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Trees are self-similar structures: their branch lengths and diameters vary allometrically within
the tree architecture, with longer and thicker branches near the ground. These tree allometries
are often attributed to optimization of hydraulic sap transport and safety against elastic buckling.
Here, we show that these allometries also emerge from a model that includes competition for light,
wind biomechanics, and no hydraulics. We have developed MECHATREE, a numerical model of
trees growing and evolving on a virtual island. With this model, we identify the fittest growth
strategy when trees compete for light and allocate their photosynthates to grow seeds, create new
branches, or reinforce existing ones in response to wind-induced loads. Strikingly, we find that
selected trees species are self-similar and follow allometric scalings similar to those observed on
dicots and conifers. This result suggests that resistance to wind and competition for light play an
essential role in determining tree allometries.

INTRODUCTION

Tree branching networks are generally self-similar. As
a result, the diameters and lengths of branches decrease
with the distance to the ground1. However, newly grown
branch segments always have approximately the same
length2. The observed hierarchy of lengths is in fact
due to complex reconfigurations through the continuous
growth of new branches and the pruning of old ones.
Self-similarity is thus intimately linked to the growth
history of trees.

Self-similar properties of individual trees can be
quantified by measuring the radii, lengths, and masses
of each branch. Such measurements have indicated
that these quantities vary allometrically, as expected
for self-similar structures3,4. Interestingly, allometric
scalings are also observed when comparing inter or
intraspecifically different populations of trees1,5,6. These
scalings, which are usually what is meant by ‘tree
allometry’, relate tree height, stem biomass, trunk
diameter, etc.

Two classes of theoretical explanations have been given
to account for these allometric laws: mechanical4,7–9, and
hydraulic10–12. Mechanical explanations date back to
the work of Metzger13, who proposed that wind-induced
stresses should be constant along trunks. This argument
is related to the “axiom of uniform stress”14,15, a
necessary condition to minimise the amount of material
needed to support a load. Optimal mechanical design
is associated to the now well-established process of
thigmomorphogenesis, which is the plant response to
mechanical signals16,17. The ecological significance
of thigmomorphogenetic acclimation has long been
recognised18, even if it has yet to be implemented in

ecological forest models.
Among the mechanical arguments, the concept of

“elastic similarity” has often been used4. Elastic
similarity is an allometric law that relates branch radii
and lengths, such that the deflection of the branch tip
under self-weight is proportional to its length. The
same allometric law can be recovered for upright axes
when a constant safety factor against elastic buckling is
enforced4. Although it is generally admitted that wind
loads offer a bigger challenge to trees than buckling19,20,
elastic similarity is the main mechanical component of
many allometric models5,21,22.

Within the hydraulic models, the pipe model10, or
the initial version of the West, Brown, and Enquist
(WBE) model23 have been highly influential. In these
models, a tree is modelled as a fractal assembly of
sap-conducting pipes. In its current version however, the
WBE model for plants21, as well as related models5,22,
also include a mechanical principle: trees are modelled as
volume filling networks following the principle of elastic
similarity. With this approach, several allometric laws
can be deduced, relating trunk radius, tree height, stem
biomass, and leaf biomass.

Mechanical and hydraulic models have often been
compared, opposed, or combined9,11,24, but both rely
on simplifications to be questioned here. First, most
models do not consider explicitly the evolutionary
mechanisms25. Second, tree architectures are generally
prescribed, without addressing growth. Therefore, they
cannot reflect the specific reconfiguration mechanisms
found in trees. Considering tree growth is the viewpoint
of functional-structural models26, which consider plants
as an assembly of individual organs, explicitly describing
development and carbon allocation27. These models,
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such as lignum28, greenlab29, amap30, or l-peach31

are usually based on a large number of empirical
parameters with the aim of modelling particular
species. An alternative approach is to exploit the
recursive characteristics of tree architectures by using
the formal grammar of L-systems32. With this
approach, the self-organising processes associated with
growth, competition for light, and interactions with the
environment can be addressed33. However, in these
models, evolutionary processes and wind biomechanics
are usually neglected.

To address the limitations of past approaches, we
propose mechatree, a new functional-structural model
of tree growth. This model integrates important
biological processes related to growth, architecture
reconfiguration, and evolution: competition for light,
carbon allocation, thigmomorphogenesis, wind-induced
pruning, and genetic evolution. The main novelty of
mechatree lies in its ability to compute the growth
and evolution of entire ecosystems. We will use this
feature to address two important questions: What is the
carbon allocation strategy best adapted to competition
for light, resistance to wind, and reproduction needs? Do
the selected growth strategies yield tree architecture and
allometry consistent with empirical laws?

In mechatree, the modelling units are branch
segments. In contrast, models such as sortie34,
itd35, or sera36 are individual-based: the modelling
units are individual trees with species-specific allometric
parameters. These models can address the dynamics of
a forest ecosystem, but are not suited to study the origin
of allometric scalings in individual tree architectures.

In the present study, we simulate a simplified version of
evolution on uniform virtual islands, with no gene influx
at the boundary. This island ecosystem is known to
rapidly lead to a single or very few dominant adapted
species37. To speed up genetic divergence between lines,
we further assume autogamy (child and parent share
the same genome, except for slight mutations). This
island environment is submitted to realistic recurrent
wind gales38, and resource competition is limited to
light accessibility. In this simplified environment, in
silico evolution allow for a direct falsification of the
selective force behind allometric scalings. With this
model, we find that self-similarity of branch lengths and
fractal dimension emerge through competition for light,
while branch diameters are set through the response to
wind-induced stresses and eventually yield Leonardo’s
rule of area conservation.

RESULTS

Structural units

Trees are modelled as modular structures of different
units: segments, foliages, and seeds, together with a
carbon reserve. New units can be added provided

sufficient photosynthates have been produced, and units
can be pruned by wind. Our aim is to mimic the main
characteristics of an angiosperm-like phenotypic set39. In
building mechatree, several simplifications have been
made, with the goal of keeping the model parsimonious
and manageable. In particular, we have neglected the
selective pressure exerted by hydraulics through the
cost of transport and embolism. This is by no means
because hydraulics is not important, but we wanted to
assess whether a model based on light competition and
wind-induced alone could predict realistic allometries.

Tree branches are assemblies of segments, which are
cylinders of varying diameter d, but with always the same
length L (Table 1). These segments are connected at
their extremities, such that each segment has a parent
segment (except for the trunk), and 0, 1, or 2 child
segments. Segments with no child, called twigs, are
terminated by an assembly of leaves, called a foliage,
modelled as a sphere of diameter L centred on the
segment distal end (Fig. 1a). Seeds can be produced
at the twig ends. The reserve, whose exact location is
not specified, stores assimilates from the current year
that will be mobilised the following year to support
primary and reproductive growth. Reserves have been
included because of their significant impact on tree
capacity to recover from major disturbances like strong
wind damages.

