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ABSTRACT 

Tissue factor pathway inhibitor (TFPI) regulates the formation of intravascular blood clots, 

which manifest clinically as ischemic heart disease, ischemic stroke, and venous 

thromboembolism (VTE). TFPI plasma levels are heritable, but the genetics underlying TFPI 

plasma level variability are poorly understood. Herein we report the first genome‐wide 

association scan (GWAS) of TFPI plasma levels, conducted in 251 individuals from five 

extended French‐Canadian Families ascertained on VTE. To improve discovery, we also 

applied a hypothesis‐driven (HD) GWAS approach that prioritized single nucleotide 

polymorphisms (SNPs) in (1) hemostasis pathway genes, and (2) vascular endothelial cell 

(EC) regulatory regions, which are among the highest expressers of TFPI. Our GWAS 

identified 131 SNPs with suggestive evidence of association (P‐value < 5 × 10−8), but no 

SNPs reached the genome‐wide threshold for statistical significance. Hemostasis pathway 

genes were not enriched for TFPI plasma level associated SNPs (global hypothesis test P‐
value = 0.147), but EC regulatory regions contained more TFPI plasma level associated SNPs 

than expected by chance (global hypothesis test P‐value = 0.046). We therefore stratified our 

genome‐wide SNPs, prioritizing those in EC regulatory regions via stratified false discovery 

rate (sFDR) control, and reranked the SNPs by q‐value. The minimum q‐value was 0.27, and 

the top‐ranked SNPs did not show association evidence in the MARTHA replication sample 

of 1,033 unrelated VTE cases. Although this study did not result in new loci for TFPI, our 

work lays out a strategy to utilize epigenomic data in prioritization schemes for future GWAS 

studies.  

1 INTRODUCTION 

Thrombosis—the formation of a blood clot inside a vein or artery—is a leading cause of death 

worldwide. Arterial thrombosis, which includes ischemic heart disease and ischemic stroke, 

accounts for one in four deaths (GBD 2013 Mortality and Causes of Death Collaborators, 

2015), and venous thromboembolism (VTE), which comprises deep vein thrombosis and 

pulmonary embolism, is the third leading cause of cardiovascular disease death after ischemic 

heart disease and stroke (Goldhaber & Bounameaux, 2012).  

Low tissue factor pathway inhibitor (TFPI) plasma levels are a risk factor for both arterial 

thrombosis (Morange et al., 2004) and VTE (Zakai, Lutsey, Folsom, Heckbert, & Cushman, 

2010). Vascular endothelial cells (ECs) are an important site of TFPI expression (Bajaj, 

Kuppuswamy, Saito, Spitzer, & Bajaj, 1990; Lupu, Lupu, Dennehy, Kakkar, & Scully, 1995; 

Lupu et al., 1999), and are fundamental to the coagulation and inflammatory responses that 

lay at the heart of thrombosis (Aird, 2012; Verhamme & Hoylaerts, 2006).  

TFPI regulates the blood coagulation cascade and limits the intravascular formation of fibrin 

clots by inhibiting two procoagulant complexes: TF‐FVIIa (Novotny, Girard, Miletich, & 

Broze, 1989), and early forms of prothrombinase (Wood et al., 2013). Up to 52% of the 
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variability in TFPI plasma levels is attributable to genetics (Almasy et al., 2005; Bladbjerg 

et al., 2006; Dennis et al., 2016; Warren et al., 2005), but few genes have been implicated. 

Most studies have been of candidate coagulation genes (TFPI, PROS1, F5), yet variants in 

these genes explained little of TFPI plasma level variability (Dennis, Kassam, Morange, 

Tregouet, & Gagnon, 2015), and in vitro and mouse models suggested that genes outside of 

the hemostatic pathway may be important (Lupu, Zhu, Popescu, Wren, & Lupu, 2011; 

Sanchez‐Solana, Motwani, Li, Eswaran, & Kumar, 2012). Genome‐wide linkage studies of 

TFPI plasma levels have been reported (Almasy et al., 2005; Dennis et al., 2016), and fine 

mapping of the most significant linkage signal identified three SNPs 25.1 Mb upstream of 

TFPI associated with TFPI plasma level variability and VTE risk (Dennis et al., 2016). Much 

remains to be learned about the genetics and biology of thrombosis (Morange, Suchon, & 

Tregouet, 2015), and genome‐wide association scans (GWAS) of TFPI plasma levels may 

contribute to this goal by identifying additional putative loci.  

