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We calculate the two-photon absorption in bulk and single-layer hexagonal boron nitride (h-BN) both by an ab
initio real-time Bethe-Salpeter approach and by a real-space solution of the excitonic problem in tight-binding
formalism. The two-photon absorption obeys different selection rules from those governing linear optics and
therefore provides complementary information on the electronic excitations of h-BN. Combining the results from
the simulations with an analysis of the crystal symmetries, we show that two-photon absorption is able to probe
the lowest-energy 1s state in the single-layer h-BN and the lowest degenerate exciton of bulk h-BN. This result
indicates that in h-BN multilayer stackings with inversion symmetry one can measure the Davydov splitting
by means of a combination of one and two-photons excitations. The same analysis can be applied to other
two-dimensional materials with the same point-group symmetry—such as the transition metal chalcogenides.

DOI: 10.1103/PhysRevB.98.165126

I. INTRODUCTION

Two-photon absorption (TPA) is a nonlinear optical pro-
cess in which the absorption of two photons excites a system
to a higher energy electronic state. Nonlinear optical proper-
ties of two-dimensional (2D) crystals, and as such the TPA,
have been recently the object of several experiments. For
example, a giant TPA has been reported [1,2] for transition
metal dichalcogenides (TMDs), which has been attributed to
the peculiar optical properties of 2D crystals; further, TPA
has been used to image single quantum emitters embedded
in a h-BN multilayer flake [3]; moreover, in another study on
TMDs, TPA has been used to probe excited states, which are
dark in linear optics [4]. In fact, two-photon transitions obey
selection rules distinct from those governing linear excitation
processes and thereby provide complementary insights into
the electronic structure of excited states [5,6]. In particular,
it is frequently argued that one-photon processes are only
allowed for excitons of s symmetry whereas p states can be
observed in TPA. These rules can be derived within a con-
tinuous hydrogenic model for excitons where full rotational
symmetry is assumed. They have been invoked to analyze
the excitonic effects observed in carbon nanotubes [7] and
also recently in bulk h-BN [8]. Though it is recognized that
these rules are not generally valid if the genuine crystalline
symmetry is taken into account, it is claimed they can at least
guide interpretations in terms of high or low oscillator strength
[9]. For 2D materials [10], excitonic effects are strong and the
exciton wave functions are fairly localized, so that the low
threefold symmetry plays an important role [11]. Although it
has been first argued that the usual selection rules based on the

hydrogenic model are also valid [12], more accurate studies
have shown that this is actually not the case, for one-photon
as well as for two-photon processes [13–16].

Here we analyze the case of the h-BN single layer and
bulk, which have the same lattice symmetry as the TMDs and
very strongly bound excitons. We combine tight-binding (TB)
calculations [14] of the two-photon transition probability with
sophisticated ab initio real-time Bethe-Salpeter simulations
[17] of the two-photon resonance third-order susceptibility.
This combination is a unique feature of this work; on the one
hand, the TB calculations allow us to identify the symmetry
properties of the excitons, on the other hand the ab initio
real-time Bethe-Salpeter (RT-BSE) simulations provide the
TPA spectra—one of the first ab initio TPA spectra at this
level of theory [18]—which can be compared quantitatively
with experiments. From these two very different approaches
(TB and RT-BSE), we consistently show that the TPA is able
to probe the lowest 1s exciton in the bulk and single layer
h-BN.

In Sec. II, we discuss the choice of h-BN as a case study
and describe the tight-binding modeling of its electronic and
optical properties. In Sec. III, we detail how to obtain the
TPA within both TB and RT-BSE: within the TB we expand
the real-space formalism to the second order in the external
perturbation and within the RT-BSE we introduce a post-
processing technique based on Richardson extrapolation to
extract the two-photon resonant third-order susceptibility, and
thus the TPA, from the real-time polarization. We then show
and compare the results of the ab initio real-time simulations
(Sec. IV A) and of the TB calculations (Sec. IV B) for the
single-layer h-BN. We also contrast the case of the single layer
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with the bulk, highlighting the role of the inversion symmetry.
Finally, we discuss the selection rules for one- and two-photon
processes and on the basis of our results, we clarify few
recent experimental works on nonlinear optical properties of
2D crystals and bulk h-BN (Sec. IV C).

II. ELECTRONIC, OPTICAL PROPERTIES AND TIGHT
BINDING MODEL OF h-BN

A. Choice of the system

We have chosen h-BN monolayer as a case study for
several reasons. One reason is the abundance of experimental
studies (luminescence [8,19–25], x rays [26,27], or electron
energy loss spectroscopy [28,29]) on the electronic and optical
properties of both the bulk and the single layer. These studies,
supported by theoretical investigations [30–36], have shown
that h-BN is an indirect band gap insulator whose optical
absorption spectrum is dominated by strongly bound excitons.
Then, the electronic structures of the h-BN monolayer and of
the bulk structure are fairly well known—which is convenient
for the tight-binding model [30,37]. A h-BN monolayer is
simply the honeycomb lattice where B and N atoms alternate
on the hexagons. The bands close to the gap are built from the
π states. In the case of the monolayer, there are just a single
valence π band and a conduction π∗ band, which are nearly
parallel along the KM direction of the Brillouin zone. The
gap is direct at K point and about 7 eV [14].

It is of interest as well to compare the TPA in the sin-
gle layer and in the layered bulk system. The stablest bulk
structure corresponds to a so-called AA′ stacking where B
and N atoms alternate along lines parallel to the stacking
axis. The periodicity along this axis is twice the inter-planar
distance and the lattice parameters used in our simulation are
a = 2.5 Å and c/a = 2.6 [38]. In the bulk, there are then two
π and two π∗ bands and the gap becomes indirect between
a point close to K (valence band) and M (conduction band)
[39].