Growth

The molecular regulations controlling growth
strategies are implemented using formal neural networks.
Here, neural networks are used as a tool that allows
for an agnostic and flexible modelling of complex
physiological regulations that do not involve actual
neurons. Here, we make use of an important result
known as the ‘universal approximation theorem’, which
states that any continuous function can be approached
with any prescribed accuracy provided the number of
hidden neurons is large enough40. As illustrated in
Fig. 1c, the artificial neural networks of mechatree
consist of three layers: an input layer, a hidden layer,
and an output layer (for details, see Methods). Through
the neuronal coefficients, these neural networks relate
functionally the inputs to the outputs.

Growth processes are divided into ‘primary growth’
(the onset of new segments and seeds), and ‘secondary
growth’ (the growth in diameter of existing segments,
see Fig. 1b). The strategy of primary growth is
implemented with a 2–input, 3–hidden-neuron, 3–output
neural network. The inputs are the volume of carbon
contained in the reserve and the number of foliages in
the tree. The outputs are a photosensitivity parameter
and the proportions of carbon allocated to new segments
and seeds. When new segments (children) of diameter
d0 = 0.1L are added at the distal end of an existing
segment (parent), geometrical rules inspired from the
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Figure 1. Principles of mechatree. (a) Each virtual tree is an assembly of different units: segments, foliages, seeds, and a
reserve. (b) Primary growth relies on the reserve to grow new segments and seeds. Secondary growth costs include maintenance
in addition to diameter growth of each branch segment. (c) Formal neural networks are used to model the biochemical regulation
of growth. (d) The growth of new segments follows a rule based on three angles: θ1, θ2, and γ. (e) Illustration of Strahler
ordering of branches (see Methods).

TABLE 1. Parameters of mechatree.
Parameter Symbol Value
Segment length L arbitrary
Twig diameter d0 0.1L

Twig volume V0 πLd20/4

Foliage diameter L

Foliage transparency αfol. 0.5
Cauchy number CY 2× 10−5

Volume produced by foliages Vprod. 4V0l

Maintenance thickness e 0.02L

Forest radius R 200L

Mutation probability pmut. 0.05

Mutation amplitude δg 0.005

seminal models of Honda41, and Niklas and Kerchner42
are used (Fig. 1d, Methods).

Secondary growth is implemented with a 2–input,
3–hidden-neuron, 1–output neural network. The inputs
are the relative wind-induced stress felt by the segment,
σmax/σ0 (see Methods), and the number of foliages
irrigating the segment. The output is a safety factor
S accounting for the thigmomorphogenetic response
(Methods). The sink strength of a segment is the

sum of the volume needed to achieve a certain safety
against wind loads and a maintenance volume calculated
as Vmaint. = πLde, with e = 0.02L the thickness of
the outer layer to be renewed every year. For every
segment, this sink strength is equally partitioned among
the foliages situated above in the hierarchy: each segment
will “request” a equal amount of photosynthates to the
foliages above.

For each foliage, the photosynthates produced have
a volume Vprod. = 4V0l , where V0 = πLd20/4 is the
volume of newly-grown twigs, and 0 ≤ l ≤ 1 is the
intercepted light calculated with a ray-tracing method43
(Methods). If the photosynthate volume produced by a
foliage exceeds the total sink strength of the segments
situated below, each segment receives its share and the
leftover is stored in the reserve. On the contrary, if
the volume produced is not sufficient, each segment
receives photosynthates in proportion to its sink strength
(Fig. 1b).

Tree growth is affected by both exogenous factors
(wind, shade), and endogenous factors (branching angles,
neural network coefficients). These endogenous factors
are the “genes” of a tree species, and together constitute
its “genome”. In the present case, there are 31 genes:
3 genes for the branching angles, and 18 and 10 genes
for the coefficients of the primary- and secondary-growth
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neural networks respectively. These 31 genes are
complemented with 3 “neutral marker genes” used for
visualisation purposes.

Within this model, branch fall is provoked by
mechanical loading, and this can occur along two
different scenarios: either an extreme wind event occurs
and branches can fracture with a probability described by
a Weibull distribution (Methods); or the foliage sources
cannot provide enough photosynthates to ensure the
maintenance costs of a given branch and this branch will
weaken over time to the point where it will fall down
whatever the level of mechanical load.

Competition

The algorithm used to simulate the growth and
evolution of a forest is divided into the following steps
(steps 1–7 constitute a yearly cycle).

Step 0: Initialisation. In a circle of radius R = 200L,
either 20,000 individuals with random genomes or 4,000
individuals with selected genomes are sown at random
locations. At this seeding stage, they are all formed of
a single vertical segment of diameter d0 = 0.1L and a
reserve of volume 2V0.

Step 1: Light interception. The sunlight intercepted
by each foliage is calculated (Methods).

Step 2: Stress calculation. The maximum bending
stress, σmax, is calculated in each segment (Methods).

Step 3: Secondary growth. The photosynthates
produced by foliages are allocated to maintenance and
diameter growth in each segment.

Step 4: Pruning. A wind velocity is picked with
random orientation and speed U following an exponential
distribution, such that the return period of wind speeds
exceeding by 50% the average yearly maximum U0 is
100 yrs38. The probability of pruning is then given by
a Weibull distribution (Methods).

Step 5: Death. Trees die when one of these two
conditions is realised: (i) their age is larger than 1000 yrs;
(ii) their age is larger than 6 yrs and their number of
segments is less than 10.

Step 6: Primary growth. The carbon stored in the
reserve is allocated to grow seeds and new segments.

Step 7: Reproduction. Seeds fall with a 45◦ angle
with the vertical and form single-segment trees with the
same genome as their parent except for slight mutations
(Methods).

With the goal of identifying the best-adapted
growth strategies in a competitive environment, a
single-elimination tournament is run. During the 1st
round, the growth and evolution of 32 different forests
is simulated. Each forest is initialised with 20,000
trees with random genomes. The natural selection of
a tree phenotype (and genotype) within a forest is a
“game” that yields a single or few “winners”, i.e. species
that dominates all others (Fig. 2 and Supplementary
Fig. 1). Although trees of the same species have a

common ancestor, their genomes differ slightly, because
of mutations at each generation. After these simulations
have been run for 10,000 yrs, the genomes of the 2,000
oldest trees, the “winners”, are collected in each of the 32
forests.

In the 2nd round, the growth of 16 forests is simulated.
These forests are now initialised with 4,000 trees,
composed of the winners of two first-round games. After
20,000 yrs, the 2,000 winners are again collected in each
game. This operation is repeated at each round until the
Final is reached. During the Final, the overall winning
species are identified. Among the initial 0.64 million
random genomes, these overall winners are the “fittest”:
not only have they survived more than 200,000 yrs in a
competing environment, but the slight mutations at each
generation have allowed their genomes to adapt. This
highly simplified evolutionary process makes it possible
to reach a meaningful growth strategy without a priori
knowledge.