Herein we present results of the first reported GWAS of TFPI plasma levels. Analyses were 

conducted in the F5L Family Study, which consisted of 251 individuals from five French‐
Canadian families ascertained on VTE. Advantages of the study sample are the inclusion of 

mostly healthy individuals who were deeply phenotyped, a reduced risk of population 

stratification (Mersha et al., 2015), and better genotyping quality control afforded by the 

family‐based design (Wijsman, 2012). A limitation of the study is power due to its sample 

size. We attempted to overcome this limitation by applying a hypothesis‐driven (HD) GWAS 

using the stratified false discovery rate (sFDR) control (Sun, Craiu, Paterson, & Bull, 2012) 

for prioritization. sFDR control is an efficient and potentially powerful way to incorporate 

prior information into GWAS, and consists of assigning individual SNPs to high‐ and low‐
priority strata based on external information, and applying FDR control separately in each 

stratum (Sun et al., 2006; Yoo et al., 2010). The FDR is controlled overall and within each 

stratum, and no power is lost if the hypothesis is uninformative.  

We hypothesized that SNPs in gene regulatory regions in vascular EC would be more likely to 

be associated with TFPI plasma levels than expected by chance. Over 90% of top‐scoring 

GWAS SNPs are nonprotein coding, regardless of phenotype, and three‐quarters of this 90% 

lie within an active gene regulatory region in at least one cell type, or are in complete linkage 

disequilibrium (LD) with an SNP in an active regulatory region (Maurano et al., 2012). 

Moreover, GWAS hits across multiple phenotypes systematically fall into gene regulatory 

regions in a pathologically or physiologically relevant tissue or cell type (Dimas et al., 2009; 

Ernst et al., 2011; Maurano et al., 2012), and the cell type specific enrichment is observed 

across the range of P‐values, not simply for top‐scoring SNPs (Maurano et al., 2012).  

The objectives of our study were to conduct a GWAS of TFPI plasma levels and to test an 

HD‐GWAS approach in which we prioritized (1) SNPs in hemostasis pathway genes, and (2) 

SNPs in active enhancer/promoter regions used by ECs. We first tested our hypotheses 

globally, using the collection of SNPs in hemostasis pathway genes or in enhancer/promoter 

regions in ECs. We then applied sFDR control genome wide to determine if any individual 

SNPs in the prioritized regions were significantly associated with TFPI plasma levels after 

prioritization.  

2 MATERIALS AND METHODS 
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2.1 Study populations 

Our discovery sample was the French‐Canadian Family Study on Factor V Leiden (F5L) 

Thrombophilia (F5L Family Study), which included 369 individuals from five 

multigenerational French‐Canadian families (Antoni et al., 2010; Gagnon, Aissi, Carrie, 

Morange, & Tregouet, 2014). Probands were patients at the Thrombosis Clinic at the Ottawa 

Hospital between 2005 and 2006, had a history of idiopathic, objectively diagnosed VTE, and 

carried the F5L mutation. Probands’ biological living relatives 10 years of age and older were 

eligible to participate, unless the relative was deceased or lived far from the study's catchment 

area. All invited participants consented (n = 255), completed an interviewer‐administered 

questionnaire on their personal and medical information, and provided blood samples for the 

measurement of hemostatic traits, lipid‐related traits, and genotyping. The research ethics 

boards of the University of Toronto and the Ottawa Hospital Research Institute approved this 

study.  

