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ARTICLE

TGFβR signalling controls CD103+CD11b+ dendritic
cell development in the intestine
C.C. Bain 1,10, J. Montgomery1, C.L. Scott1,2,3, J.M. Kel4, M.J.H. Girard-Madoux4, L. Martens 3,5,

T.F.P. Zangerle-Murray1,11, J. Ober-Blöbaum4,6, D. Lindenbergh-Kortleve7, J.N. Samsom7, S. Henri8, T. Lawrence8,

Y. Saeys5,9, B. Malissen 8, M. Dalod 8, B.E. Clausen 4,6 & A. McI. Mowat1

CD103+CD11b+ dendritic cells (DCs) are unique to the intestine, but the factors governing

their differentiation are unclear. Here we show that transforming growth factor receptor 1

(TGFββR1) has an indispensable, cell intrinsic role in the development of these cells. Deletion

of Tgfbr1 results in markedly fewer intestinal CD103+CD11b+ DCs and a reciprocal increase in

the CD103−CD11b+ dendritic cell subset. Transcriptional profiling identifies markers that

define the CD103+CD11b+ DC lineage, including CD101, TREM1 and Siglec-F, and shows that

the absence of CD103+CD11b+ DCs in CD11c-Cre.Tgfbr1fl/fl mice reflects defective differ-

entiation from CD103−CD11b+ intermediaries, rather than an isolated loss of CD103

expression. The defect in CD103+CD11b+ DCs is accompanied by reduced generation of

antigen-specific, inducible FoxP3+ regulatory T cells in vitro and in vivo, and by reduced

numbers of endogenous Th17 cells in the intestinal mucosa. Thus, TGFβR1-mediated sig-

nalling may explain the tissue-specific development of these unique DCs.
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Dendritic cells (DCs) are central to the regulation of
immune function in the intestine. They control whether
tolerance or active immunity is induced by different kinds

of antigens, specify the nature of responses that occur and
imprint primed T and B cells with the selective ability to return to
the intestinal mucosa1. Although most of these events take place
when DCs encounter naive lymphocytes in the draining mesen-
teric and colonic lymph nodes2–4, the relevant DCs are derived
from the Peyer’s patches (PPs) or lamina propria (LP) of the
mucosa itself, where they capture antigen before emigrating to
lymph nodes in afferent lymphatics5. Therefore, exploring the
biology of mucosal DCs is essential to understand the cellular
basis of immune responses in the intestine.

Work by ourselves and others has revealed heterogeneity
among DCs in the mouse intestine, with four major subsets based
on the expression of CD103 and CD11b6–8. These cells include a
prominent population of CD103+CD11b+ DCs, a subset unique
to the intestine and its draining lymphoid tissues5. Intestinal
CD103+CD11b+ DCs are functionally and ontogenically distinct
from the Batf3/IRF8-dependent, XCR1+CD103+CD11b− DCs
with cross-presenting activity in the gut and elsewhere9–11,
commonly referred to as conventional DC subset 1 (cDC1)12.
However, the development of CD103+CD11b+ DCs is yet to be
dissected fully. Several factors have been reported to be important
for the homeostasis of these cells including colony-stimulating
factor 2 (CSF2)13, Notch-214, IRF48, 15, retinoic acid16 and signal
regulatory protein α (SIRPα)17. However, whether these factors
link to a common developmental pathway and why this unusual
population is restricted to the intestine are unclear.

Transforming growth factor β (TGFβ) is abundant in the
intestine and induces the expression of CD103 on intestinal
intraepithelial lymphocytes and regulatory T (Treg) cells with
effector function18, 19. TGFβ is also reported to influence the
development and/or homeostasis of several myeloid cell popula-
tions, including Langerhans cells and microglia20–23. However,
the role of TGFβ-mediated signalling in DC development in the
intestinal mucosa has not been addressed directly. Using refined
approaches we have developed to identify DC subsets and other
CD11c+ cells in the intestine6, 24, we show here that mice lacking
the TGFβR1 on CD11c+ cells have a selective and cell-intrinsic
defect in CD103+CD11b+ DCs in the intestine. By developing a
panel of markers that defines this lineage, we show that the loss
of CD103+CD11b+ DCs reflects a defect in differentiation
from a CD103−CD11b+ intermediate, rather than just the
absence of CD103 expression. The lack of TGFβR1-dependent
CD103+CD11b+ DCs is accompanied by defective generation
of antigen-specific, inducible FoxP3+ Treg cells in vitro and
in vivo, and by reduced numbers of Th17 cells in the
intestinal mucosa. Thus, TGFβ-mediated signalling is indis-
pensable for the phenotypic and functional imprinting of LP
CD103+CD11b+ DCs.

Results
T-cell-dependent inflammation in CD11c-Cre.Tgfbr1fl/fl mice.
To explore the role of TGFβ in intestinal DC development, we
crossed Tgfbr1fl/fl mice with Itgax-Cre mice, which constitutively
express Cre recombinase under control of the CD11c promoter25

(referred to here as CD11c-Cre). Although CD11c-Cre.Tgfbr1fl/fl

mice (Cre+) and non-transgenic Tgfbr1fl/fl littermates (Cre−) were
born at Mendelian frequencies, Cre+ mice developed a wasting
disease and died before 20 weeks of age (Figs. 1a, b and Sup-
plementary Fig. 1a). This was associated with activation of splenic
T cells, inflammation of the stomach, colon, liver and lungs,
where there were leukocytic infiltrates and the production of pro-
inflammatory cytokines (Supplementary Fig. 1b–f). These

findings are consistent with a previous report of wasting disease
in CD11c-Cre-Tgfbr2fl/fl mice26 and highlight the need for TGFβ
signalling in control of inflammatory pathology.