In the Final, after a transient, two different species
eventually coexist. We have performed simulations
over more than 1 million year, and there is no sign
of one of these species becoming extinct. These
two species are associated to two different ecological
niches: the periphery and the interior of the island
(see Supplementary Fig. 1). In the Supplementary
Discussion, we analyse how the allocation strategies of
these two species differ (see also Supplementary Figs. 2
and 3). However, when simulations are ran with smaller
islands (R = 40L or 100L instead of R = 200L), after a
few thousands years, only the periphery species remains.
For convenience, in the following we will refer to this
periphery species as the ‘fittest species’.

We will now determine if the trees selected by
present model exhibits allometric scalings similar to
those observed empirically. First, competition for light
can be assessed through self-thinning, which is the
relation between stand density and average tree biomass.
Second, interspecific tree allometry can be examined
for the species that have survived the first 3,000 yrs of
simulation. Finally, for the fittest species, self-similarity
is assessed by examining different allometric scalings
within an architecture: self-similar ratios, tapering law,
and area conservation.

Self-thinning

The empirical −3/2 self-thinning law for plant
populations states that the average biomass of plants
decreases as n−3/2, with n the plant density44. This
relation can be assessed by computing how the “effective
number” N and “effective biomass” M vary with time45
(see Methods). In Fig. 3a, these quantities are plotted
for the initial 500 yrs of the 1st-round forests. Initially
N = 2 × 104 and M = V0 ≈ 0.008L3, then, as
trees grow, M increases and N decreases following an
allometric relation: M ∝ N

βST , with βST ≈ −1.418
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Figure 2. Evolution of a forest on a virtual island. (a) Example of the evolution of a virtual forest over 10,000 yrs (see
Supplementary Movie 1). Initially, 20,000 trees with random genomes are sown. Each circle is a tree whose centre is at the
centre of gravity of foliages, and whose radius is the standard deviation of the foliage distribution projected onto the ground.
The outer black circle of radius R = 200L is the habitat limit. Colours are determined using three neutral marker genes as
RGB values. Because trees growing at the periphery are on average larger than the others, allometric statistics (see below) are
performed on trees with their trunk in a central zone of radius 0.9R. (b) Number of trees and number of species as a function
of time, for the same forest as in (a).

Figure 3. Allometric scalings. (a) For the 32 forests of the first round, the effective biomass M (unit L3) is plotted as a
function of the effective number of trees N , for the first 500 yrs (the light blue line shows the history of a particular forest).
Only 2% of the dataset is shown, but the red line shows a linear regression fit on the entire dataset with N as weight. Large
excursions to the left of the regression line correspond to strong wind events during which a large number of trees can die
(Fig. 2b and Supplementary Movie 1). (b) Each tree in the 32 forests of the 1st round is extracted after 3,000 yrs. Their
height H (unit L), crown radius C (unit L), number of foliages N , and stem biomass B (unit L3) are plotted as a function of
their trunk diameter dtrunk. For clarity, only 5% of the trees are shown, but the solid lines show reduced major axis regression
(RMA) on the whole dataset, with N as weight. The dashed lines show the results of the AMT model (see below).

(95% confidence interval, CI: −1.421–1.416). The present model is thus in agreement with the empirical



6

Figure 4. Partial view of the forest in the Final round on a small island (R = 40L), when only the fittest
species remains. Only the largest tree has been coloured for clarity. In this representation, the diameter of foliage spheres is
proportional to the light intercepted (Supplementary Movie 2).

self-thinning law (i.e. βST ≈ −3/2), showing that,
in mechatree, competition for light, growth, and
mortality are consistent with empirical observations for
young forests.

Tree allometry

In Fig. 3b, trees found in 1st-round forests are
compared. Height H, crown radius C (measured as the
standard deviation of the foliage distribution projected
onto the ground, as in Fig. 2a), number of foliages N ,
and stem biomass B are plotted as a function of the
trunk diameter dtrunk for each tree. It shows that the

approximately 1,000 different species that have survived
the initial 3,000 yrs exhibit allometric relations: H ∝
dβH

trunk with βH ≈ 0.87 (95% CI: 0.871–0.876), C ∝ dβC

trunk

with βC ≈ 0.80 (95% CI: 0.802–0.805), N ∝ dβN

trunk

with βN ≈ 1.97 (95% CI: 1.966–1.971), B ∝ dβB

trunk with
βB ≈ 2.82 (95% CI: 2.822–2.825). Similar exponents are
found when the forests are composed of the two finalist
species (Supplementary Fig. 4) and a sensitivity analysis
shows that these exponents depend only weakly on the
model parameters (see below).

From these exponents, different experimental
allometric relations can be recovered. First, it can
be seen that the biomass roughly follows the classical
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scaling B ∝ Hd2trunk. Then, assuming that the total
mass of leaves, ML, scales as the number of foliages
N , ones finds that ML ∝ BβML and ML ∝ dβN

trunk,
with βML = 0.68 and βN = 1.97. These values are
similar to the exponents measured on angiosperms and
gymnosperms: βML = 0.75 and βN = 2.175 (they are
about 9% smaller). In addition, the distribution of
trunk diameters in the forests composed of the finalist
species scales as d−2trunk (Supplementary Fig. 5). This
scaling is the same as the one generally observed in
forest communities, which has also been predicted by
the theory of metabolic ecology46,47.

These allometric scalings emerge in mechatree
because the trees selected through the single-elimination
tournament share common characteristics. All have
a similar safety factor against wind loads S ≈ 3
(Supplementary Fig. 6c), and their architecture is
self-similar with a fractal dimension around D ≈ 2.5
(Supplementary Fig. 6e).

Finally, in the literature, different values of the
allometric exponent have been reported in the interval
0.54 ≤ βH ≤ 0.8948–50. The exponent βH = 2/3 has also
been predicted based on arguments of elastic similarity4.
However, some authors argued that the relation between
the logarithms of tree height and trunk diameter is not
linear but curvilinear because of finite-size effects11,51,52.
The same trend is observed in our data: βH tends
to decrease with dtrunk (Fig. 3b). Another reason for
curvilinearity is that young trees are not self-similar (see
below).

Self-similar ratios

In Fig. 4, a forest on a small island (R = 40L) is
depicted when only the fittest species remains. Colouring
the branches of the tallest tree according to their Strahler
ranks shows qualitatively that the larger the rank, the
thicker and the longer the branches (Fig. 5a). A more
quantitative analysis is performed by examining the
number of branches nk, their mean length lk, diameter
dk, and cross-sectional area ak, as a function of their
rank k (Fig. 5b). These quantities follow a geometric
progression such that four self-similar ratios can be
defined: the branching ratio Rn = nk/nk+1, the length
ratio Rl = lk+1/lk, the diameter ratio Rd = dk+1/dk,
and the area ratio Ra = ak+1/ak. A linear regression
shows that Rn = 3.51 (95% CI: 3.42–3.60), Rl = 1.60
(95% CI: 1.52–1.67), Rd = 1.85 (95% CI: 1.81–1.90), and
Ra = 3.41 (95% CI: 3.23–3.61).