Another reason for choosing h-BN is the strong bound
excitons in the absorption spectrum of both the monolayer
and the bulk [14,31,32] since as mentioned before, we expect
the effect of the low threefold symmetry to be more visible
for very localized excitons. More practically, spectral features
corresponding to strongly localized exciton converge easily
with the numerical parameters within the ab initio framework
allowing for accurate and not too cumbersome calculations.
Furthermore, while in the absorption spectrum of the single
layer there is only a pair of degenerate excitons [14], in the
absorption spectrum of bulk h-BN there are two degenerate
pairs of excitons: one dark pair, which is the lowest in energy,
and one bright pair (Davydov splitting) [30,32]. Probing the
lowest excitons in bulk h-BN remains a challenge. We expect
that since the system has an inversion symmetry, the dark
states in the absorption become bright in the TPA and vice
versa, so that it may be possible to probe the lowest excitons in
the bulk h-BN in TPA. In Sec. IV, we show that this is indeed
the case. Finally, other systems of interest, such as the TMDs,
have the same lattice symmetry, so that results depending on
the symmetry properties can be generalized or can be used as
a starting point when studying those systems.

B. Tight-binding model

Many TB studies are dedicated to the electronic and optical
properties of h-BN (see, e.g., Refs. [14,40]). Here, we used a
simple model that describes top valence and bottom conduc-
tion bands close to the gap, and which is stable to catch the
most relevant physics of optical excitation in h-BN. It turns
out that the valence states close to the gap are almost com-
pletely centered on the nitrogen sites whereas the conduction
states are centered on the boron sites. For the monolayer, this
has allowed us to derive a very simple TB model characterised
by two parameters: an atomic parameter � related to the
atomic levels, +� for boron, and −� for nitrogen, and a
transfer integral between first neighbors −t, t > 0. For these
parameters, we used the same values of Ref. [14]. In this
model, the direct gap is exactly equal to 2�. Close to the gap
the electronic structure can be simplified and the electrons
in the conduction band (valence band) can be considered as
moving on the B (N) sublattice with an effective transfer
integral equal to t2/2�. The Wannier states associated with
the π and π∗ bands are then mainly localized on N and B
sublattices with small components ±(t/2�) on the other ones.
This discrete TB model has a continuous counterpart when
expanding the equations close to K in reciprocal space. The
band structure is then described within a Dirac model for
massless 2D electrons for graphene or continuous massive
Dirac model for h-BN. The simplest extension of the 2D TB
model to bulk h-BN consists in introducing transfer integrals
between nearest neighbors along the stacking axis [34,39].

C. One-photon absorption for independent single particles

To first order (one-photon processes), the coupling with
the electromagnetic field is described using the Hamiltonian
HI1 = −e p.A/m, where A is the vector potential varying
as e−iωt . To this order, p/m = v = 1

ih̄
[r,H ], where v is the

velocity operator and H is the Hamiltonian of the unperturbed
system. Using the tight-binding scheme, where |n〉 denotes a
π state at site n, we have vnm = 〈n|v|m〉 = (n − m)tnm/ih̄,
where tnm is the transfer integral between sites n and m.
Using our simple model for the h-BN sheet, we keep only first
neighbor integrals −t and the matrix element couples valence
states |mv〉 to conduction states |nc〉. Actually, as mentioned
above, the atomic states should be replaced by Wannier states:

|mv〉w � |mN 〉 + t

2�

∑
τ

|mN + τ 〉, (1)

|nc〉w � |nB〉 − t

2�

∑
τ

|nB − τ 〉 , (2)

where |mN 〉 and |nB〉 denote the genuine atomic states cen-
tered on the N and B atoms, and where the three τ vectors are
the first neighbor vectors nB − mN . The corresponding Bloch
functions are given by

|kv〉 � |kN 〉 + t

2�
f ∗(k)|kB〉, (3)

|kc〉 � |kB〉 − t

2�
f (k)|kN 〉 , (4)

where the |kN (B )〉 are the Bloch functions built from the
atomic orbitals and f (k) = ∑

τ eik.τ . At lowest order in
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t/� we have that 〈kc|v |kv〉 � 〈kB |v |kN 〉. Then following
Ref. [14] in the limit k → K, we obtain

〈kc|v · e |kv〉 � 〈±Kc|v · e | ± Kv〉 � vF (ex ± iey ) , (5)

where vF = 3
2abnt and abn is the distance between first neigh-

bor B and N atoms. e is the light polarization vector and
±Kc are the wave functions at the ±K points. Notice that the
optical coupling between valence and conduction bands is not
related here to the symmetry of the π states of nitrogen and
boron. Indeed, when considering polarization vectors within
the sheet plane, they behave as s states. The coupling is due to
the fact that the Wannier functions of the π and π∗ bands are
centered on different sublattices.

Within a one-particle model and neglecting the photon
wave vector, the one-photon absorption is proportional to the
transition probability W given by the Fermi golden rule:

W = 2π

h̄

e2

ω2
(E/2)2

∑
k

|〈kc|v · e |kv〉|2δ(Ekc − Ekv − h̄ω) ,

where E is the electrical field amplitude. In our model, the
valence and conduction bands are symmetric, Ekv

= −Ekc
,

so that Ekc − Ekv � 2� + t2

�
|f (k)|2, where |f (k)|2| is the

band energy of a triangular lattice with transfer integrals equal
to t2/� and centered on 2� + 3t2/� [14]. Neglecting the
dependence on k of the matrix element and replacing E = h̄ω

by 2� close to the gap, we recover the usual formula for the
absorption, proportional to the joint density of states [14].