As some T cells may exhibit functional Cre activity in CD11c-
Cre mice25 and disruption of TGFβ signalling in T cells is known
to provoke a lethal inflammatory disease27, 28, we examined
whether lack of TGFβR1 signalling in T cells might contribute to
the inflammatory disease in CD11c-Cre.Tgfbr1fl/fl mice. Analysis
of T cells purified from the spleen of these mice demonstrated
clear Cre-mediated deletion of genomic Tgfbr1 (Supplementary
Fig. 1g), whereas ~ 8% of circulating T cells and ~ 12% of CD3+

small intestinal LP (SILP) T cells were labelled in CD11c-Cre.
Rosa26-LSL-YFP mice (Supplementary Fig. 2a, b). Thus, Cre-
mediated recombination occurs in T cells in the CD11c-Cre
strain. Furthermore, CD3+ T cells from Cre+ mice transferred the
lethal wasting disease into congenic wild-type (WT) recipients,
with expansion and activation of donor CD4+ and CD8+ T cells,
gastritis and expression of messenger RNA for proinflammatory
mediators in the stomach (Figs. 1c–f). In contrast, T cells from
Cre− littermates showed only limited and transient expansion in
recipient mice and these animals remained healthy. Of note, a
significant fraction of T cells transferred from Cre+ donors had
lost the Tgfbr1 gene (Supplementary Fig. 1g) and crossing the
CD11c-Cre.Tgfbr1fl/fl mice on to the Rag1−/− background
prevented wasting disease, confirming that the pathology
involved deletion of the TGFβR1 in T cells.

CD11c+ myeloid cells prevent T-cell-mediated colitis. Although
these findings implied that TGFβR1 signalling in T cells normally
prevents inflammatory disease, previous work suggested that the
wasting disease seen in CD11c-Cre-Tgfbr2fl/fl mice was dependent
on DCs26. To investigate whether this might also contribute to
the development of inflammatory disease in CD11c-Cre.Tgfbr1fl/fl

mice, we transferred total T cells from WT (CD45.1) donors into
Rag1−/− CD11c-Cre.Tgfbr1fl/fl mice (hereafter referred to as
Rag1−/− Cre+) or Rag1−/− Tgfbr1fl/fl mice (hereafter referred to
as Rag1−/− Cre−) (Fig. 2a). Strikingly, following T-cell transfer,
Rag1−/−Cre+ recipient mice showed marked growth retardation
compared with Rag1−/−Cre− control mice (Fig. 2b), together with
severe colitis associated with accumulation of CD4+ T cells and
expression of mRNA for tumour necrosis factor-α, inducible
nitric oxide synthase, interferon (IFN)-γ and interleukin (IL)-17A
(Figs. 2b–f). Thus, the absence of TGFβR1-mediated signalling
in CD11c-expressing cells other than T cells also contributes to
T-cell-driven colitis in CD11c-Cre.Tgfbr1fl/fl mice.

TGFβR1 signalling controls intestinal DC homeostasis. We
reasoned that this inflammation may reflect a role for the
mononuclear phagocytes that contribute to the generation and/or
differentiation of pathogenic T cells in the intestine and thus we
explored the populations of DCs and macrophages present in the
mucosa of Rag1−/−Cre+ mice. As has been found in immuno-
competent mice6, 7, 29, the SILP of Rag1−/−Cre− mice contained
four subsets of bona fide CD11c+MHCII+CD64− DCs, dis-
tinguished by their differential expression of CD103 and CD11b
(Fig. 3a and Supplementary Fig. 2a). The absolute numbers and
proportions of DCs co-expressing CD11b and CD103 were
severely reduced in Rag1−/−Cre+ mice compared with Rag1−/−Cre−

or Cre+Tgfbr1fl/+ littermate controls, with parallel increases in the
CD11b+CD103− DC subset (Figs. 3a, b and Supplementary
Fig. 2b). CD103+CD11b− and CD103−CD11b− DCs were present
at comparable frequencies and numbers in Rag1−/−Cre+ and Cre−

mice, although as with the remaining CD103+CD11b+ DCs,
CD103+CD11b− DCs showed reduced levels of CD103 expression
in Cre+ mice (Figs. 3a, b). As the small CD103−CD11b− subset is
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variable in size, is phenotypically heterogeneous and may derive
from isolated lymphoid follicles7, it has not been ascribed specific
functions in the LP and it is not explored further here. Impor-
tantly, despite expressing high levels of CD11c and exhibiting Cre
activity (Supplementary Fig. 3a), the absolute numbers of CD64+

mϕ were equivalent in the small intestine of Rag1−/−Cre+ and
Rag1−/−Cre− mice (Fig. 3c). There was a similar reduction in
CD103+CD11b+ DCs in the colonic mucosa of Rag1−/−Cre+ mice
compared with Rag1−/−Cre− littermate controls, together with an
increased proportion of the CD103−CD11b+ subset. Unlike the
small intestine, the frequencies of CD103+CD11b− DCs were also
reduced in the colon of Rag1−/−Cre+ mice (Fig. 3d). Notably,
there were no differences in the populations of CD11b+ and
CD11b− DCs in the spleen of Rag1−/−Cre+ and Rag1−/−Cre− mice
(Fig. 3e). We were unable to obtain sufficient cells from the
hypotrophic lymph nodes of Rag1−/− mice to assess DC popu-
lations in these tissues.

Thus, CD11c-driven deletion of the TGFβR1 leads to a
dramatic reduction in the number of CD103+CD11b+ DCs in
the intestinal mucosa. To explore the underlying mechanism in
more detail, we focused on the small intestine, where the relevant
DC subset is most abundant.

TGFβR1-mediated control of DC homeostasis is cell intrinsic.
To examine whether TGFβR1 regulation of DC homeostasis

was cell intrinsic, we generated mixed bone marrow (BM) chi-
meric mice by reconstituting lethally irradiated (CD45.1+ ×
CD45.2+) WT mice with a 1:1 ratio of WT (CD45.1+) and either
Rag1−/−Cre− or Rag1−/−Cre+ (CD45.2+) BM cells (Fig. 4a). Under
these conditions, CD103+CD11b− DCs were produced equally
efficiently from WT and transgenic BM regardless of whether
Rag1−/−Cre− or Rag1−/−Cre+ BM was used to generate the chi-
mera (Fig. 4b). In contrast, whereas CD103+CD11b+ DCs derived
equally from the different BM sources in WT:Rag1−/−Cre− chi-
meras, the vast majority derived from WT BM in WT:Rag1−/−Cre
+ chimeras, consistent with the reduced numbers of these cells in
intact Rag1−/−Cre+ mice (Fig. 4b). Similarly, more of the CD103
−CD11b+ DC subset was derived from Rag1−/−Cre+ BM com-
pared with WT or Rag1−/−Cre− BM (Fig. 4c).