The existence of branching and length ratios, Rn and
Rl, both independent of k, means that the tree skeleton is
self-similar and that a fractal dimension can be defined:
D = lnRn/ lnRl = 2.68 (95% CI: 2.39–3.04). This
fractal dimension is a measure of how the tree structure
fills space. As can be seen in Fig. 5c, fractal dimension
varies with time. When the tree is very young, D
is not well defined, mainly because branch lengths do

not progress geometrically with Strahler order (see open
symbols in Fig. 5b). Then, as the tree grows and
ages, D fluctuates in the interval 2 < D < 3. Note
that the amplitude of these fluctuations is much lower
for a tree growing without competitors (Supplementary
Figs. 7–10).

It can be noted that Rl ≈ Rd, which means that branch
aspect ratio does not vary to a great extent (9 < lk/dk <
25). Another property is that Rn ≈ Ra, meaning that the
total cross-section of branches is independent of the rank.
This rule of area conservation can also be established
with a different method (see below).

Self-similar ratios and fractal dimensions have been
rarely measured in individual trees (Table 2). So
far, the results of the present model (3 < Rn < 4,
1.5 < Rl < 2, and 2 < D < 3, see Fig. 5c)
seem consistent with the available data. Not only the
growth strategy developed by the fittest virtual species
yields a self-similar architecture, but its quantitative
characteristics resemble empirical observations.

TABLE 2. Self-similar ratios. The ratios Rn, Rl, Rd,
and fractal dimension D for the virtual trees of Fig. 4 and
Supplementary Fig. 7 are compared with empirical data of
the literature.

Rn Rl Rd D

Virtual tree in forest (Fig. 4) 3.51 1.60 1.85 2.68
Virtual tree alone (Suppl. Fig. 7) 3.50 1.74 1.88 2.26
Red Oak4 3.83 – 1.56 –
Poplar4 4.22 – 1.86 –
Fir3 4.8 2.7 – 1.6
Apple Tree68 4.35 – 1.90 –
Birch tree68 4.00 – 1.94 –
Pinyon pine69 3.63 1.71 1.81 2.40

Tapering

Tapering describes, through an allometric relation,
how the diameter d of a segment is related to its distance
` from the branch apex: d ∝ `β4. In a ramified structure
though, ` is not unique and is replaced by 〈`〉, the
average distance of all paths connecting a segment to
its descendant foliages. In Fig. 5d, 〈`〉 is plotted as a
function of d, for the tree of Fig. 4. This plot is very
similar to what has been measured on trees (e.g. Fig. 6
in ref.4). It exhibits different regions: for small d, the
scatter is important and data do not follow a simple
allometric relation; for intermediate d, the allometric
relation d ∝ 〈`〉β with β ≈ 3/2 seems to be reached;
for large values of d corresponding to the trunk, β ≈ 2/3,
which is the exponent expected for uniformly-distributed
wind-induced loads along the trunk height14. This is
likely due to the fact that the “sail area” of the trunk
is of the same order as the sail area of all foliages.
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Figure 5. Self-similarity. (a) Representation of the Strahler order of each branch for the tree illustrated in Fig. 4. (b) The
number of branches, their mean length (unit L), area (unit L2), and diameter (unit L) are plotted as a function of their Strahler
order for the 999-year-old tree illustrated in Fig. 4 and in (a). Error bars show standard deviations around these means. Solid
lines are regression fits on the first 7 ranks. Open symbols connected by dotted lines represent the same quantities when the
tree is only 25 years old. (c) Evolution of the branching ratio Rn, length ratio Rl, and fractal dimension D = lnRn/ lnRl
during the lifetime of the same tree. Grey bars show the 80% confidence interval for D. (d) Branch tapering is illustrated by
plotting, for each segment, the average distance from the foliages, 〈`〉, as a function of the diameter d. The Strahler order of
each segment is represented with the same colour code as in (a). (e) Assessment of Leonardo’s rule of area conservation across
branching nodes. For each node, the area ratio (i.e. the ratio between the total cross-sectional area of children segments and
the parent area) is plotted as a function of the average distance 〈`〉 of the parent segment from the foliages. The average area
ratio measured for 〈`〉 > 1.5 is 0.94. When restricted to 〈`〉 > 10, the average is 0.985.

Area conservation

In his notebooks, Leonardo da Vinci observed that
“all the branches of a tree at every stage of its height
when put together are equal in thickness to the trunk”9.
In other words, according to Leonardo’s rule, the
cross-sectional area should be conserved across branching
nodes on average. One way to assess the validity of this
rule is to plot for every branching node, the area ratio
(a1 + a2)/a0, where a1 and a2 are the cross-sectional
areas of children branches and a0 is the area of the parent
branch. A recent study has shown that the average value
of this ratio is between 0.90 and 1.05 for five species:
Balsa, Maple, Oak, Pinyon, and Ponderosa pine53. In
mechatree, the same assessment of Leonardo’s rule has
been performed and is shown in Fig. 5e. This plot is

very similar to the measurements made on real trees
(e.g., Fig. 3a in ref.53). In both cases, the average value
of the area ratio is close to 1, which is consistent with
Leonardo’s rule of area conservation.

Sensitivity analysis

By design, mechatree involves as few parameters
as possible for a process-based model (Table 1). Some
of these parameters, related to wind-induced loads,
maintenance costs, and photosynthesis, have been chosen
to match empirical observations. In particular, the
Cauchy number has been fixed to CY = ρU2

0 /σ0 =
2× 10−5, with an air density ρ = 1.2 kgm−3, an average
yearly-maximal wind U0 = 40ms−1, and wood strength
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σ0 = 100MPa54. The maintenance thickness is taken
equal to e = 0.02L, or, by taking L = 10 cm, is equal
to e = 2mm, the typical thickness of the inner bark.
Taking a foliage with a leaf surface of 150 cm255, which
is about half the area of a sphere of diameter L = 10 cm,
the optical transparency is set to αfol. ≈ 0.5. With
a dry wood density of ρwood = 613 kgm−356,57, V0
corresponds to a dry mass of 4.8 g. Taking a typical
net assimilation rate of leaves of 10 gm−2 day−158,59,
each foliage produces during 6 months about 27.3 g of
photosynthates. This corresponds to Vprod. ≈ 4V0l
(assuming 70% of full light on average, i.e. l = 0.7).