Our replication sample was the MARseille THrombosis Association study (MARTHA), 

which included 1,542 patients with idiopathic, objectively diagnosed VTE seen at the 

Thrombophilia Centre of La Timone Hospital, Marseille, France, between January 1994 and 

October 2005 (Antoni et al., 2011; Oudot‐Mellakh et al., 2012). Participants completed a 

physician‐administered questionnaire on their personal and medical histories and provided a 

fasting blood sample. All participants were white, and the majority reported French ancestry 

going back at least three generations. The Ethics Committee at La Timone Hospital approved 

this study.  

2.2 Genotyping and imputation 

F5L Family Study participants were genotyped using the Illumina Human660W‐Quad 

beadchip. Quality control and imputation steps have been described elsewhere (Antoni et al., 

2010; Dennis et al., 2016). In brief, we used data on 490,083 genotyped autosomal SNPs with 

at least 20 observations of the minor allele (minor allele frequency (MAF) 0.04). We 

estimated haplotypes while accounting for family structure with SHAPEIT v2.r778 (Howie, 

Fuchsberger, Stephens, Marchini, & Abecasis, 2012; O'Connell et al., 2014) and imputed 

genotypes into these haplotypes using the 1000 Genomes Phase 1 Total European Ancestry 

(EUR) reference population (2010‐11‐23 release) (Delaneau, Marchini, 1000 Genomes 

Project Consortium, & 1000 Genomes Project Consortium, 2014) and IMPUTE2 v2.3.1 

(Howie, Donnelly, & Marchini, 2009). We filtered imputed SNPs with MAF < 0.04 and poor 

imputation quality (info <0.3), for a total of 6,159,088 imputed and genotyped SNPs. We used 

the imputed allele dose (a continuous value between 0 and 2) in all analyses.  

Genotyping and imputation in MARTHA have been described elsewhere (Dennis et al., 2016; 

Oudot‐Mellakh et al., 2012). MARTHA subjects were genotyped with either the Illumina 

Human610‐Quad or the Illumina Human660W‐Quad beadchips, and additional genotypes 

were imputed relative to the 1000 Genomes Total European Ancestry (EUR) population 

(2010‐08 release) using MACH v1.0.18.c (Li, Willer, Sanna, & Abecasis, 2009; Li, Willer, 

Ding, Scheet, & Abecasis, 2010). We filtered imputed SNPs with MAF < 0.01 and poor 

imputation quality (r2 < 0.3, analogous to the info <0.3 criterion from IMPUTE2, above), and 

analyzed the imputed allele dose. In total, 7,804,320 genotyped and imputed SNPs were 

available for replication analyses.  
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2.3 Biological measurements 

Free TFPI plasma levels were measured in the F5L Family and MARTHA studies using the 

Asserachrom® Free TFPI enzyme immunoassay from Diagnostica Stago (Asnières, France). 

TFPI plasma levels were measured in 251 individuals from the F5L Family Study and in 

1,170 individuals from MARTHA. Heparin had been administered to 137 MARTHA subjects 

undergoing biological thrombophilia testing at the time of blood draw. Heparin induces the 

release of TFPI from the EC surface, resulting in a large spike in TFPI plasma levels 

(Morange et al., 2007), and so these individuals were excluded from the replication analyses.  

2.4 Epigenetic data generation and analysis 

Cell culture: Two biological replicates (15 year old healthy Black male and 60 year old 

healthy Caucasian male) of primary aortic ECs (Human Aortic ECs, HAEC) were obtained 

from Cell Applications (catalogue #304‐05a) and cultured in EC Growth Media (catalogue 

#211‐500). Cells were grown to passage 6 and cross‐linked in 1% formaldehyde prior to 

proceeding with the chromatin immunoprecipitation. ChIP‐seq for H3K27ac was performed 

with 10 μg of mouse anti‐H3K27ac (Millipore, 05–1334 monoclonal), as previously described 

(Schmidt et al., 2009). Sequencing reads were aligned to the hg19 assembly as previously 

described (Ballester et al., 2014) (see supplementary Table S1 for sequencing read depth and 

quality control metrics).  

ChIP‐seq peaks were called relative to data obtained from nonimmunoprecipitated whole cell 

extracts using MACS2 (broad peaks setting) with a cut‐off of FDR q‐value ≤ 0.05 (Zhang 

et al., 2008). These data have been deposited into ArrayExpress (www.ebi.ac.uk/arrayexpress; 

accession number E‐MTAB‐4935).  