The presence of intact lymphoid organs in the BM chimeric
mice allowed us to examine how DC populations in intestinal
lymph nodes were affected by the absence of TGFβR1 signalling.
As in the mucosa, Rag1−/−Cre+ BM showed a selective defect in
the ability to reconstitute CD103+CD11b+ DCs among the
migratory (CD11c+MHCIIhi) population of mesenteric lymph
node (MLN) DCs in WT:Rag1−/− Cre+ chimeric mice compared
with recipients of Rag1−/−Cre− BM (Fig. 4d). Consistently, there
was a concomitant overrepresentation of the CD103−CD11b+

subset of migratory MLN DCs in the recipients of Rag1−/−Cre+

BM, whereas CD103+CD11b− MLN DCs were derived equally
from Rag1−/− Cre− or Rag1−/− Cre+ BM.

a
Ki67 Alc/PAS

O
rig

in
al

 b
od

y 
m

as
s 

(%
)

Age (weeks)

b
CD11c-Tgfbr1fl/fl

Cre– or Cre+

(CD45.2+)

WT
(CD45.1+)

S
ur

vi
va

l (
%

)

Time post-transfer (weeks)

Splenic
T cells

c d

R
el

at
iv

e 
ex

pr
es

si
on

Donor:

Cre–

Cre+

D
on

or
 (

C
D

45
.2

+
) 

T
 c

el
ls

 (
%

)

0

3.5

7.0

10.5

14.0

0

6

12

18

24

0

3.5

7.0

1 2 3 1 2 3 1 2 3

**

***

* **

**
****

**

**

****

Time post-transfer
(weeks)

C
D

45
.2

+
  d

on
or

 c
el

ls
 o

f 
C

D
4+

 T
 c

el
ls

 (
%

)

Time post-transfer
(weeks)

Time post-transfer
(weeks)

e
Cre–

Cre+

Donor: f

0.1

1

10

100

1000

Gzmb Ifng Tnfa Nos2

***

**

*

C
D

45
.2

+
  d

on
or

 c
el

ls
 o

f 
C

D
8+

 T
 c

el
ls

 (
%

)

0 2 4 6 8 10
0

20

40

60

80

100

Cre–

Cre+

Donor:
Cre–

Cre–

Cre+

Cre+

**

9 10 11 12 13 14 15 16 17 18
40

60

80

100

120

140

†

†
††

** *****

*

Fig. 1 T-cell-dependent inflammatory disease in CD11c-Cre.Tgfbr1fl/fl mice. a Body weights of CD11c-Cre.Tgfbr1fl/fl (Cre+) mice and Tgfbr1fl/fl (Cre−) mice
littermate controls presented as a percentage of original bodyweight at 9 weeks of age. The results are the means± 1 SD of five (Cre+) or six (Cre−) mice
per group and are representative of two experiments (**p< 0.01 and ***p< 0.001—Student’s t-test followed by Holm–Sidak correction). († indicates the
loss of animal from group). b Representative colonic pathology as assessed by epithelial cell turnover (Ki67 staining—left panels) and goblet cell density
(PAS staining—right panels) in Cre− (upper panels) and Cre+ mice (lower panels). Arrows indicate loss of goblet cells. Scale bar, 1 mm. c Experimental scheme
for the transfer of splenic T cells from Cre− or Cre+ mice into congenic WT recipients. d Survival of WT recipients given T cells from Cre− ro Cre+ mice.
Data are pooled from two experiments with a total of seven (Cre−) or eight (Cre+) mice per group. e Frequency of CD45.2+ donor T cells among total
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the mice from c, d above. Data are from one of two independent experiments each with 3 (Cre+) or 4 (Cre−) mice per group. f Expression of mRNA
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SD of three mice per group and mRNA expression is relative to expression of Gapdh. *p< 0.05, **p< 0.01, ***p< 0.001 and ****p< 0.0005 determined by
two-tailed Student’s t-test
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Thus, the defect in intestinal CD103+CD11b+ DCs in Rag1−/−

Cre+ mice is due to cell intrinsic effects of TGFβR1 deficiency.

TGFβR1 controls a developmental programme in CD11b+

DCs. As TGFβ is known to control the expression of CD103 on
mucosal T cells18, 30, it was possible that the apparent reduction
in the CD103+CD11b+ DC compartment could reflect an isolated

failure to express CD103, rather than a more general effect of
TGFβR1 deficiency on intestinal DC homeostasis. To distinguish
between these ideas, we sought surrogate markers that were not
affected by TGFβR1 deficiency and that might allow us to identify
cells within the putative CD103+CD11b+ DC lineage without
using CD103 itself. As a first step in this process, we used
microarray analysis to compare the transcriptomes of all four of
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the CD103/CD11b-defined DC subsets from WT small intestine,
as this information was not available from existing databases.
Hierarchical clustering analysis demonstrated that the DC subsets
segregated clearly from each other and from CD64+ mϕ (Fig. 5a).
As before, we excluded the small CD103−CD11b− population
from this analysis and to visualise the differences between the
remaining three DC populations, we plotted each gene in a graph
comprising one axis per DC subset placed at a 120° angle to each
other, creating a hexagonal ‘Triwise’ plot (Fig. 5b). In these
hexagons, the distance of a point from the centre represents the
magnitude of upregulation and genes that are upregulated in a
particular subset are positioned close to the appropriate axis,
whereas those that are shared by two subsets are found between
the axes31, 32.

