

Critical evaluation of the 30 trans-CpGs of GRS model demonstrated that 14 trans-CpGs

were located in a large region of 3,08 Mb length within chromosome 6. The GRS model con-

sists of 18 SNPs including a SNP on chromosome 6. The 14 trans CpG identified with the GRS

Fig 2. Manhattan plot. Association between GRS of 18 Hcy-associated SNPs and genome-wide DNA methylation in 9,894 samples, with 113 cis-

meQTLs (black/grey) and 30 trans-meQTLs (green), at FDR<0.05.

https://doi.org/10.1371/journal.pone.0182472.g002
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model were at a distance between 1 and 5 Mb away from the Hcy-associated variant rs548987

of the SLC17A3 gene at chromosome 6 [Table a in S6 Table].

Conditional analysis: Chromosome 6 region near rs548987. To investigate whether the

14 trans-CpGs on chromosome 6 near rs548987 were influenced by this variant, we performed

conditional analysis on a subset of 3,786 samples from 6 cohorts. After correction of the model

Fig 3. Regional manhattan plot (chr1: 11824095–12184574). 35 (black) and 16 (green) cis-meQTLs of the MTHFR 677C>T

and GRS model respectively, in 9,894 samples. The overlap involved a small region of 238 kb (green rectangular line).

https://doi.org/10.1371/journal.pone.0182472.g003
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for rs548987 as a covariate, none of the 14 trans-CpGs were significant at a bonferroni thresh-

old of 3.57E-03 [Table b in S6 Table].

Conditional analysis: Influence of SNPs within the GRS model. To further investigate

the remaining 16 trans-CpGs from the 30, whether any of them were driven by a single variant,

rather than the combined effect of the 18 homocysteine-associated variants, we checked the

trans-CpG mapping analysis of the single SNPs using the BIOS dataset [12]. We observed that

7 of the 16 remaining trans-CpGs located >5 Mb from the Hcy-associated variants, were

directly associated with either rs548987 SNP of SLC17A3 gene at chromosome 6, or rs154657

SNP of DPEP1 gene at chromosome 16 [Table a in S7 Table]. After correction for these 7

trans-CpGs by including the respective SNP as a covariate in the model, none of the 7 trans-
CpGs remained significant at a bonferroni threshold of 7.14E-03 [Table b in S7 Table]. After

correction for cis-effects of Hcy-associated SNPs in the GRS model, we identified a remaining

list of 9 Hcy-associated trans-CpGs, 4 of which had substantial heterogeneity I2 [S8 Table].

Overlapping trans-CpG between MTHFR and GRS models

When doing a lookup in the MTHFR 677C>T model for the finally identified 5 trans-CpGs,

all of them showed similar direction of effect, but did not achieve genome-wide significance

(Lowest raw p-value = 3.36E-03) [Table 2].

Trans-CpGs affecting Gene expression

We evaluated whether methylation levels of the observed trans-CpG from the MTHFR
677C>T model and 5 trans-CpGs from the GRS model were associated with expression levels

of the nearby genes, in the BIOS dataset [12]. None of the trans-CpGs was associated with

mRNA expression differences of nearby genes.

H19/IGF2 locus

We specifically focused on the IGF2-H19 region for differential methylation, since methylation

at this locus has repeatedly been linked to the homocysteine metabolism in a number of studies

[29–31]. S4 Fig shows the results of the whole IGF2-H19 region, and the 7 CpGs annotated to

3 DMRs of the IGF2/H19 gene that had previously been reported to be differentially methyl-

ated (DMR0, DMR2, H19-DMR3). Data from our 450k arrays contained 2 CpGs at DMR0, 4

CpGs at DMR2 and 1 CpG at H19-DMR3. None of them showed an association with MTHFR

677C>T or GRS with a Bonferroni cut off of 7.14E-03 [S9 Table, S4 Fig].

Enrichment of previously found folate-associated CpGs

Next we focused on a set of 443 CpGs that were identified to be differentially methylated in

children at birth according to the folate levels in the mothers [28]. We found a highly signifi-

cant enrichment for significant p-values in the MTHFR model in the 443 CpGs as compared

to a random set of other CpGs (>3 times enrichment of significant p-values, enrichment

p = 0.0079). However, we did not find a significant enrichment for the GRS model.

Global DNA methylation changes

In addition to genome-wide DNA methylation changes we analyzed the effect of MTHFR
677C>T and GRS models on overall mean methylation levels. There was no significant associ-

ation between the MTHFR 677C>T or GRS on global methylation overall or mean methyla-

tion of CpG islands, shores, shelves or non-coding regions [Table 3] [15].
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Discussion

This is the first large-scale study to investigate the effect of Hcy-associated SNPs on genome-

wide DNA methylation using the Illumina 450k arrays in 9,894 individuals. The results showed

no widespread trans-effects of the MTHFR 677C>T SNP on DNA methylation, apart from 1

trans-CpG at chromosome 6. The GRS model showed 5 trans-CpGs, after carefully examining

the direct effects of individual SNPs with conditional analyses.