To test the robustness of the allometric laws, we
have conducted a sensitivity analysis on four model
parameters: CY, e, αfol., and Vprod.. Model parameters
have been varied, one at a time, in a ±30% interval
around their reference values given in Table 1. Each
time, 16 simulations are performed in forests of radius
R = 200L. After 3,000 yrs, the data of all trees are
collected and RMA regressions are performed to identify
the allometric exponents and intercepts (see Fig. 3b),
together with the typical safety factor S, and an average
fractal dimension D (see section “Sensitivity analysis on
the allometric laws” in Methods).

The main result is that, although trees grow to a larger
size when CY or e are decreased, or when Vprod. or αfol.

are increased, the allometric exponents βN , βB , and βML

do not vary significantly. The only exception is the
dependence of βH , which is likely due to a curvilinear
relation between the logarithms ofH and dtrunk (Fig. 3b).
The allometric laws emerging from mechatree are
therefore robust to variations of the model parameters.

An interesting result of the sensitivity analysis is
the dependence of the fractal dimension on the foliage
transparency. This result is also confirmed by a
parametric analysis that consists in comparing how
an isolated tree of the fittest species grow when the
model parameters are varied (Supplementary Methods).
Both analyses show that fractal dimension increases
with foliage transparency and this can be interpreted as
follows. The outer surface covered by foliage clusters
generally has a dimension around 2 (it can be slightly
larger if it has some fractal roughness). When foliage
clusters are opaque, foliage inside this surface does
not intercept any light and will eventually be shed
because the branches supporting them do not have the
resources to ensure maintenance costs. Since foliages
and the structure supporting them have generally the
same dimension, we expect D ≈ 2 for opaque foliages.
This contrasts with the case of fully transparent foliages,
where the structure is expected to be volume-filling (i.e.
D = 3). Owing to the central role of chlorophyll in both
photosynthesis and leaf transmittance properties, Vprod.
and αfol. are likely to be negatively correlated. Whether
there is an optimal transparency remains, however, an
open question.

The AMT model

Genotypes that survive the initial 3,000 yrs of
simulation exhibit allometric relations close to the ones
observed in nature (Table 3). Interestingly, these
relations can be recovered with a simple analytical model
that we shall call the AMT (Analytical MechaTree)
model. The AMT model is thus a way to capture
the minimal set of factors explaining the emergence of
allometric scalings in mechatree. It is also useful
to compare our results with other models based on an
analytical approach, such as the WBE model21.

TABLE 3. Comparison of allometric exponents. Tree
height H, leaf massML, stem biomass B, and trunk diameter
dtrunk are related through allometric relations: H ∝ dβHtrunk,
ML ∝ dβNtrunk, B ∝ dβBtrunk, and ML ∝ BβML . The allometric
exponents found for the virtual forests, the AMT model
(D = 2.5), WBE model (D = 3)21, the SERA model for
angiosperms36 are compared to empirical observations on
dicots and conifers5,6,50, given with their 95% confidence
intervals.

βH βN βB βML

Virtual forests 0.87 1.97 2.82 0.68
AMT model 0.86 2.14 2.86 0.75
WBE model 0.67 2 3 0.75
SERA model 0.86 1.98 2.66 0.74
Dicots, conifers 0.73 2.17 2.89 0.74

(95% CI) (0.71–0.76) (2.01–2.32) (2.71–3.14) (0.738–0.742)

To build the AMT model, we use the three emergent
results of mechatree: (i) tree architectures (skeletons)
are self-similar; (ii) their fractal dimension is D ≈ 2.5;
(iii) their safety against wind loads is constant. If the
tree skeleton is self-similar, branching and length ratios
are independent of the rank k, and a fractal dimension
D can be defined such that Rn = RDl . Consider now
a branch at rank k. It is fed by the phloem sap flows
coming from Nk = Rk−1n foliages, which are at an average
distance 〈l〉k = L(Rkl − 1)/(Rl − 1) from the branch
base. As a result, the relative wind-induced bending
stress is σk/σ0 = 16α

π CYSfol.Nk〈l〉k/d3k, where α is an
order 1 geometrical parameter that accounts for the
angle between wind and branches. If the safety factor
S is constant (Assumption iii), branch diameters will be
such that σk/σ0 = S−3/2. With these arguments, the
diameter ratio is found to be Rd = R

(D+1)/3D
n , and the

allometric exponents are (see Methods, for details).

βH = 3
D+1 , βN = 3D

D+1 , (1a)

βB = 2D+5
D+1 , βML = 3D

2D+5 (1b)

Remarkably, within this simple analytical model based
on geometrical and mechanical arguments, allometric
exponents only depend on D . Using the value D = 2.5
in the previous analytic formulae (Assumption ii) yields
allometric exponents in good agreement with the results
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Figure 6. Comparison of the AMT model with empirical data. (a) Scaling of plant height as a function of stem
diameter. The allometric data of ref.48 for woody species are compared to least square (LS) regression H = 20.7 d0.538trunk

48,
reduced major axis (RMA) regression H = 21.4 d0.73trunk

50, WBE model H = 25 d0.67trunk, and present AMT model H = 26.7 d0.857trunk

(see Methods and Supplementary Discussion). (b) Allometric data on leaf dry mass vs. trunk diameter5 are compared to RMA
regression ML = 166d2.17trunk

5, WBE model ML = 247d2trunk, and AMT model ML = 202d2.14trunk. (c) Allometric relations between
leaf dry mass and stem dry mass from more than 11,000 records6 are compared to RMA regression ML = 0.113M0.74

S
6, WBE

model ML = 0.176M0.75
S , and AMT model ML = 0.124M0.75

S .

of the numerical simulations of virtual forests (Table 3).
This is consistent with the fractal dimension 2 < D < 3
that has been computed independently.

Comparison with measurements on angiosperms and
gymnosperms5,6,50 shows also an excellent agreement
(Table 3, Fig. 6). Besides, the value of the fractal
dimension (D ≈ 2.5) is compatible with measurements on
tree structures (Table 2) and tree crowns (2.13 < Dfol. <
2.7660), which should be similar to the dimension of the
branch architecture. Note that the AMT model correctly
predicts not only the allometric exponents, but also
the allometric intercepts (see Fig. 6 and Supplementary
Discussion). Note also that agreement is excellent over a
large range of trunk diameters or stem dry mass (Fig. 6).
This is rather surprising because the model should only
provide realistic predictions for trees that are large
enough to have a properly defined fractal dimension and
small enough such that gravity loads remains negligible.

DISCUSSION

In this paper, a generic functional-structural model
of tree, called mechatree, has been developed. This
model has been used to address the best growth strategy
of trees when they compete for light and are subject to
wind-induced loads. Thanks to its relative simplicity,
mechatree allowed us to simulate entire forests over
long periods of time. This feature has been exploited by
running a single elimination tournament to identify the
fittest virtual species in this simplified environment. The
self-similar and allometric properties of this species have
then been quantified and found to be similar to those of
existing tree species.