This analysis revealed that the most differentially expressed
genes segregated into two main groups, one of which was
associated selectively with CD103+CD11b− DCs, whereas the
other contained genes that were shared by CD103−CD11b+ and
CD103+CD11b+ DCs (Figs. 5b, c). CD103+CD11b− DCs
expressed a number of genes that characterise cDC1 cells in
other tissues, including Xcr1, Irf8, Cd8a, Clec9a, Cadm1 and Btla
(Fig. 5d and Supplementary Table 1)9, 11, 33, 34. The CD11b-
expressing subsets of intestinal DC segregated relatively closely
together in the hexagonal analysis and shared several genes
typical of the conventional DC subset 2 (cDC2) lineage, including
the transcription factors Zeb232 and Irf46, 15, 35, as well as Sirpa12

(Fig. 5b and Supplementary Table 2). Nevertheless, a number of
genes were also differentially expressed by the CD103−CD11b+
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and CD103+CD11b+ subsets, indicating that CD103 is not the
only marker that distinguishes these populations (Figs. 5e, f).
Using the hexagonal analysis approach, 61 genes were found to be
expressed at significantly higher levels by CD103−CD11b+ DCs,
including Cx3cr1, Csf1r and S100a4 (Fig. 5f and Supplementary
Table 3). Conversely, 31 genes were expressed at significantly
higher levels by the CD103+CD11b+ DC subset, including Gp2,
Cdh1 (encoding E-cadherin), Siglecv (encoding SiglecF) and
Epcam (Fig. 5e and Supplementary Table 4). We attempted to
exploit these markers for identifying the CD103+CD11b+ lineage
by flow cytometry, but could not detect surface expression of
E-cadherin or GP2 reliably. In addition, none of commercial
antibodies against SiglecF or EpCAM permitted adequate
discrimination of CD103+CD11b+ DCs from CD103−CD11b+

DCs, limiting their usefulness (Supplementary Fig. 4).
To overcome this issue, we extended our analysis of the

microarray data to include genes that, although shared by CD103+

and CD103− CD11b-expressing DCs, were the most differentially
expressed compared with the CD103+CD11b− subset (and
therefore fall on the outermost ring of the hexagonal plot in the

region between the CD103+CD11b+ and CD103−CD11b+ axes).
This generated an additional 34 genes (Fig. 5g and Supplementary
Table 6), of which 18 encoded cell surface markers (Supplemen-
tary Table 5). Commercial antibodies were available to analyse
eight of these by flow cytometry (Mgl2, Siglece, Sirpa, Itgam,
Cd300a, Cd209a, Trem1 and Cd101), but Cd101 and Trem1
showed clear differential expression between CD103+ and
CD103− CD11b-expressing DCs at the RNA level, suggesting
that they might be useful as surrogate markers (Fig. 5g). Flow
cytometry showed that surface expression of TREM1 was
restricted to the CD103+CD11b+ subset of SILP DCs and was
present on most of these cells, as was CD101 (Fig. 6a and
Supplementary Fig. 5). However, CD101 was also expressed by a
fraction of CD103−CD11b+ DCs, but not by CD103+CD11b−

DCs. Similar to CD103, the expression of TREM1 by CD11b+

SILP DCs was TGFβR dependent, as it was markedly reduced in
Rag1−/−Cre+ mice compared with Rag1−/−Cre− mice (Fig. 6b).
Siglec F expression by these DCs followed a similar pattern
(Fig. 6b). In contrast, CD101 expression was relatively
unaffected by TGFβR1 deficiency (Fig. 6b), with SILP DCs from
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Rag1−/−Cre+ mice and Cre− littermates containing equivalent
proportions and absolute numbers of total CD101+ DCs (Fig. 6c).
Total CD101+ DCs were also derived equally from Rag1−/−Cre−

and Rag1−/−Cre+ marrow in mixed BM chimeric mice (Fig. 6d).
Thus, the definitive phenotypic signature of intestinal

CD103+CD11b+ DC requires the TGFβR1.

Functional effects of TGFβR1 deficiency in intestinal DCs.
Depending on the experimental system, CD103+CD11b+ DCs
have been implicated in the generation of both Th17 cells and
FoxP3+ Treg6, 15, 35–38. Thus, we assessed whether TGFβR1-
mediated deficiency in this DC lineage resulted in functional
defects in T cells. To examine Treg priming in vivo, we trans-
ferred naïve ovalbumin (OVA)-specific OTII CD4+ T cells into
Rag1−/−Cre−→WT and Rag1−/− Cre+→WT BM chimeric mice
and assessed the induction of FoxP3-expressing cells in MLN
4 days after oral administration of OVA (Fig. 7a). Notably, there
were significantly fewer OVA-specific FoxP3+ Treg in the MLNs
of Rag1−/−Cre+→WT chimeras compared with Rag1−/−Cre−→
WT chimeras (Fig. 7b). As both CD103+CD11b+ and CD103+

CD11b− DCs have been shown to be able to induce Treg differ-
entiation, we next assessed the relative capabilities of these subsets
in vitro. Purified small intestinal CD101+ DCs or CD103+CD11b−

DCs from Rag1−/−Cre− or Rag1−/−Cre+ mice were loaded with
OVA peptide and co-cultured with CFSE-labelled naive OTII
CD4+ T cells. Both DC subsets, irrespective of the presence or
absence of TGFβR1, induced T-cell proliferation, as measured by
CFSE dilution (Fig. 7f). However, whereas CD103+CD11b− DCs
from Rag1−/−Cre− and Rag1−/−Cre+ mice induced equivalent
levels of antigen-specific FoxP3+ Treg, TGFβR1-deficient CD101+
DCs induced 50% fewer FoxP3+ Treg when compared with
CD101+ DCs from Rag1−/−Cre− littermates (Fig. 7g).

Feeding OVA alone does not induce high frequencies of
effector T cells in vivo35. However, residual endogenous T cells
were present in our chimeric mice and analysis of these cells
showed a significant reduction in the numbers of IL-17A-
producing CD4+ T cells in the small intestinal mucosa of
Rag1−/−Cre+→WT chimeras compared with Rag1−/−Cre−→WT
chimeras (Fig. 7c). Similarly, IL-17A+IFNγ+ CD4+ T cells, which

have been shown to derive from IL-17A+IFNγ− CD4+ T cells39,
were also reduced in the Rag1−/−Cre+→WT chimeric intestine,
whereas IL-17A−IFNγ+ T cells were present in equal proportions
in the two groups (Figs. 7d, e). Collectively, these data
demonstrate that TGFβR1 signalling is essential for complete
maturation of fully functional CD103+CD11b+ DCs in the
intestine.