In this current study, we used MTHFR 677C>T independently and the combined weighted

GRS of the 18 Hcy-associated variants [5], to test whether mildly elevated Hcy concentrations

induce DNA methylation changes in blood cells. Our goal was to investigate genetically

defined elevated Hcy on genome-wide DNA methylation. The use of genetic variants is less

sensitive to confounding and bias as compared to classical epidemiological studies [32].

We calculated the strength of our exposure variables: MTHFR 677C>T and GRS using the

F-statistics. For a strong exposure, the value of the F-statistics is expected to be greater than 10

[33]. With our large sample size (n = 9,894) and proportion of variance explained being 5.3 to

5.9%, the F-statistics was 554 and 621 respectively, indicating very high strength and enough

power of our analysis. However, we did not observe widespread trans-effects despite of having

strong additive MTHFR 677C>T and GRS.

We observed a single trans-CpG for the MTHFR 677C>T variant. This CpG is located near

ZNF184 and HIST1H2BL. Both these genes are thought to play a role in transcriptional regula-

tion. For the GRS, we found 30 trans-CpGs associated, 14 of which are spread over a region of

3,08 Mb at chromosome 6. These CpGs were annotated to genes that included ZNF322 and

HIST1H2BJ, HLA-J, HLA-A, HLA-G, but also the proximal region of ZFP57 gene, which was

previously identified as a folate-sensitive region in a genome-wide methylation study of 23

women [34]. However, when we performed a conditional analysis on these 14 CpGs in this

region, by adjusting for the nearby variant rs548987 of the SLC17A3 gene, the effect sizes sig-

nificantly attenuated and the nominal p-values were no more significant. The results indicate

that this region was influenced by the rs548987 SNP of SLC17A3 gene and was not Hcy-

associated.

Table 3. Association of MTHFR 677C>T and Genetic Risk Score on mean global methylation levels.

Methylation N I2 Beta SE P

MTHFR 677C>T

GLOBAL 3,786 0.14 4.00E-06 1.50E-05 0.81

CGI 3,786 0.58 -1.90E-05 4.90E-05 0.70

SHE 3,786 0.59 3.70E-05 5.50E-05 0.50

SHO 3,786 0.14 -9.00E-06 4.80E-05 0.85

NC 3,786 0.61 2.70E-05 4.90E-05 0.57

GRS

GLOBAL 3,786 0.67 -1.30E-05 5.60E-05 0.81

CGI 3,786 0.07 -1.84E-04 1.81E-04 0.31

SHE 3,786 0.00 2.29E-04 2.01E-04 0.25

SHO 3,786 0.52 -1.20E-04 1.76E-04 0.50

NC 3,786 0.07 1.94E-04 1.78E-04 0.28

Beta: Regression coefficients

SE: Standard errors of the regression coefficients

I2: Heterogeneity I2 parameter

CGI = CpG Islands, SHE = CpG Shelves, SHO = CpG Shores, NC = CpGs at Non-Coding regions

https://doi.org/10.1371/journal.pone.0182472.t003
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We finally observed 5 trans-CpGs associated to genetically defined Hcy using the GRS, after

carefully examining the direct effects of individual SNPs with conditional analyses and dis-

carding CpGs that showed substantial cohort heterogeneity I2. A total of 3 CpGs showed hypo-

methylation, one of which was annotated to the FKBP5 gene. FKBP5 encodes for the

FK506-binding protein 51 (FKBP51) whose expression has recently been shown to decrease

DNMT1 activity and thereby decreasing global methylation [35].

Furthermore, when looking at our methylation-expression results [12], none of the 5 trans-
CpGs was associated with mRNA expression differences of nearby genes. The possible expla-

nation for these negative findings could be that these CpG sites might have an effect further

away on trans-genes. Conversely, it has been shown that the methylation-expression correla-

tion in cis are not best predicted using the CpG position alone, but by using specific chromatin

marks [36]. Furthermore, it could also be that these correlations are specific to other tissues,

but not in blood.

We observed that the IGF2-H19 locus did not show association with methylation according

to genetically defined elevated homocysteine. This is in contrast to the previous findings in

mice, where tissue-specific changes in H19 DMR methylation were found in liver, brain and

aorta, and increased expression of H19 was found in aorta [26, 27]. Similar to what we found,

the H19-DMR3 between CBS deficient patients and controls also did not show a significant

difference, in a previous study [29]. Our results show that this imprinted locus is not deregu-

lated by long-term genetically defined mildly elevated homocysteine. However, previously it

was reported that MTHFR 677C>T variant shows changes in DNA methylation in peripheral

blood mononuclear cells, only through an interaction with folate [7]. Hence, further studies

are needed to study the effect of MTHFR 677C>T variant in the presence of blood folate

levels.