D. Excitons

In the presence of electron-hole interactions, excitonic
effects come into play. They are usually treated using a
Bethe Salpeter formalism, which, within our TB formalism,
can be reduced to an effective Wannier-Schrödinger equation
for electron-hole pairs. In the present formulation, we are
not including the exchange term, therefore the singlet and
triplet excitons are degenerate. This fact does not affect our
results since triplet excitations are dark due the spin selection
rules and they do not contribute to the linear and nonlinear
response. Regarding the effect of the exchange term on the
singlet exciton this is negligible at zero momentum (while
it becomes important at finite momentum and for higher
excitons) [14,41].

Let |�〉 be an excitonic state. In our model for the mono-
layer, it can be written as

|�〉 =
∑

k

�k a+
kc

akv
|∅〉 , (6)

where a+
kc

and akv
are the usual creation and annihilation

operators for conduction and valence electrons and |∅〉 is the
unperturbed ground state.

The exciton wave function [Eq. (6)] can be found from the
solution of the so-called Bethe Salpeter equation which is just
an effective Schrödinger equation for electron-hole pairs:
(
Ekc

− Ekv

)
�kvc +

∑
k′v′c′

〈kvc|Keh|k′v′c′〉�k′v′c′ = E �kvc .

In this equation, Ekc
− Ekv

plays the part of a band energy.
The interaction term Keh contains the direct Coulomb contri-

bution. In real space, the excitonic Hamiltonian Heh reads

H
R,R′
eh = 〈R|H 0

eh|R′〉 + URδR,R′ (7)

where UR is represented by a Keldysh potential, that has been
parametrized as described in Ref. [14].

From the solution of [Eq. (7)] we can calculate the matrix
element between the exciton state 〈�| and the ground state
|∅〉, that are the ones entering the linear response.1 Using
the Wannier basis for electron and hole wave-functions it is
possible to express these matrix elements as [14]

W� ≡ 〈�|e · v|∅〉 = (it/h̄)
∑

τ

e · τ 〈�|τ 〉 . (8)

If we define a dipole matrix element d� = ∑
τ τ 〈τ |�〉, the

transition probability associated with exciton � is given by

P� = 2π

h̄

e2(E/2)2t2

E2
|e · d�|2 δ(E − E�) , (9)

where E� is the exciton energy. Since E� ∼ �, this probabil-
ity is of order (t/�)2. In the case of the BN monolayer, the
point symmetry is that of the C3v group and vectors transform
as the two-dimensional E representation of this group. The
exciton is therefore “bright,” d� �= 0, if |�〉 also transforms
as E. Notice also that only the local components of the wave
function are involved in d�. This is the discrete equivalent
of the classical Elliott theory: within a continuous model, the
matrix element is proportional to �(r = 0) [42,43]. In our
case, the ground-state exciton of the monolayer, discussed in
detail in Ref. [14], does transform as E. If the position of the
hole is fixed at the origin, the exciton wave function extends
principally on the first neighbors and its oscillator strength
is very large. �±

α ∝ e±i(2απ/3), these two circularly polarized
components can be associated with the one-dimensional rep-
resentations of the C3 group at K and K’ points. Finally,
the probability transition can be calculated using the Green
function G(z) = (z − Heh)−1, as solution of 〈∅|v G(z) v|∅〉,
for more detail see Ref. [44].

III. TWO-PHOTON ABSORPTION

The TPA is related to the nonlinearity in the attenuation of a
laser beam. Considering the intensity I of a beam propagating
along ẑ, at the lowest order beyond the linear regime, the
attenuation is a nonlinear function of I :

dI

dz
= −αI − βI 2 , (10)

where α is the linear absorption coefficient, and β is the two-
photon absorption coefficient (see, e.g., Ref. [45]).

In what follows, we detail how we evaluate the TPA
from either the third-order susceptibility extracted from ab
initio real-time dynamics (Sec. III A) and from the transition
probability of a two-photon process within a second-order
perturbation treatment (Sec. III B 1).

1The matrix element of the velocity operator does not depend on
the Coulomb potential, which has been assumed to be local, and
therefore commutes with the r operator.

165126-3



CLAUDIO ATTACCALITE et al. PHYSICAL REVIEW B 98, 165126 (2018)

A. Nonlinear susceptibilities from ab initio real-time dynamics

The TPA coefficient in Eq. (10) is related to the imaginary
part of the third-order response function χ (3)[45,46]:

β(ω) = 3ω

2ε0c2n2
0(ω)

Im[χ (3)(−ω; ω,ω,−ω)], (11)

where n0(ω) is the refractive index. In two-photon measure-
ments, the incoming laser frequency ω is set around half of
the excited state energy ω0 we want to probe 2ω � ω0. In this
frequency region, well below the band gap, n0(ω) is positive,
monotonic and slowly varying, therefore the peaks of β(ω)
originates only from the imaginary part of χ (3), that is, the
quantity we will extract from the real-time simulations [17].
In the real-time simulations, the electronic system is excited
by a monochromatic homogeneous field. The time evolution
of the system is given by the following equation of motion for
the valence-band states,

ih̄
d

dt
|vmk〉 = (

H MB
k + iE · ∂̃k

)|vmk〉 , (12)

where |vmk〉 is the periodic part of the Bloch states. In the
right-hand side of Eq. (12), H MB

k is the effective Hamilto-
nian derived from many-body theory that includes both the
electron-hole interaction and local field effects. The specific
form of H MB

k is presented below. The second term in Eq. (12),
E · ∂̃k, describes the coupling with the external field E in
the dipole approximation. As we imposed Born-von Kármán
periodic boundary conditions, the coupling takes the form of a
k-derivative operator ∂̃k. The tilde indicates that the operator
is “gauge covariant” and guarantees that the solutions of
Eq. (12) are invariant under unitary rotations among occupied
states at k (see Ref. [47] for more details).