Discussion
CD103+CD11b+ DCs are the predominant population of DCs in
the small intestine and are virtually unique to the intestinal
mucosa and its draining lymphoid tissues40. Although it is known
that CD103+CD11b+ DCs derive from conventional DC pro-
genitors that mature locally after their arrival in the intestine6, 41,
the environmental factors responsible for the development of
these DCs remain poorly understood. We show here that CD103+

CD11b+ DCs are transcriptionally closely related to their CD103−

CD11b+ counterparts. However, unlike CD103−CD11b+ DCs,
cell intrinsic TGFβR1 signalling is indispensable for the full
phenotypic differentiation of CD103+CD11b+ DC in the SILP.
Furthermore, using whole-genome analysis and flow cytometric
validation, we demonstrate that differentiation to the CD103+

CD11b+ phenotype represents more than simple acquisition of
CD103 expression and involves significant changes in gene
expression. Finally, we demonstrate that aborted DC differ-
entiation in the absence of TGFβR1 signalling renders DCs less
able to prime Treg and maintain Th17 in vivo, demonstrating
that TGFβR1 signalling in DCs helps maintain immunological
homeostasis in the intestine.

We first attempted to address the role of the TGFβ–TGFβR
axis in intestinal DC homeostasis by generating CD11c-Cre.
Tgfbr1fl/fl mice, but these developed a lethal systemic inflamma-
tory disease, with all animals dying within 20 weeks. Similar
findings were made in mice with CD11c-driven deletion of
Tgfbr226, but in contrast to that work the wasting disease in our
mice was predominantly T-cell driven. This was shown by the
fact that T cells in CD11c-Cre.Rosa26-LSL-YFP mice displayed
Cre recombinase activity and there was deletion of the Tgfbr1 in
T cells from Cre+ CD11c-Cre.Tgfbr1fl/fl mice. In support of this,
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the wasting disease in Cre+ mice was prevented by maintaining
mice on a Rag1−/− background and T cells purified from Cre+

mice were able to induce disease in WT mice where they
underwent uncontrolled expansion. Similar autoimmune disease
was found in mice with CD4-driven deletion of Tgfbr228, 42.
Together, our findings are consistent with the Cre activity found
in T cells in the original description of CD11c-Cre mice25 and
they underline the need for extreme caution when interpreting
studies employing CD11c-dependent strategies to dissect ‘DC’
function in vivo.

TGFβR1 also controlled the behaviour of CD11c+ cells other
than T cells, as intestinal inflammation developed in Rag1−/−Cre+

recipients of WT T cells and this was associated with a selective
defect in CD103+CD11b+ DCs in the intestine of Rag1−/− CD11c-
Cre.Tgfbr1fl/fl mice. Other mononuclear phagocytes whose
homeostasis is controlled by the TGFβ–TGFβR1 axis
include microglia in the brain and Langerhans cells in the

epidermis20, 22, 43, 44. Interestingly, TGFβ regulates expression of
E-cadherin by Langerhans cells23, 45 and Cdh1 was one of the
genes we found to be selectively upregulated in CD103+CD11b+

DCs. However, our findings contrast with those from the skin,
where TGFβR signalling is required for both Langerhans cell
development and for preventing their spontaneous ‘maturation’
and enhanced migration to draining lymph nodes23, 43. An
analogous process cannot explain the lack of CD103+CD11b+

DCs in the intestine, as this population was not overrepresented
in the draining MLN of Rag1−/−Cre+→WT BM chimeras, as
would be the case if they had acquired enhanced migratory
potential. Furthermore, the total DC pool in the intestine was
equivalent in Rag1−/−Cre− and Rag1−/−Cre+ mice. Thus, we
favour the idea that there is aborted differentiation of CD103
+CD11b+ DCs in the absence of TGFβR1 signalling. This was
supported by our use of CD101 expression to interrogate the
CD11b+ lineage of DCs, where it appeared to be a marker of those
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cells that are likely to differentiate locally into CD103+CD11b+

DCs. This was first suggested by our transcriptional analysis,
which showed that the CD103+CD11b+ and CD103−CD11b+

DCs clustered closely together and identified CD101 as one of the
genes that was selectively upregulated on the CD103+CD11b+

subset. Phenotypic analysis confirmed the expression of CD101
protein on virtually all WT CD103+CD11b+ DCs, but showed
that a small subset of CD103−CD11b+ DCs also expressed
CD101. The fact that these might be the immediate precursors of
CD103+CD11b+ DCs would be consistent with the reciprocal
increase we found in the CD103−CD11b+ CD101+ population of
DCs in CD11c-Cre.Tgfbr1fl/fl mice. Although TGFβ has been
shown previously to induce the expression of CD103 on
T cells18, 30, the block in DC development that occurs in the
absence of TGFβR1 signalling in vivo did not simply reflect a
failure to upregulate CD103, as CD101+CD11b+ DCs in CD11c-
Cre.Tgfbr1fl/fl mice also had reduced expression of SiglecF and
TREM1, both of which we found to be specific to this subset at
the transcriptional and protein level. On the basis of these find-
ings, we propose that TGFβ is important for the maturation of
CD103+CD11b+ DCs from an earlier CD103−CD11b+ stage.
However, definitive proof of this idea is lacking and it will be
important to establish at exactly what stage TGFβ acts. As we
found that all the subsets of mature DCs express the TGFβR1, the
selective conditioning effects of TGFβ may occur as DC pre-
cursors mature in the mucosa6. Alternatively, there may be an
anatomically defined niche in which CD11b+ DCs encounter cells
producing sufficient amounts of TGFβ to trigger signalling via the
TGFβR. Given the ubiquitous nature of this cytokine, such cells
could be of myeloid, mesenchymal or epithelial origin in our
Rag1−/− mice which lack T and B lymphocytes. Resolving these
questions will require direct tracking of individual cells within the
CD11b lineage, as they differentiate in the mucosa in the presence
and absence of TGFβR signalling and these issues are the subject
of ongoing work.