The existence of branching, length, and diameter

ratios shows that tree architectures are self-similar (more
rigorously, they are self-affine since the different lengths
can vary differently with scale). Yet, the whole structure
is an assembly of segments of exact same length.
Self-similarity is thus an emergent property resulting
from the complex architecture reorganisations that occur
during the lifetime of a tree through wind-induced
pruning and light- and wind-dependent growth. Two
important results can be deduced from mechatree.
First, self-similarity of the tree skeleton and the existence
of a fractal dimensionD mainly emerge from competition
for light. As a result, D is strongly linked to foliage
transparency. Second, for realistic probabilities of
extreme wind events, the safety factor against wind
loads is approximately constant. This efficient strategy
to resist winds leads to self-similarity of the branch
diameters and Leonardo’s rule of area conservation.

Classical allometric laws relating a tree’s trunk
diameter to its height, stem biomass or leaf biomass
have been recovered with the present numerical model
and with a simplified analytical model we developed, the
AMT model. Alternative models, such as the SERA
model36 or WBE-related models5,21,22 can also predict
allometric exponents close to the ones measured on
trees (Table 3). Comparison with the present models
is interesting, but meaningful only when the nature of
the models is similar.

The SERA model is an individual-based model with
species-specific parameters describing how an individual
tree grows when it competes for space and light36. From
this model emerge allometric relations at the population
level (Table 3). In that sense, it bears some similarity
with the present study. There are two major differences
between mechatree and SERA however: mechatree
does not involve species-specific parameters other than
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those selected by the simulated Evolution; and the
modelling units are the branch segments, which allows
us to address the origin of self-similarity in individual
trees, which is not possible in SERA.

The WBE model is an analytical model based on
geometrical, mechanical, and hydraulic arguments. In
particular, it assumes that trees are volume-filling fractal
networks (i.e. D = 3). It can be used to derive allometric
relations that are very similar to the predictions of
the AMT model (Fig. 6, Supplementary Table 1, and
Supplementary Discussion). It is thus impossible to
refute either approach based on allometry only. One way
to achieve falsification would be to have more data on
the fractal dimension, which should be possible with the
development of Lidar-based technologies61, or to directly
assess the mechanistic bases of the processes involved,
e.g. through wind mechanosensing62.

In the WBE model21, or related models22, mechanics
is implemented by enforcing an elastically-similar
allometric relation between axis lengths and radii4
(Supplementary Discussion). In mechatree,
the mechanical stresses and the species-specific
thigmomorphogenetic response are calculated for
each segment every year. Self-similarity and allometry
are not imposed, but emerge from thigmomorphogenesis
and competition for light, two major processes in
temperate deciduous forests62,63.

The importance of the various hydraulic traits (water
use efficiency, embolism) and mechanical traits (wind
hazards, self-weight) may vary between species habitats
and plant stages. In some cases, hydraulic performance
may be a major selective pressure, whereas in others
wind mechanical safety will be dominant. Yet these
different situations may not be identified in broad range
allometric data, since both selective pressures yield
similar allometries. We may however speculate that
the presence of both selective pressures can increase
the speed of natural selection. We believe that
further insights could be gathered by combining the
biomechanically-based AMT model proposed in the
present paper with the hydraulic hypotheses of the initial
WBE model23 to have a better understanding of both
mechanics and hydraulics.

METHODS

Formal neural networks

The artificial neural networks used to model
agnostically the growth strategies of different species
consist of an input layer of neurons where the stimuli
arrive with intensity xi (normalised to be of order
1). These stimuli are linearly combined and sent to
a hidden layer of neurons receiving a signal yj , with
yj =

∑
i Ijixi. The hidden-layer neurons then perform a

nonlinear transformation of the signal: y′j = tanh(5yj)
(except for one neuron not linked to the input layer

and sending a unit signal). Finally these signals are
linearly combined and transmitted to the output layer
with intensity zk, with zk =

∑
j Okjy

′
j (Fig. 1c).

Primary growth

Carbon is converted into primary growth through
constructions costs: a new segments costs its volume V0
(Table 1) and a seed costs 5V0, which accounts for the
volume of its initial reserve, 2V0, the volume of the first
sprout, V0, and a supplementary cost for dissemination
and germination (2V0).

From a practical viewpoint, each year, the
primary-growth neural network computes for each
tree three outputs: the proportions of carbon allocated
to new segments (0 ≤ Pseg. ≤ 1) and to seeds
(0 ≤ Pseed ≤ 1), with Pseg. + Pseed ≤ 1, and a
photosensitivity parameter, 0 ≤ p ≤ 1. If Vres. is the
volume of the reserve, a portion of it is allocated to
the construction of nseg. = floor(Pseg.Vres./V0) new
segments and another portion to the construction of
nseed = floor(PseedVres./5V0) seeds. Both new segments
and seeds are located according to the photosensitivity
parameter p: for p = 0, locations are picked at random
among twigs; for p = 1 the of most lit foliages are
selected.

Light interception

To calculate the light l intercepted by each foliage, a
ray-tracing numerical method is used43. It is assumed
that shadow cast by segments can be neglected, and
that sunlight is uniformly distributed in the upper
hemisphere, which is divided into 32 equal solid angles.
For each solid angle, the whole forest is rotated, such that
z is along the mean direction of the solid angle. Foliages
are then ordered by descending z and the (x, y) position
of each foliage is discretised onto a grid of L×L squares.
When different foliages belong to the same grid square,
the highest one receives 1/32 of light, the second highest
αfol./32, the third α2

fol./32, etc., where αfol. = 0.5 is
the optical transparency of foliages43,55. This procedure
is repeated for each of the 32 solid angles and gives a
good approximation of the total light interception with
a numerical scheme that scales as N log(N), with N the
number of foliages. Note that the slowest part of this
algorithm is to sort foliage heights, for which a quicksort
algorithm is used64.

Branching angles

New child segments are added by following geometrical
rules based on three angles: θ1, θ2, and γ9,41,42 (Fig. 1d).
For a given parent segment oriented in the direction of
the unit vector t and normal to the unit vector b (for
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the trunk, b is a random unit vector in the horizontal
plane), two child segments of length L are constructed in
the plane normal to b. Their tangential unit vectors t1
and t2 are obtained by rotating t with the angles θ1+εδθ
and θ2 + εδθ around b. For a given tree, angles θ1 and θ2
are two constants, δθ = 10◦, and ε is a normal random
variable with standard deviation 1. The normal vectors
b1 and b2 defining the next-generation branching planes
are obtained by rotating b with an angle γ + εδθ around
t1 and t2 respectively.