We notice that we adopt here the length gauge, which
presents several advantages for ab initio simulations [17].
Comparing with the velocity gauge approach—that is used in
the tight-binding model—the second term of Eq. (12) includes
both the A and A2 contributions present in the velocity gauge.
The two gauges are equivalent as shown in Appendix.

From the evolution of |vmk〉 in Eq. (12) we calculate the
real-time polarization P‖ along the lattice vector a as

P‖ = − ef |a|
2π�c

Im ln
Nk−1∏

k

detS(k, k + q) , (13)

where S(k, k + q) is the overlap matrix between the valence
states |vnk〉 and |vmk+q〉, �c is the unit cell volume, f is
the spin degeneracy, Nk is the number of k points along the
polarization direction, and q = 2π/(Nka).

The polarization can be expanded in a power series of the
incoming field Ej as

Pi = χ
(1)
ij Ej + χ

(2)
ijkEjEk + χ

(3)
ijklEjEkE l + O(E4) , (14)

where the coefficients χ (i) are a function of the frequencies
of the perturbing fields and of the outgoing polarization. As
explained above, the two-photon absorption is proportional to
the imaginary part of the two-photon resonance third-order
susceptibility χ

(3)
ijkl (−ω; ω,ω,−ω): i.e., the outgoing polar-

ization has the same frequency ω of the incoming laser field,

as a result of the absorption of two and the emission of one
virtual photons.

In order to extract the χ (3) coefficients, we resort to a
technique similar to Richardson extrapolation [48]. In prac-
tice, we perform three different simulations with the incoming
electric field at frequency ω and intensities corresponding to
the amplitudes E , E/2 and E/4. The polarization resulting
from each simulation can be expanded in the field as

P(E ) = χ (1)E + χ (2)E2 + χ (3)E3 + O(E4), (15)

P
(E

2

)
= χ (1) E

2
+ χ (2) E2

4
+ χ (3) E3

8
+ O(E4), (16)

P
(E

4

)
= χ (1) E

4
+ χ (2) E2

16
+ χ (3) E3

64
+ O(E4) . (17)

Then we combine the three polarizations so to cancel out the
linear and quadratic contributions and we obtain

χ (3) = 8

3

P(E ) − 6P
(E

2

) + 8P
(E

4

)
E3 . (18)

The calculation is repeated for all ω in the desired range of
frequencies.

The level of approximation of the so-calculated suscepti-
bilities depends of the effective Hamiltonian that appears in
the right-hand side of Eq. (12). Here we work in the so-called
real-time Bethe-Salpeter framework that was introduced in
Ref. [49]. In this framework, the Hamiltonian HMB

k reads

HMB
k ≡ H KS

k + �Hk + Vh(r)[�ρ] + �SEX[�γ ] , (19)

where H KS
k is the Hamiltonian of the unperturbed (zero-

field) Kohn-Sham system [50], �Hk is the scissor operator
that has been applied to the Kohn-Sham eigenvalues, the
term Vh(r)[�ρ] is the real-time Hartree potential [17] and
is responsible for the local-field effects [51] originating from
system inhomogeneities. The term �SEX is the screened-
exchange self-energy that accounts for the electron-hole in-
teraction [51], and is given by the convolution between the
screened interaction W and �γ . In the same equation,

�ρ ≡ ρ(r; t ) − ρ(r; t = 0)

is the variation of the electronic density and

�γ ≡ γ (r, r′; t ) − γ (r, r′; t = 0)

is the variation of the density matrix induced by the external
field E . Equations (19) and (12) are a generalization of time-
dependent Hartree-Fock ones, where the exchange is screened
by the static dielectric constant, calculated within random
phase approximation [51] and the single-particle levels have
been shifted to reproduce quasiparticle levels obtained from
G0W0 calculations. In the limit of small perturbation, these
equations reproduce the optical absorption calculated with
the standard G0W0 + BSE approach [51], as shown both
analytically and numerically in Ref. [49].

B. Tight-binding model

In tight-binding model, the second order (two-photon pro-
cesses) appears in the development of (p − eA)2/2m. In the
second-order perturbation theory with respect to A, there are
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two terms. The first one is related to the linear term (p − eA)
treated in a second-order perturbation theory, and the second
one comes from the A2 term treated to first order. The latter
one is frequently considered as nonrelevant in the optical
regime, which is not the case here as explained below. Let
us begin with the first contribution.

1. Second-order perturbation theory

To second order, the transition probability Pi→f from an
initial state |i〉 towards a final state |f 〉 is given by [52]

Pi→f = 2π

h̄

∣∣∣∣∣∣
1

4

∑
j �=i,f

WfjWji

Ei − Ej + h̄ω

∣∣∣∣∣∣
2

δ(Ef − Ei − 2h̄ω) ,

(20)
where Wij is the one-photon matrix element towards the
intermediate state j . A convenient approximation consists
here to replace Ej by a mean energy between the initial energy
and the exciton levels close to the bottom of the conduction
band [12,53,54]. The sum in the numerator can then be freely
performed, and we are back to a situation similar to the first
order calculation, where now the relevant matrix element is
equal to 〈f |W 2|i〉. Since we are looking at transition close
to the gap, h̄ω ∼ �, and the denominator is also of order �.
The relevant matrix element is equal to 〈�|(v · e)(v · e)|∅〉. As
seen above, the first velocity operator operating on the ground
state generates electron-hole states. Therefore the second one
couples different electron-hole states. Since it is related to
the kinetic energy part, it operates separately on the electron
state and on the hole state, and therefore gives contributions
proportional to the velocity of the one-particle states. The
corresponding matrix elements in real space are equal to
− i

h̄
t2

�
a, where a is a first neighbor distance on the triangu-

lar lattice. The final complete matrix element 〈�|(v · e)(v ·
e)|∅〉/� is therefore of order t3/�2. There is no reason that it
vanishes identically for the ground state exciton. Actually the
(tensorial) product of velocity operators transform as E × E,
which also contains E. In the continuous limit, however, it can
be shown [12] that 〈�|v ⊗ v|∅〉 ∼ ∇�(r )|r=0, which implies
that only p states are bright. We are in a typical situation
where precise selection rules based on the exact crystalline
symmetry allow transitions, which become forbidden if an
approximate (higher) spherical symmetry is assumed [9].