Others have reported that CD101 is expressed by some
CD11b+ DCs in mouse intestine and that this is retinoic acid
receptor dependent16, 46. Although it may also inhibit DC func-
tion47 and enhance the production of IL-10 by CD11c+ myeloid
cells48, its role in DC development or function in the intestine
remains to be defined. CD101 expression has also been linked to
the expansion and function of Tregs, including those which can
prevent experimental colitis48, 49, as well as a susceptibility gene
in the development of type 1 diabetes in non-obese diabetic
mice50. As CD103+CD11b+ DCs in the human intestine also
express CD10146 and we found varying numbers of CD11b+ DCs
to expressed CD101 in other organs, this molecule may provide a
useful means for interrogating the tissue specific differentiation of
the cDC2 lineage across species. Similarly, the role of TREM1 and
SiglecF on CD103+CD11b+ DCs remains unclear, although our
findings that these proteins are expressed preferentially by this
subset extend other work suggesting this association at the
transcriptional level16. Recently, TREM1 has been associated with
inflammatory monocytes, where it modulates the function of
TLR451. However, it has also been reported to be present on
Langerhans cells and to be upregulated on Langerhans cells and
BM DCs by hypoxia52, suggesting it may have novel roles on MPs
associated with barrier surfaces, especially under conditions
of stress.

The selective loss of intestinal CD103+CD11b+ DCs in CD11c-
Cre.Tgfbr1fl/fl mice is similar to that reported in mice deficient in
CSF2, CSF2R13, IRF415, 35, SIRPα17, Notch signalling14, 53 and
retinoic acid production16, 54. However, these studies did not
apply additional discriminatory markers such as CD101, TREM1
or SiglecF, and some did not distinguish bona fide CD103−

CD11b+ DCs from CD11b+ CD64/F4/80+ macrophages. As
macrophages are much more numerous in LP6, 55, their inclusion
could have masked any reciprocal accumulation of
CD103−CD11b+ DCs. Therefore, it is unclear whether the
TGFβ–TGFβR axis interacts or synergises with any of these other
pathways or whteher the absence of each of the molecules
interrupts differentiation of the CD11b+ DC lineage at the same
stage. Previous studies have implicated the transcription factor
RUNX3 in mediating TGFβ dependent effects in DCs56, but
whether RUNX3 drives the TGFβ-dependent effects reported
here remains unclear.

The exact role of intestinal CD103+CD11b+ DCs has been
somewhat unclear, due to apparently contradictory findings from
in vitro and in vivo experiments. Whereas this population pro-
duces substantial amounts of RA and induces the generation of
FoxP3+ Tregs in vitro55, 57, a universal finding from the previous
studies of mice lacking CD103+CD11b+ DCs was reduced num-
bers of Th17 cells in vivo, with normal numbers of FoxP3+

Tregs6, 15, 35, 37 The relative distribution of CD103+CD11b+ DCs
along the length of the intestine also correlates with that of Th17
cells and inversely with that of FoxP3+ Tregs55. Therefore, it was
notable that we found here that the reduction in CD103+CD11b+

DCs in CD11c-Cre.Tgfbr1fl/fl mice was not only associated with a
lower proportion of endogenous Th17 cells in the intestinal
mucosa, but there also was defective generation of antigen specific
FoxP3+ Tregs, both in vitro and in vivo. The mechanism
underlying these effects remains to be elucidated, but TGFβ is
important in the generation of both Treg and Th17 cells36, 58.
Therefore, one possibility is that TGFβR signalling in
CD103+CD11b+ DCs normally drives TGFβ production via a
positive feedback circuit, as has been shown for other DCs59.
Although our findings show that the defect in CD103+CD11b+

DCs was associated with reduced numbers of Treg contrasts with
the earlier studies, it is important to note that we focused directly
on Tregs that were induced in response to their cognate antigen.
In contrast, previous work either assessed total Treg numbers, or
used surrogate markers to define ‘natural’ and ‘inducible’ Tregs.
Alternatively, CD103+CD11b− DCs might compensate for the
loss of CD103+CD11b+ DCs in the induction of oral tolerance
and Treg,37, 60 and, importantly, we found no defect in the ability
of CD103+CD11b− DCs from Cre+ mice to induce Treg in vitro.
However, as we did not assess the suppressive functions of these
Tregs directly, we cannot rule out the possibility that the FoxP3+

T cells we found to be generated by CD103+CD11b− DCs from
Cre+ mice have altered activity despite being present in normal
numbers. Furthermore, it is unclear whether the defect in Treg we
found contributes to the autoimmunity found in immuno-
competent CD11c-Cre.Tgfbr1fl/fl mice. Discrepancies between
different labs on how defects in CD103+CD11b+ DCs might
impact on T-cell subsets could also reflect the microbiota present
in the various strains or animal facilities. For instance, the
ability of CD103+CD11b+ DC to produce IL-23 and drive the
differentiation of Th17 cells in vitro can be promoted by TLR5
ligation38, 61. Alternatively, the different strategies used to target
CD103+CD11b+ DCs may have distinct consequences for T-cell
differentiation and, in particular, our findings that CD11c-
mediated Cre activation can have effects on cells other than this
specific subset of DC must be taken into account. This could help
explain, for example, why contrasting results have been reported
on the generation of protective Th17 responses to Citrobacter
rodentium infection when CD103+CD11b+ DCs are lacking in
human Langerin-DTA transgenic mice and CD11c-Cre.Notch2fl/fl

mice37, 53. Further work is required to elucidate directly how this
subset of DC is influenced by different environmental factors and
targeting strategies.
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Methods
Mice. CD11c-Cre.Tgfbr1fl/fl mice on a C57BL/6 background were generated as
described previously23 and crossed to Rag1−/− mice (Jackson Laboratories) to
generate Rag1−/− CD11c-Cre.Tgfbr1fl/fl mice. Cre− littermates were used as
experimental controls in all the experiments presented. WT C57BL/6 (CD45.2+)
mice were obtained from Harlan Olac (Bicester, UK), whereas C57BL/6.SJL
(CD45.1+) mice, C57BL/6.SJL × C57Bl/6 (CD45.1+ × CD45.2+) and OTII OVA-
specific TcR transgenic mice on the CD45.1+ background were bred in house. All
mice were used at 6–12 weeks of age, and male and female mice were used
throughout the study. Transgenic and control mice were sex-matched within
experiments. All mice were bred and maintained in specified pathogen-free con-
ditions at the Central Research Facility at the University of Glasgow under a UK
Home Office Project Licence and approved by the University of Glasgow Local
Ethical Review Panel, or at the University Medical Centre, Rotterdam, and
approved by the Animal Experiments Committee DEC–Consult of the Erasmus
University Medical Center Rotterdam. No randomization or blinding was
performed.