Genome and mutation

During the lifetime of a tree, its genome does not
vary. However, the seeds produced by a tree have a
mutated genome. Mutation rules are as follows: with a
probability pmut. = 0.05 each gene g is replaced by g+εδg,
with δg = 0.005 the amplitude of the mutation and ε
a random normal variable of unit standard deviation.
Naturally, if g happens to be below 0 or above 1 after
the mutation, it is set to 0 or 1 respectively. The values
of pmut. and δg have been chosen to ensure that moderate
mutations can occur over 10,000 yrs, the typical time
scale of simulations.

Wind-induced stress

The wind-induced stresses in a tree are calculated
assuming a uniform wind velocity Uu, where u is a
horizontal unit vector. The wind-induced force on each
foliage is then Ffol. = 1

2ρU
2Sfol.u, where ρ is the air

density and Sfol. = 0.25L2 is the “sail area” of foliages
in strong winds. Here a drag coefficient of 1 has been
assumed without loss of generality. In addition, the wind
exerts also a force on each segment. If n is the unit
vector normal to both the wind and the segment (i.e.
n = t × u/‖t × u‖), the force exerted on each segment
is Fsegment = 1

2ρU
2dL‖t × u‖2 n × t, where the drag

coefficient is also taken to be 1, d and L are the diameter
and length of the segment. This force is applied on the
segment centre of mass and its moment at the segment
base is simply Msegment = 1

2L t× Fsegment.
Now each segment transmits the forces and moments

applied at its extremity to its base. If Ftop and Mtop are
the sum of forces and moments at a segment top, force
and moment at the base are

Fbase = Fsegment + Ftop, (2a)
Mbase = Msegment + Mtop + L t× Ftop. (2b)

The moment at the base Mbase has a bending component
of intensity M = ‖Mbase × t‖. The corresponding
maximal bending (tensile and compressive) stress occurs
at the surface and is σ = 32

π M/d3. To compute the
maximal bending stress σmax sensed by segments, wind
speed is assumed to be constant, U = U0, but different
orientations separated by 45◦ angles are considered.

Fracture probability

The probability of fracture of a given segment can be
modelled by a Weibull distribution to take into account
volume effects65. This probability reads

P (σ, V ) = 1− exp

[
− V
V0

(
σ

σ0

)m ]
, (3)

where V is the volume of the segment, σ is the bending
stress in the segment, σ0 is the strength of the material,
V0 is a reference volume taken to be the volume of new
twigs, and m = 10 is the typical Weibull’s modulus
for wood54. Since the wind-induced bending stress is
proportional to ρU2

0 , with U0 the average yearly-maximal
wind, the probability of fracture is a function of a
dimensionless Cauchy number

CY = ρU2
0 /σ0. (4)

In particular, P does not depend on the typical size L.
Considering an average yearly-maximal wind of U0 ≈
40ms−1 and a wood strength σ0 ≈ 100MPa54, the
typical value of the Cauchy number is CY = 2× 10−5.

The safety factor S used to implement the
thigmomorphogenesis response is such that the segments
aims to reach a volume V = SVfract., with Vfract. the
volume giving σmax = σ0.

Strahler order

A topological rank can be assigned to each segment,
following a method originally developed by Strahler for
river networks66. Within this framework, a ‘branch’ is
defined as an assembly of contiguous segments of same
rank. The principle of this ordering scheme is to assign
the rank 1 to all terminal branches (i.e. assemblies of
segments starting at the twigs and ending at the first
branching node). Supposing that these rank-1 branches
are then removed, the new terminal branches are assigned
the rank 2, and so on (Fig. 1e). Although there are
alternative choices of ordering scheme, we chose Strahler
ordering because it allows for a better assessment of
self-similarity in an asymmetric branching structure4,67.

Assessment of the self-thinning rule

Using the average biomass to assess the self-thinning
rule induces a bias towards small trees. This is because
the size distribution contains a large number of very small
trees. To avoid this bias, we follow a method proposed by
Adler45 and we use the effective number and the effective
biomass. The effective number N is the inverse of the
probability that two units of mass taken at random from
all trees come from the same tree. The effective biomass
M is the average biomass weighted by the biomass itself.
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These quantities are given by N = B2
tot./B2 and M =

B2/Btot., with Btot. the total biomass and B2 the second
moment of the biomass distribution45. When all trees
have the same size, N is the number of trees and M
their biomass.

Principle of the AMT model

Consider a regular fractal tree skeleton of fractal
dimension D and branching ratio Rn. Because of the
definition of D, the length ratio is simply Rl = R

1/D
n . In

this regular architecture, a branch of Strahler rank k is
fed byNk = Rk−1n foliages situated above in the hierarchy
and its length is lk = LRk−1l . Besides, the path length
that connects the branch base to any descendant foliage
is

〈l〉k = lk + lk−1 + · · ·+ l1 = L
Rkl − 1

Rl − 1
≈ L Rkl

Rl − 1
. (5)

The bending moment at the base of this branch due to
wind-induced loads in the foliages is

Mk =
α

2
ρU2Sfol.Nk〈l〉k, (6)

with α = α1α2 < 1 a geometrical parameter due to the
fact that the distance between the branch base and the
foliages is α1 times smaller than the path length, and
that a branch is not necessarily orthogonal to the wind
(the projection of the force is then α2 times smaller than
in the orthogonal case).

It follows that the bending stress σk at the base of the
branch is (see section “Wind-induced stress” in Methods)

σk
σ0

=
16α

πd3k
CYSfol.Nk〈l〉k. (7)

Then, since the safety factor S of the different
branches and different species does not vary substantially
(generally 2.5 . S . 4, see Supplementary Fig. 6 c), the
branch diameter is given by

d3k =
16αS

3
2

π
CYSfol.

RlL

Rl − 1
R

D+1
D (k−1)

n , (8)

which means that the diameter ratio is Rd = R
(D+1)/3D
n

and dk = d1R
k−1
d , with d1 given by (8) for k = 1. For

the particular case D = 2.5, one finds that Rd = R
7/15
n ,

Rl = R
2/5
n , and Rd = R

7/6
l such that the aspect ratio

lk/dk is almost constant. In addition, the area varies
as the square of the diameter, such that Ra = R

14/15
n ,

which means that the total cross sectional area is almost
constant across ranks.

Assuming now that the whole tree counts K Strahler
orders, the diameter of the axes is given by (8). The
trunk is a special case because it is always vertical and

orthogonal to the wind, and thus α−1/32 times larger than
axes with random orientations

dtrunk = d′1R
K−1
d , with d′1 = α

− 1
3

2 d1 (9)

Then, the height of the tree is approximately

H ≈ 〈l〉K =
RlL

Rl − 1

(
dtrunk
d′1

) 3
D+1

, (10)

thus giving an allometric exponent for the tree height vs.
trunk diameter, βH = 3

D+1 . The total number of foliages
is

N = RK−1n =

(
dtrunk
d′1

) 3D
D+1

, (11)

such that the allometric exponent for N is βN = 3D
D+1 .