2. A2 term

In principle, the A2 term is local and its influence is negligi-
ble in the optical regime where the wave length is much larger
than interatomic distances. At least is this true when using the
full Hamiltonian. In band theory, we project the Hamiltonian
on the subspace defined by the number of bands taken into
account, and the correct method to include gauge-invariant
coupling with the electromagnetic field is to make the so-
called Peierls substitution. This generates nonlocal coupling
at all orders in A. More precisely in our case, we make the
substitution

tnm → tnmeie(n−m)·A/h̄ . (21)

To first order, we can check that this generates the coupling
HI1 used above, i.e.,

〈n|HI1|m〉 = i

(
e

h̄

)
(m − n) · A tnm , (22)

and therefore,

〈∅|HI1|�±〉 = i
eA t

h̄

∑
τ

(τ · e) �±
τ (23)

∑
τ

(τ · e)�±
τ = e · d�± = −3

2
abn(ex ± iey )|�±

τ | , (24)

where abn = |τ | and �±
τ is the amplitude 〈τ |�±〉 of the

circularly polarized state defined previously. To second order,
we obtain

〈n|HI2|m〉 = −1

2

(
e

h̄

)2

[(m − n) · A]2tnm ,

from which we deduce that

〈∅|HI2|�±〉 = −1

2

(
eA

h̄

)2

t
∑

τ

(τ · e)2�±
τ (25)

∑
τ

(τ · e)2〈τ |�+〉 = e · ¯̄q · e = 3

8
a2

bn(ex − iey )2|�±
τ | ,

(26)

where ¯̄q�± = ∑
τ (τ ⊗ τ )�±

τ is a quadrupolar matrix element.
The last result is remarkable. It shows first that the matrix

element is similar to that of the first order term and therefore
that the corresponding two-photon process should be strongly
visible. Then we see that the favored circular polarization
for the two-photon process is the opposite of that of the
one-photon process. Finally, this direct contribution to first
order in A2 is stronger than the contribution discussed above
coming from the second order perturbation theory. The latter
one is of order t2/�2 less than the former one. It is interesting
also to analyze what happens in reciprocal space. Then the
Peierls substitution amounts to replace k by k − eA/h̄ and
the nonvanishing A2 contributions appear only if f (k) is
expanded up to k2 terms. In the context of studies on graphene,
this corresponds to including so-called warping effects. In
the context of k · p methods, such effects would also appear
if coupling with other conduction and valence bands are
included.2

3. One- and two-photon absorption in bulk h-BN

As mentioned previously and, as far as the band structure
is concerned, the extension to three dimensional stackings of
BN layers is fairly simple. On the other hand, the excitonic
formalism should also be extended to the case where there
are several atoms per unit cell. In practice, if we continue to
define exciton states using the separation between electrons
and holes, we must add labels indicating in which type of
plane they are. The general corresponding TB formalism is

2M. Glazov (private communication); this is also discussed in
Ref. [15] for the case of TMD.
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described elsewhere [34], but if we are interested in the ground
state excitons, the discussion becomes simpler. Actually, the
1s exciton of the monolayer remains confined within a single
plane in bulk h-BN if the hole is fixed in this plane [30].
Along the 0z stacking direction, we have therefore to treat
a problem similar to that of a Frenkel exciton, where the 2D
exciton plays the part of an atomic excitation. We can then
build two different excitonic Bloch functions along the 0z

stacking direction, which we call |�A〉 and |�A′ 〉. Introducing
interplanar transfer integrals in the TB model couples these
two states, and since there is an inversion center between any
pair of A and A′ planes the final exciton eigenstates should be
the usual bonding and antibonding states |�A〉 ± |�A′ 〉. The
1s state of the monolayer becomes two split states (Davydov
splitting) separated by a small energy (see also Refs. [34,55]).
Ab initio calculations show that the bonding state is the ground
state. Since the threefold symmetry is preserved, the two states
are still themselves twofold degenerate.

Let us now look at the one-photon absorption process.
We still consider a polarization e parallel to the planes. The
total d� dipole for the AA′ stacking is therefore equal to
d�A

± d�A′ . On the other, due to the inversion symmetry
d�A′ = −d�A

and finally the dipole vanishes for the bonding
state whereas the upper antibonding state is bright. In the case
of the two-photon process, we can use a similar argument,
but since now ¯̄q�A′ = ¯̄q�A

, the situation is reversed: the bright
exciton is the lower bonding one.

IV. RESULTS AND DISCUSSION

A. Ab initio calculations

All operators in Eqs. (12) and (19) are expanded in the
basis set of the Kohn-Sham band states which can be obtained
from a standard DFT code. Specifically, we used the QUAN-
TUM ESPRESSO code [56] where the wave functions are ex-
panded in plane waves with a cutoff of 60 Ry and the effect of
core electrons is simulated by norm-conserving pseudopoten-
tials. A 12 × 12 × 4 (12 × 12 × 1 for the single layer) k-point
shifted grid has been used to converge the electronic density.
The band states are obtained from the diagonalization of the
Kohn-Sham eigensystem. In order to simulate an isolated
h-BN layer, we used a supercell approach with a layer-layer
distance of 20 a.u. in the perpendicular direction. The scissor
operator entering Eq. (19) is chosen so as to reproduce the
position of the first bright excitons in the absorption spectra
of bulk and monolayer h-BN from Ref. [31].