Generation of bone marrow chimeric mice. To generate mixed chimeras,
8–10-week-old CD45.1+ WT mice were lethally irradiated with two doses of 5 Gy 1
h apart before being reconstituted immediately with 5 × 106 BM cells from
CD45.2+ Rag1−/−CD11c-Cre.Tgfbr1fl/fl or Rag1−/−Tgfbr1fl/fl mice together with
CD45.1+ × CD45.2+ WT BM at a ratio of 1:1. In some experiments, CD45.1+ ×
CD45.2+ mice were used as the recipient mice and CD45.1+ WT mice used as the
WT donor. To generate full chimeras, CD45.1+ WT mice were given BM cells from
CD45.2+ Rag1−/−CD11c-Cre.Tgfbr1fl/fl or Rag1−/−Tgfbr1fl/fl mice. Chimerism was
assessed at least 8 weeks after reconstitution.

Generation of Treg cells in vivo. Eight to 10 weeks after reconstitution, Rag1−/−

CD11c-Cre.Tgfbr1fl/fl and Rag1−/− Tgfbr1fl/fl mice→ CD45.1+ WT chimeric
received 5 × 105 purified CD4+ T cells from the spleen and lymph nodes of
CD45.2+ WT mice intravenously. Six days later mice were adoptively transferred
with 5 × 105 fluorescence-activated cell sorting (FACS) sorted naive CD4+

CD62L+CD45.1+/CD45.2+ OT II cells intravenously, before being fed 50 mg OVA
24 h later. FTY720 (1 mg kg−1; Cayman Chemical Company) was injected intra-
peritoneally 2 and 4 days after OTII T-cell transfer and mice were culled 5 days
after T-cell transfer for assessment of Foxp3+ expression by CD4+Vα2+ transgenic
T cells in mesenteric lymph nodes using intracellular FACS analysis.

Induction of T-cell-dependent colitis. CD3+MHC-IIneg T cells were sorted from
the spleens of C57BL/6 CD45.1 mice, resuspended in sterile phosphate-buffered
saline (PBS) and 5 × 106 T cells were injected intravenously into Rag1−/− CD11c-
Cre.Tgfbr1fl/fl (Rag1−/−Cre+) mice and Rag1−/− Tgfbr1fl/fl (Rag1−/−Cre−) littermates.
Body weight was monitored twice a week and the recipients were killed when 20%
weight loss occurred (10–17 weeks post transfer). The severity of bowel inflam-
mation was evaluated by scoring of histological sections (adapted from ref. 62).

Preparation of single-cell suspensions. To isolate small intestinal leukocytes,
small intestine were flushed with calcium/magnesium-free (CMF) Hank’s balanced
salt solution (HBSS) 2% fetal calf serum (FCS) (both Gibco, Invitrogen, Paisley,
UK) and PPs excised. The intestines were opened longitudinally, washed again in
HBSS 2% FCS and cut into 0.5 cm segments, which were then incubated twice in
HBSS with 2 mM EDTA at 37 °C with shaking for 20 min. Supernatants were
discarded and intestinal tissue digested with 1 mgml−1 collagenase VIII (Sigma-
Aldrich) in complete RPMI 1640 containing 2 mM l-glutamine, 100 μg ml−1

penicillin, 100 μg ml−1 streptomycin, 1.25 μg ml−1 Fungizone and 10% FCS (all
Gibco, Invitrogen) at 37 °C with shaking for 20 min. Cell suspensions were passed
through 100 μm and then 40 μm filters (BD Falcon) and stained for flow cytometry.
To isolate colonic leukocytes, colons were excised and soaked in PBS. After
removing all fat and faeces, the colons were opened longitudinally, washed in HBSS
2% FCS and cut into 0.5 cm sections. The tissue was then shaken vigorously in
10 ml HBSS/2% FCS and the supernatant was discarded. To remove the epithelial
layer, 10 ml CMF HBSS containing 2 mM EDTA was then added, the tube placed
in a shaking incubator for 15 min at 37 °C, before being shaken vigorously and the
supernatant discarded. Tissue segments were washed in 10 ml fresh CMF HBSS,
before a second incubation in CMF HBSS/2 mM EDTA, the wash step was repeated
and the remaining tissue was digested with pre-warmed ‘enzyme cocktail’ con-
taining 1.25 mgml−1 collagenase D (Roche), 0.85 mgml–1 collagenase V (Sigma-
Aldrich), 1 mg ml−1 dispase (Gibco, Invitrogen) and 30 Uml−1 DNase (Roche
Diagnostics GmbH, Mannheim, Germany) in complete RPMI 1640 for 30–45 min
in a shaking incubator at 37 °C. The resulting cell suspension was passed through a
40-μm cell strainer and washed twice in FACS buffer (2% FCS/2mm EDTA/PBS).
Cells were counted and stained for flow cytometry. To isolate leukocytes from
MLNs, MLNs were minced with scissors and incubated with 1 mgml−1 collagenase
D in CMF HBSS for 45 min in a shaking incubator at 37 °C. After digestion, cells
were passed through a 100-μm filter and kept on ice until further use63. Lungs were
removed from perfused mice, chopped finely and digested in pre-warmed ‘enzyme
cocktail’ for 45 min in a shaking incubator at 37 °C before being passed through an
100 μm strainer followed by centrifugation at 400 g for 5 min. Spleens were

chopped finely and digested in HBSS with 1 mgml−1 collagenase D for 45 min in a
shaking incubator at 37 °C before being passed through a 100 μm strainer followed
by centrifugation at 400 g for 5 min. Cells were resuspended in FACS buffer,
counted and kept on ice until staining for flow cytometry.