3 STATISTICAL ANALYSES 

The F5L Family Study sample served as the primary discovery sample in all analyses. Most 

individuals in the study were healthy, and our HAEC regulatory region data were also from 

healthy individuals. The MARTHA sample, on the other hand, consisted of subjects with a 

recent history of VTE, and the regulatory landscape in MARTHA subjects may not have been 

comparable to that in healthy individuals. We therefore did not test our global hypotheses in 

the MARTHA sample. Instead, we tested individual SNPs for replication in MARTHA, 

because MARTHA has served as a valuable replication sample in previous studies of TFPI 

plasma levels (Dennis et al., 2016), and other hemostatic traits (Antoni et al., 2010, 2011).  

3.1 Genome‐wide association analysis 

We conducted a GWAS of TFPI plasma levels in the F5L Family Study using a mixed linear 

model to account for family structure, as implemented in GEMMA (Zhou & Stephens, 2012). 

We modeled the natural logarithm of TFPI plasma levels under an additive genetic effect and 

included age and sex as covariates. In sensitivity analyses, we also modeled an empirical 

normal quantile transformation of TFPI plasma levels in which ranked values were scaled and 

fit to a normal distribution (Peng, Yu, Dehoff, & Amos, 2007). Although the empirical normal 

quantile transformation accounts for non‐normal outcome distributions, information may be 

lost in the transformation.  

https://onlinelibrary-wiley-com.gate2.inist.fr/doi/full/10.1002/gepi.22049#gepi22049-bib-0047
https://onlinelibrary-wiley-com.gate2.inist.fr/doi/full/10.1002/gepi.22049#gepi22049-bib-0062
https://onlinelibrary-wiley-com.gate2.inist.fr/doi/full/10.1002/gepi.22049#gepi22049-bib-0010
http://www.ebi.ac.uk/arrayexpress
https://onlinelibrary-wiley-com.gate2.inist.fr/doi/full/10.1002/gepi.22049#gepi22049-bib-0021
https://onlinelibrary-wiley-com.gate2.inist.fr/doi/full/10.1002/gepi.22049#gepi22049-bib-0005
https://onlinelibrary-wiley-com.gate2.inist.fr/doi/full/10.1002/gepi.22049#gepi22049-bib-0006
https://onlinelibrary-wiley-com.gate2.inist.fr/doi/full/10.1002/gepi.22049#gepi22049-bib-0083
https://onlinelibrary-wiley-com.gate2.inist.fr/doi/full/10.1002/gepi.22049#gepi22049-bib-0055


3.2 Global hypothesis test 

We evaluated our hypothesis globally by testing whether SNPs in prioritized regions had 

smaller P‐values (larger association statistics) than expected by chance (Sun et al., 2012). Our 

test statistic was the sum of association Wald values for SNPs in prioritized regions, and we 

compared the observed sum to the distribution of the sum generated by 1,000 permutations 

under the null hypothesis of no association. We used a semiparametric bootstrapping method 

(MVNpermute; Abney, 2015) to permute the phenotype 1,000 times while accounting for 

familial relatedness, and ran 1,000 association tests between each permuted phenotype and 

prioritized SNPs. We summed the Wald values from each permutation run to generate the null 

distribution of 1,000 summed Wald values. We calculated an empirical P‐value for the 

hypothesis (global hypothesis P‐value), as the proportion of summed Wald values from 

permutation runs that exceeded the observed summed Wald value. P‐values < 0.05 suggested 

that the prioritization scheme significantly enriched for associated SNPs.  

We also tested whether additional subsetting of the primary hypothesis improved enrichment. 

As above, we summed the Wald statistics of SNPs prioritized under our primary hypothesis, 

and for subsets of SNPs. We weighted each sum by the number of variants in each group, and 

computed the difference between the proportional sum statistics (Soave et al., 2015). The 

observed difference was compared to the difference from 1,000 permutation runs, as above, 

and an empirical P‐value < 0.05 indicated that the subsetting added additional information.  