The branch biomass volume is

B =
π

4

(
d2K lK +Rnd

2
K−1lK−1 + · · ·RK−1n d21l1

)
, (12)

=
πd21LR

2
dRl

4(R2
dRl −Rn)

(
dtrunk
d′1

) 2D+5
D+1

, (13)

which gives an allometric exponent for the biomass βB =
2D+5
D+1 . Finally, using (11) and (13), the exponent for the
leaf biomass is found to be βML = 3D

2D+5 .
Taking α1 = 1

2 , α2 = 1
2 , Rn = 3.5, D = 2.5, S = 3,

Sfol. = L2

4 , CY = 2 × 10−5, one finds Rl = 1.65, Rd =
1.79, which is coherent with independent measurements
(Table 2 in the main text). One also finds d′1 = 0.0552L
and equations (10), (11), and (13) yield

H ≈ 37.1L

(
dtrunk
L

)0.857

, (14)

N ≈ 814

(
dtrunk
L

)2.14

, (15)

B ≈ 33.9L3

(
dtrunk
L

)2.857

. (16)

These allometric laws derived from the AMT model
can be compared to the scaling relations found in the
trees growing in the 1st-round virtual forests simulated
with mechatree (Fig. 3b). Except for the number of
foliages, which is somewhat over-predicted for large trees
by this simple analytical model, there is a remarkable
agreement with the data extracted from the simulated
trees, thus proving that the arguments outlined above
on mechanics and self-similarity capture well most of the
mechanisms affecting allometry in mechatree (same is
true for forests sown with only the two finalist species:
see Supplementary Fig. 4b).

To go further, one can try to compare the allometric
scalings of the AMT model to the data measured
empirically. To do so, as in the main text, we assume
a segment length L = 10 cm, a dry wood density ρwood =
613 kgm−3, and the mass of one foliage mfol. = 1.8 g.
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Taking these values and using equations (10), (11), and
(13), the following relations are obtained

H ≈ 26.7 d0.857trunk, (17)
ML ≈ 202 d2.14trunk, (18)
ML ≈ 0.124M0.75

S , (19)

where MS is the dry mass of stems and SI units have
been used (meters for lengths and kilograms for weights).
These relations show excellent agreement with allometric
relations found in the literature (Fig. 6 in the main text).

Sensitivity analysis on the allometric laws

We want to assess how the laws of tree allometry
depend on the model parameters. To perform this
sensitivity analysis, we have modified the Cauchy number
CY, the maintenance thickness e, the volume produced
by foliages Vprod., and the foliage transparency αfol.,
one-factor-at-a-time, around the reference values given
in Table 1. Each allometric law can be written as
αXz

βX , where αX is the intercept and βX is the exponent
of the allometric relation. Both of these constants a
priori depend on the model parameters. To characterise
this dependency, we estimate the relative variation of
each allometric constant for relative variation of each
parameter independently, in other words the sensitivity

sβX , p =

(
p

βX

)
ref.

(
∂βX
∂p

)
ref.

, (20)

where p is one of the model parameter (with this
definition, the sensitivities sa,b are always dimensionless).

To estimate the sensitivities, defined by eq. (20),
we have run 16 forest simulations during 3,000 yrs, for
each values of the model parameters. The macroscopic
characteristics of each tree in these simulations (height,
biomass, trunk diameter, etc.) are then extracted and
used to perform a standard major axis regression similar
to what has been done for the first-round forests (Fig. 3b
in the main text). This is repeated for 6 different
values of each of the 4 model parameters, resulting
in a total of 384 simulations (taking approximately
1,5000CPU-hours). The allometric constants calculated
from these simulations are plotted in the Supplementary
Fig. 11. The sensitivities are then estimated through
the slope of the linear regression fit of these plots
(Supplementary Table 2).

Examining the values of the sensitivities in
Supplementary Table 2, it appears that the allometric
exponents βX do not vary significantly with the model
parameters. There is only one exception: when the
maintenance thickness is increased, or the volume
produced by foliages decreased, βH increases. This
occurs because, in these cases, trees are much smaller
on average (see last column of Supplementary Fig. 11).
As it has already been discussed in the main text, the
relation between the logarithms of the trunk diameter

and the tree height is not linear but curvilinear (probably
because of finite size effects). It results that a fit made
on small trees tend to overestimate βH . It thus explains
the sensitivities sβH ,e and sβH ,Vprod.

observed.
For the sensitivities on the allometric intercepts, a

similar conclusion can be drawn: the dependencies on
CY and αfol. can be interpreted with the AMT model
(see below), and there is no significant dependency on
e and Vprod., with the exception of αN , for which the
sensitivities are about ±0.5. One explanation for this
specific behaviour may be that again when increasing e
or decreasing Vprod., less photosynthates are available for
primary growth and thus trees are much smaller. There is
also a selection of a lower safety against wind loads and
a higher fractal dimension. All these effects concur to
increase the number of leaves for a given trunk diameter
and, as a consequence, increase αN , but further research
is clearly needed to fully understand this effect.

From the analytic model for tree allometry (the
AMT model), sensitivities can also be calculated
(Supplementary Table 3). To do so, we have assumed
that fractal dimension D depends linearly on the foliage
transparency αfol.: D = 2 + αfol., as it is suggested from
the parametric analyses (see Supplementary Methods
and Supplementary Fig. 12). For allometric intercepts,
agreement with the numerical simulation is good: signs
and orders of magnitude of the sensitivities are correctly
recovered both for CY and for αfol.. For the allometric
exponents, agreement is excellent, showing that the
simple analytic AMT model correctly incorporates the
principal mechanisms at play in setting the allometric
laws in mechatree. It also shows that the hypothesis
of linear dependence of fractal dimension on foliage
transparency (D = 2 + αfol.) is coherent with the
sensitivities observed.

Supplementary Table 4 shows how fractal dimension,
average tree size, and safety are sensitive to the model
parameters. It should be noted that the tree species used
to compute these sensitivities have only evolved during
3,000 yrs. On such a short period, only rudimentary
selection has had enough time to act. Yet, safety against
wind loads depend significantly on the model parameters.
Our interpretation of this dependence is the following.
As expected, trees can grow larger on average when
more photosynthates can be allocated to primary growth
(either when CY or e decreases, or when Vprod. or αfol.

increases). However, trees that grow larger also take
more time to grow. For them, a higher safety against
wind loads may be necessary to survive very rare wind
events. For these large trees, the fractal dimension
also tends to be smaller because of finite size effects.
These arguments explain the signs of all sensitivities in
Supplementary Table 4, except one: sD,αfol.

. For larger
transparencies of foliages, the fractal dimension tends to
increase. The explanation for this particular dependence
is given in the main text: for opaque foliages, we expect
a fractal dimension D = 2 and for fully transparent
foliages, we expect volume filling D = 3.
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Data availability

The datasets generated during and/or analysed during
the current study are available from the corresponding
author on reasonable request.
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