T cell and DC co-cultures. A total of 12,500 CD45+CD11c+MHCII+CD64−

CD101+CD11b+ DCs were FACS purified from the SILP of Rag1−/−CD11c-Cre.
Tgfbr1fl/fl or Rag1−/−Tgfbr1fl/fl mice before being pulsed with 0.5 μg ml−1 of
OVA323-339 peptide (Genosys, Sigma) in 100 μl for 30 min at 37 °C in 5% CO2 in
RPMI 1640 containing 2 mM L-glutamine, 100 μg ml−1 penicillin, 100 μg ml−1

streptomycin, 1.25 μg ml−1 Fungizone and 10% FCS; all from Gibco) in 96-well
round-bottom plates. After 30 min, 1 × 105 CFSE-labelled naive CD4+CD62L+

T cells FACS sorted from the lymph nodes of OTII.CD45.1+ TcR transgenic mice
were added and cultured for 3.5 days at 37 °C in 5% CO2. After culture, responding
OTII cells were assessed for expression of FoxP3 and CFSE dilution by flow
cytometry.

Flow cytometry. Following incubation with purified anti-CD16/CD32 for 10 min
at 4 °C, 1−10 × 106 cells were stained at 4 °C in the dark as described
previously63, 64 using the antibodies listed in Supplementary Table 6 and analysed
using an LSR II or FACSAriaI/III cytometer (BD Biosciences) and FlowJo software
(Tree Star).

Genomic PCR. Cre-mediated deletion of Tgfbr1 was analysed by genomic PCR65.
The floxed third exon of Tgfbr1 was identified by a 250-bp band, whereas excision
was demonstrated by a 350-bp band (see Supplementary Table 7).

Quantitative RT-PCR. mRNA was extracted from cells using the GenElute
mammalian total RNA Miniprep kit (Sigma-Aldrich) and complementary DNA
was synthesized with SuperScript II reverse transcriptase (Invitrogen), according to
the manufacturer’s protocol. TaqMan real-time quantitative PCR assays were
designed using Universal ProbeLibrary (Roche) to determine transcript levels of the
indicated genes using the primers listed in Supplementary Table 8. Expression
levels were normalized to the control gene Gapdh or Abl as indicated. All reactions
were run on a 7900HT Fast Real Time PCR machine (Applied Biosystems).

Histology. Tissues were snap-frozen, cut into 6 µm sections and fixed in acetone/
0.02% H2O2. For detection of CD3 (Dako Heverlee) and Ki67 (Novocastra),
endogenous peroxidases were quenched with 3% H2O2 in methanol for 20 min.
After microwaving in citrate buffer (10 mM, pH 6.0) for antigen retrieval, sections
were blocked for 1 h in 10 mM Tris, 5 mM EDTA, 0.15 M NaCl, 0.05% Tween-20
and 10% normal mouse serum (NMS), before being stained overnight with primary
antibodies against CD4 (GK1.5) and CD8 (Lyt2) (both from Dako) at 4 °C in
PBS/0.1% BSA. After washing, biotinylated rabbit anti-rat secondary antibody
(Dako) or goat anti-rabbit serum was added in PBS/0.1% BSA/2% NMS for 1 h at
room temperature. Enzyme activity was revealed by using the Vectastain ABC kit
(Vector Laboratories). Aminoethylcarbazole (Sigma) or 3,3′-diaminobenzidine
tetrahydrochloride (Sigma-Aldrich) was used as a chromogen for horseradish
peroxidase activity. The sections were counterstained with haematoxylin and
mounted with glycerol-gelatin. The slides were scanned with the NanoZoomer
2.0HT scanner (Hamamatsu) and analysed with the NanoZoomer Digital
Pathology programme.

Microarray analysis. A total of 100,000 cells from each DC subset and
CD45+Ly6C−MHCII+CD64+ CD11b+ macrophages were FACS purified from SI
LP and total RNA extracted with the RNeasy Micro kit (Qiagen). Quantity, quality
and absence of genomic DNA were assessed using a Bioanalyser (Agilent). For
microarray analysis, 50–450 ng of total RNA was retrieved per biological sample,
with RIN values always above 8.25 ng total RNA was used for each sample for
synthesis of biotinylated double stranded cDNA, using the NuGEN Ovation Pico
WTA System V2 kit and the NuGEN Encore Biotin Module kit, according to the
manufacturer’s recommendations. Following fragmentation and end-labelling, 2 µg
of cDNA were hybridized for 16 h at 45 °C on GeneChip Mouse Gene 1.0 ST arrays
(Affymetrix), interrogating 28,853 genes represented by ~27 probes spread across
the full length of the gene. The chips were washed, stained in the GeneChip Fluidic
Station 450 (Affymetrix) and scanned with the GeneChip Scanner 3,000 7 G
(Affymetrix) at a resolution of 0.7 µm. Raw data (.cel intensity files) were extracted
from the scanned images using the Affymetrix GeneChip Command Console
version 3.2. After quality control using R/Bioconductor, the Robust Multi-array
Average procedure was used to normalize data within arrays (probeset summar-
ization, background correction and log2-transformation) and between arrays
(quantile normalization). Only probesets that mapped uniquely to one gene were
used and for each gene, the probeset with the highest expression level was used.

Cytometric bead assay. Splenocytes (1 × 106) were cultured overnight in 500 µl
medium and supernatants were stored at −20 °C before analysis of IL2, IL17A and
IFNγ levels using a cytometric bead assay (Bender MedSystems) with a FACS
Canto-II (BD Biosciences) and FCAP Array software (BD Biosciences).
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Statistics. Statistical analyses were performed with GraphPad Prism. Student’s
t-test was used to compare two groups, while multiple groups were compared using
analysis of variance or Student’s t-tests with appropriate corrections as detailed in
the legends. A p-value of 0.05 was considered significant.

Data availability. Microarray data that support the findings of this study have
been deposited in National Center for Biotechnology Information Gene Expression
Omnibus public database (http://www.ncbi.nlm.nih.gov/geo/) with the primary
accession code GSE100393. The other data that support the findings of this study
are available from the corresponding authors upon request.
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