We did not see widespread methylation changes associated to mildly elevated plasma Hcy

concentrations. This result is not in line with a number of earlier reports, which have shown

global methylation changes in association with the MTHFR 677C>T variant and Hcy concen-

trations [3]. Previous two studies on this topic have shown contradictory results. There has

been reports that showed a lower circulating global methylation level in individuals with the

MTHFR 677TT genotype [6],[7]. However, there are also a few negative studies that showed

no relation between the MTHFR 677TT genotype and global methylation levels [8–10]. All

these studies had modest sample sizes (upto 300 individuals were studied), and measured

methylation on a global level using the LINE-1 assay, which measures a repetitive sequence, of

which the function is unknown. In contrast, we here studied a genome wide site-specific analy-

sis focused on functional regions of the genome [15]. We here show convincing evidence that

there is no association between the MTHFR 677C>T or GRS on overall methylation levels,

nor is there a relationship between methylation of CpG islands, shores, shelves or non-coding

regions separately, which supports the previous null associations.

Furthermore, in order to test for causal effect in a mendelian randomization study, an

instrument, which is in our case MTHFR 677C>T or GRS, should satisfy the 3 basic assump-

tions [37, 38]. One, the instrument should be associated with the exposure, which is in our

case Hcy. Two, the instrument should not affect the outcome, which is in our case DNA meth-

ylation, except through the exposure Hcy. Three, the instrument should not be associated with

any confounder of the exposure-outcome association. Although assumptions one and two are

satisfied in our case [5], the GRS model might violate assumption three [37, 38].

The GRS model contains a few SNPs which are, in addition to the association with Hcy,

also associated with other traits. For example, the variants near to HNF1A gene have been

associated with a number of other traits [39–44]. This could also be the reason why the results

of the MTHFR 677C>T and GRS models are quite different. Nevertheless, the MTHFR
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677C>T variant explains most of the variation in Hcy, as compared to the other variants in

the GRS model and is therefore a strong instrument to examine the effect of deregulation of

the one-carbon metabolism on methylation.

The relationship between MTHFR 677C>T and DNA methylation is modified by folate lev-

els. Only in individuals with low folate status, the effect of the MTHFR 677TT genotype is seen

[7]. Unfortunately, we were unable to study this interaction, since folate levels were not avail-

able in our study. Another prerequisite to be able to perform MR is that the relationship

between Hcy and methylation is known. The relationship between Hcy and DNA methylation

is only known in studies until now where methylation is measured at a global level. Therefore,

the estimation of the causal effect could not be done. Unfortunately, we also did not have Hcy

data available in all cohorts of this study, and therefore were unable to perform a full mende-

lian randomization study. We rather focused on the association of genetically defined elevated

Hcy levels with DNA methylation.

We did not find widespread differences in methylation related to genetically defined homo-

cysteine levels. The association was not observed in global methylation levels nor in wide-

spread CpGs including the previously known H19/IGF2 locus. There are a number of possible

explanations for this finding. First, it is known that the relationship between MTHFR 677C>T

and DNA methylation is modified by folate levels, as described above. The effect of MTHFR
677C>T is seen in individuals with low folate status [7], which could have masked possible

relationships between the MHTFR variant and methylation. A second possible explanation for

the relative low number of identified CpGs, is that we have studied the wrong tissue. Most

methylation measures are conducted in blood leukocytes as this tissue is readily available.

However, the causal effect of Hcy could be specific to other tissues like liver, heart and brain.

Therefore, the possible effect of mildly elevated Hcy on such specific tissues cannot be

excluded. Third, there is little variation in the one-carbon metabolism in the normal popula-

tion. This metabolism is pivotal to cell survival and function and therefore tidily regulated. It

could be that there is a correlation between homocysteine and more pronounced effects on

methylation when homocysteine levels are more extreme.

Conclusions

We observed 1 trans-CpG (nearest genes ZNF184 and HIST1H2BL) on chromosome 6 associ-

ated with the MTHFR 677C>T variant. The GRS model showed 5 significant trans-CpGs,

which do not overlap with the MTHFR trans-CpG. In conclusion, our results do not show

widespread statistically significant trans-effects of MTHFR and GRS models, and therefore do

not support the hypothesis that genetically defined mildly elevated Hcy concentrations are

associated with widespread methylation changes in leukocytes. More studies with measured

Hcy concentrations are needed to confirm this.
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