We expanded |vmk〉 in terms of Kohn-Sham eigenstates
and we evolved the coefficients of the bands between 2 and
7 in the monolayer (7 and 12 in the bulk) in Eq. (12). The
dielectric constant that enters in the calculation of �SEX was
calculated using 40 bands and 3 Ha cutoff both for the bulk
and the monolayer. We used a 15 × 15 × 5 (12 × 12 × 1 in
the single layer) k-point �-centred sampling in the real-time
simulations, which guarantee the convergence of the first
peak in the spectra.3 Equation (12) is solved numerically [57]
for a time interval of 120 fs using the numerical approach

3Notice that the convergence parameters used in this work are
sufficient to converge the spectra shape, while its absolute position

FIG. 1. Two-photon absorption and imaginary part of the dielec-
tric constant in single layer (a) and bulk h-BN (b), obtained from
real-time ab initio dynamics. The two curves have been rescaled in
such a way to have the same intensity at the maximum position.
Vertical lines in (b) indicate the position of the maximum.

described in Ref. [47] (originally taken from Ref. [58]) with a
time step of �t = 0.01 fs, which guarantees for numerically
stable and sufficiently accurate simulations. A dephasing term
corresponding to a finite broadening of about 0.05 eV is intro-
duced in order to simulate the experimental broadening [17].

In Fig. 1(a), the two-photon resonant third-order suscep-
tibility at χ (3)

yyyy (−ω; ω,ω,−ω) proportional to the TPA is
compared with the imaginary part of the dielectric constant
ε2(ω) for the monolayer h-BN. To facilitate the comparison,
there is a factor 2 between the energy scale of the spectra.
The first peak of the TPA is found exactly at half the photon
energy of the first peak of the imaginary part of the dielectric
constant. That means that the two- and one-photon absorption
are resonant with the same exciton. In panel (b), the same
comparison is shown for bulk h-BN. In this case, the first peak
of the TPA is found 0.076 eV below half the photon energy of
the first peak of ε2. That means that the two-photon absorption
is resonant with an exciton at lower energy than the one of
one-photon absorption. We also obtained ε2(ω) by solving the
standard GW+Bethe-Salpeter equation [59] and diagonalized
the excitonic two-particle Hamiltonian. We found, in agree-
ment with previous studies [32], that the lowest exciton in
the linear optical response of bulk h-BN is indeed dark. The

could require a finer k-point grid and larger distance between the
layers. These effects are compensated by the choice of the scissor
operator.
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position of this dark exciton is consistent with the splitting
deduced from the TPA calculations. The ab initio results are
then fully consistent with the discussion in Sec. III B 3. In the
monolayer, the ground-state exciton is visible in both one- and
two-photon absorption. Instead, in bulk AA′ BN, the lowest
exciton (pair) is dark in linear optics but becomes visible in
two photon absorption. In fact, as explained in Sec. III B 3,
the two lowest exciton pairs in the bulk are due to the bonding
and antibonding combination of excitons in each layer and
thus obey different selection rules.

Experimentally, the TPA has been investigated for bulk
h-BN in Ref. [8] by two-photon photoluminescence excitation
(PLE) spectroscopy. In agreement with our results, the lowest
peaks in one- and two-photon PLE spectra do not coincide,
indicating they correspond to different excitons. However,
the peak in the one-photon PLE is below the peak in the
two-photon PLE spectrum, apparently contradicting our
findings. On the other hand, the experimental results indicate
as well that phonons are playing a crucial role and the
peak in the two-photon PLE spectrum is interpreted as a
phonon-assisted two-photon absorption, which could explain
the difference with our simulations that do not include phonon
scattering. Considering the possible phonon modes that can
contribute to phonon assisted two-photon excitations, we
estimate a shift of 150 meV that could indeed account for the
observed difference. In Sec. IV C, we further discuss these
experimental results and their interpretation in connection
with the selection rules.

Finally, broader features at higher energies are visible in
the spectra. Those features are known to originate from both
in-plane excitons with different symmetries [14] and from
interplanar excitations. Notice that those peaks may not be
fully converged with the parameters of the simulation.4

B. Tight-binding calculations

1. Monolayer

In the case of the monolayer, we have used the TB Hamil-
tonian (7) with the parameters determined in Ref. [14] and
have calculated the one-photon absorption spectrum from
the Green function 〈I |G(z)|I 〉, |I 〉 = ∑

τ (τ · e)|τ 〉, which is
actually independent of the choice for e. This is conveniently
done using the recursion method. A cluster of 4 × 104 atoms
is used and 100 recursion levels are calculated. The spectrum,
proportional to the imaginary part of the optical dielectric
constant is also proportional to the imaginary part of the Green
function. In the presence of excitonic effects, the excitons
appear as bound states below the continuum. We have checked
that they appear at the same positions as those determined
from a full diagonalization of the Hamiltonian [14]. Further-
more, by comparing the optical spectrum to that obtained from
a Green function matrix element without any particular sym-
metry (here 〈τ |G|τ 〉) so that all excitons have a finite weight,

4Excitons at higher energy are more difficult to characterize be-
cause they require a denser k-point sampling. As specified above,
the k-point samplings are chosen to guarantee the convergence of the
first peak in the spectra that are the focus of this study.
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FIG. 2. (a) Excitonic joint density of states of the 2D BN mono-
layer; (b) zoom in the exciton region; top: excitonic joint density;
middle: one-photon optical spectrum; bottom: two-photon optical
spectrum. For convenience, a broadening of 10−2 eV has been
applied, via the imaginary part of z in the Green functions. The A1

exciton is only dark in the one-photon spectrum. The origin of the
energy scale is taken at the position of the lowest exciton, which can
also be labeled as a 1s exciton whereas the other ones derive from 2s

and 2p states. Full ab initio calculations including exchange effects
predict the A1 level to be at a higher energy [14].

we can check the selection rules: the nondegenerate exciton of
symmetry A1 is actually dark in the optical response (Fig. 2).

In the case of two-photon absorption, the calculation of
the main contribution due to HI2, the quadratic term in A,
can be calculated in a similar way; it suffices to modify the
matrix element of the Green function, by taking as initial
vector |I ′〉 = ∑

τ (τ · e)2|τ 〉. The ground state exciton is then
found to be bright as expected. This is in agreement with the
ab initio spectrum in Fig. 1(a) where the lowest peak in the
TPA and optical absorption coincides.

2. Bulk AA′

We have generalised the TB formalism to the 3D AA′
stacking. Once the appropriate Hamiltonian is defined the
recursion method can again be used. Here, the cluster con-
sidered contains 8 × 104 atoms and 100 recursion levels are
calculated. According to our previous discussion, to study the
two split ground-state excitons, we have now to use starting
states |I 〉, which are bonding and antibonding combinations
of excitons in A and A′ planes. The results are shown in Fig. 3.
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FIG. 3. One- (green) and two-photon (blue) absorption spectrum
of AA′ h-BN. The results are in agreement with the ab initio results
in Fig. 1(b).

We find that the lower bonding state is dark for one-photon ab-
sorption and bright for two-photon absorption, and conversely
for the upper antibonding state. Both the excitons position
(with respect to the lowest exciton) and Davydov splitting
agree with the ab initio results [Fig. 1(b)]. In fact, in both
calculations, the lowest exciton of the TPA spectrum is about
0.1 eV below the lowest exciton of the absorption spectrum.
Further, in the TB calculations a second peak is visible in
the TPA at about 0.3 eV above the lowest peak. Similarly,
in the ab initio TPA spectrum, a strong feature is visible at
about 0.5 eV above the lowest peak, which is absent in the
absorption spectrum. This 0.2 eV difference can be attributed
to neglecting of the exchange term in the TB model. In fact,
an underestimation of the energy of higher excitations has also
been also observed for this model in Ref. [14]. As well, as we
remarked before, the position of higher peaks in the ab initio
spectra may not be fully converged with the parameters of
the simulation, though improving the convergence parameters
would likely increase the difference between the TB and ab
initio results rather than reduce it.5

To summarize, the two approaches show consistently that
the ground-state exciton, which is usually labeled as 1s exci-
ton, is bright in both the monolayer and bulk TPA spectra.
For the bulk, the comparison between the one-photon and
two-photon spectra provides a measure of the Davydov split-
ting between the two 1s excitons, which we estimate to be
�0.1 eV.

C. Selection rules

Let us summarize the selection rules which apply to h-BN
as well as to TMD. We will briefly discuss the hydrogenic
model, that although inadequate [10], is the first approxima-
tion used to interpret optical spectra, then we consider the full
symmetry of h-BN.

1. One-photon selection rules

We consider first the case of the monolayer and Wannier-
Mott excitons within the continuous hydrogenic model. The

5In fact, as higher energy excitons are more delocalized, their
accurate description may require a denser k-point sampling. If the
k-point sampling is too small, as it may be the case here, the excitons
are artificially localized and their binding energy overestimated.

exciton wave function is written in the form �(rh, re ) =
φk0c(re )φk0v (rh)g(re − rh), where the φk0 are the single par-
ticle Bloch functions at point k0 corresponding to the con-
sidered direct gap, and g(r), the envelope function, is the
solution of the hydrogeniclike excitonic equation. Optical
one-photon transitions are then only allowed for s states. On
the other hand, the direct optical transition is allowed since the
standard matrix element varies as vF (ex ± iey ) [see Eq. (5)],
corresponding to polarizations σ±, depending on the valley K

or K ′. These rules are weakened if the dependence on k of the
matrix elements is taken into account [16].

The excitonic states characterized by the wave function
�R = 〈R|�±〉 for the monolayer can then be classified
according to the representations of the C3v point group.
Among the three representations A1, A2, and E, only the
two-dimensional representation E is optically active, as
discussed in Sec. II D. Let us precise the correspondence
between the continuous description in terms of s, p, . . . states
characterising the symmetry of the envelope function and
the present description using the discrete crystal symmetry.
For that, we have to include the symmetry of the product
of φk0c(re )φk0v (rh) at K point. The relevant group of vector
K is the C3 point group so that in our case this product is
multiplied by e±2iπ/3 under a rotation of ±2π/3. For a level
of symmetry characterized by an angular momentum m, the
envelope function of the corresponding exciton states varies
as e±imϕ .

When m �= 0, the level is twofold degenerate and the full
wave function varies as ei(1±m)ϕ . The same is true at K ′
point provided ϕ is changed into −ϕ. So finally the level
shows a fourfold degeneracy. Since the crystal symmetry is
lower than the continuous symmetry the degeneracy is lifted.
Consider the p states, for example, m = ±1. It has been
shown in Ref. [14] that the four p levels decompose according
to the E + A1 + A2 representations. These rules are fairly
well-known [11,13–16] but have been recently rediscovered
and discussed in detail [60,61].

Then, if intervalley coupling is accounted for, the ±1 states
combine to produce a global E symmetry, whereas the mtot =
0 states combine to form A1 and A2 states. Now, only E states
are one-photon bright, since the velocity also transforms as E.
The ground-state 1s exciton is obviously bright and forms an
E state with a very strong oscillator strength, but we see that
the 2p states give rise also to a bright exciton.

Consider now the bulk AA′ stacking. According to the dis-
cussion given in Sec. III B 3, we have just to consider a linear
superposition of monolayer E states. For this stacking, this
gives rise to Davydov pairs of bonding and antibonding states,
and only antibonding states are bright. There are therefore
two types of selection rules for such lamellar structures for a
polarization in the planes. The first one ensures the existence
of a dipole within the planes while the second depends on the
constructive or destructive arrangement of the dipoles in the
stacking.

2. Two-photon selection rules

Within the continuous model, the general statement con-
cerning selection rules is that only p states are visible,
corresponding to ∇g(r) �= 0 [12]. What is changing here is
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FIG. 4. Allowed transitions towards the lowest excitonic states
with circularly polarized light. (Left) Monolayer; the �+(�−) is
excited with a one-photon (two-photon) process, where �± denote
the two circularly components of the degenerate 1s exciton. (Right)
Bulk AA′ stacking; there are now two antisymmetric (AS, odd,
one-photon allowed) and symmetric (S, even, two-photon allowed)
degenerate states, separated by a Davydov splitting.

the symmetry of the coupling with light, which has now a
tensorial character and varies therefore as e±iϕe±iϕ for the
monolayer. If the rule of m modulo 3 is added, this means that
all mtot values are allowed. In the discrete case, it varies as
E ⊗ E = E + A1 + A2, which indicates also that all excitons
are in principle bright. We have seen in particular that the
oscillator strength for the ground state 1s exciton is found
actually to be very strong. In the case of the bulk AA′ stacking,
the bright excitons in the Davydov pairs are the bonding
states. This is a familiar selection rule: in the presence of
a symmetry center, odd (even) states are one(two)-photon
allowed. Then the difference with the one-photon selection
rules is less important than in the usual continuous model, but
at least in the case of the AA′ stacking combining both pro-
cesses can be used to discriminate between the components
of the Davydov doublets (Fig. 4). The two-photon selection
rules for the monolayer agree with those derived by Xiao
et al. [13] who, however, do not discuss the possibility of
the splitting of 2p states. Since they consider only circular
polarizations, they do not discuss either the possibility of
exciting m = 0 (or A1, A2) states, but the corresponding os-
cillator strengths should be weak since they imply intervalley
interactions.

3. Experimental results

One of our main result is the prediction that the ground-
state 1s exciton, which is bright in one-photon absorption
should be bright also in two-photon processes, with opposite
circular polarizations. The best experimental evidence is cer-
tainly the observation in TMD of resonant second harmonic
generation (SHG) [62–64]. In the absence of symmetry center,
SHG is allowed for a dichalcogenide layer and it is actually
found to be strongly resonant when the 1s level is excited in a
two-photon process. Furthermore, the circular polarization of
the 2ω emission is actually opposite to that of the excitation
[13,65]. In the case of h-BN, only two-photon PLE spectra
are available for the bulk phase [8]. As already commented in

Sec. IV A, they do show a peak slightly above the one-photon
main peak whereas we predict a peak below it. The situation
is complicated by the fact that the gap is indirect. This is
important for the interpretation of luminescence spectra but
it is suspected that absorption spectra are governed by direct
transitions [33]. The difference between one-photon and two-
photon spectra has been interpreted as the signature of s and
p states, respectively. The present analysis shows that this is
probably not true because of the nonconventional selection
rules. Another argument is that the 2p and 2s are predicted
to be well above the 1s states (about 1 eV for the monolayer,
0.5 eV for the bulk) and cannot therefore be involved in
the observed splitting.6 But the precise interpretation of the
observed splitting remains to be correlated with the calculated
Davydov splitting.

To summarize, we have performed TB and ab initio cal-
culations of two-photon absorption in monolayer and bulk
boron nitride and found that at low energy, the spectra are
dominated by excitonic effects. The ground-state 1s exciton
is predominant—as for one-photon absorption—indicating
strong deviations from the selection rules based on the hy-
drogenic model, which are frequently employed to interpret
the experimental spectra. For both the bulk and 2D case, we
have explained the selection rule within a simple TB model
that takes into account the crystalline symmetry. Finally, the
result obtained for the bulk indicates that one can measure
the Davydov splitting in multilayer stackings with inversion
symmetry of h-BN and 2D crystals with the same point-group
symmetry.
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APPENDIX: ON THE EQUIVALENCE OF LENGTH AND
VELOCITY GAUGE IN THE TIGHT-BINDING MODEL

Optical properties are usually treated using the so-called
velocity gauge: p is replaced by p − eA. As discussed in
the main text, this implies that to calculate the response to
second order in A we have to calculate a first-order pertur-
bation term in A2 and a second-order perturbation term with
respect to A. In the length gauge where the interaction term
in the Hamiltonian is equal to e r · E , there is no quadratic
term. Since approximations are made, it is useful to check

6The 2p state seems inaccessible to experiments because it is at too
high energy and we are not aware of experiments that measure this
state in h-BN.
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gauge invariance. If we refer to the discussion made in the
velocity gauge in Sec. III B 1, we have therefore just to
calculate the second order perturbation term proportional to
�〈�|(r · e)(r · e)|∅〉. We have used the fact that E = iωA
and that ω � �. The first r generates electron-hole pairs
rnma+

nc
amv

|∅〉. To lowest order in t/�, rnm vanishes, and we
must use the improved Wannier basis defined in Eqs. (1) and
(2), and then rnm � −(t/2�)(n − m), where (n − m) is a
first neighbor vector τ , so that

r|∅〉 � − t

2�

∑
τ

τ |τ 〉.

The second r operator connects intraband conduction and
valence states, and to lowest order in t/� it can be checked
that r|τ 〉 � τ |τ 〉, so that, finally,

�〈�|(r · e)(r · e)|∅〉 � − t

2

∑
τ

(τ · e)2�±
τ ,

which is exactly the result derived in Eq. (25). Thus to
the lowest order, the second-order perturbation theory in the
length gauge reproduces the first-order term as a function of
(A · e)2 in the velocity gauge. The general equivalence of both
gauges for nonlinear responses of higher order has also been
discussed recently in Ref. [66].
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