3.3 HD genome‐wide association analysis via sFDR control 

Ultimately, the vascular EC hypothesis showed the most enrichment of TFPI plasma level 

associated SNPs. We therefore assigned SNPs in H3K27ac‐bound regions in vascular EC to 

the high priority stratum and applied sFDR control to our GWAS results (Sun et al., 2006; 

Yoo et al., 2010). For comparison, we also applied weighted (w) FDR control to our single‐
SNP association tests (Roeder, Bacanu, Wasserman, & Devlin, 2006). SNPs in prioritized 

regions were assigned a weight proportional to the MACS2 peak P‐value (representing the 

confidence of the peak call) (Zhang et al., 2008), transformed to stabilize the variance (sqrt(–

log10(P‐value)), and SNPs in nonprioritized regions were assigned a weight of 1 (Li et al., 

2013). All weights were then scaled to have a mean of 1, the only necessary assumption to the 

wFDR, and FDR control was applied to the weighted P‐values (Roeder et al., 2006). The 

wFDR is marginally more powerful than the sFDR when the prior is informative; when the 

prior is uninformative or misleading, however, the sFDR outperforms the wFDR (Yoo et al., 

2010).  

We conservatively based our interpretations on sFDR q‐values, and SNPs with sFDR q‐values 

< 0.10 were deemed statistically significant and were tested for replication in MARTHA (q‐
values > 0.05 are required in GWAS to strike a balance between true discoveries and non‐
discoveries, although the optimal threshold will depend on the proportion of true alternative 

hypotheses in a study; Craiu & Sun, 2008). Statistical models in MARTHA included age, sex, 

medication use, and the first four principal components as covariates. We also tested top 

SNPs for association with TFPI plasma levels in the F5L family study under quantile 

regression models, with quantiles set at 0.50 and 0.25. Quantile regression differentially 

weights associations at different values of the outcome distribution, and may be more 

powerful than mean regression when the outcome is skewed (White et al., 2015). We used the 

R package lqmm (Geraci, 2014), which accounted for clustering by family, but did not 

explicitly model family structures as in our primary (mean regression) analysis.  
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FDR methods assume that all tests (i.e., SNPs) are independent. In a sensitivity analysis, we 

therefore restricted the HD‐GWAS to genotyped tag SNPs where there was less LD. We 

prioritized SNPs that lay directly in a prioritized region, and those in LD with an SNP in a 

prioritized region. We used LD estimates from SNPs in the 1000 Genomes Phase 1 Total 

European Ancestry (EUR) reference population (2010‐11‐23 release), and annotated a 

genotyped SNP to a prioritized region if it was in LD (r2 > 0.80 and within 1 Mb) with a 

second SNP that lay in a prioritized region.  

The stratified and weighted FDR analyses described in this article are implemented as a 

standalone tool (hdgwas_analysis.py), available in the following git repository: 

https://github.com/gcarrasco/HD_GWAS_Package.  

4 RESULTS 

Our GWAS of TFPI plasma levels included 251 individuals from the F5L Family Study. Most 

individuals in the study were apparently healthy, and only 15 had a history of VTE (Table 1). 

Compared to the MARTHA replication sample, which included only VTE cases, individuals 

in the F5L Family Study were younger and included equal proportions of males and females. 

Thrombosis risk factors, however, were well represented in both data samples: nearly one‐
quarter of the F5L Family and MARTHA study samples smoked, and the mean body mass 

index in both samples was above the overweight threshold of 25 kg/m2. A small number of 

individuals in the F5L Family Study used antiplatelet (6.8%) or anticoagulant (3.2%) 

mediations, and TFPI plasma levels did not vary by medication status. Conversely, 6.7% and 

22.7% of MARTHA subjects used antiplatelet or anticoagulant medications, and medication 

status was significantly associated with TFPI plasma levels (P < 0.001). TFPI plasma levels 

were slightly skewed in both datasets, even after taking the natural logarithm, with Shapiro‐
Wilk normality test P‐values of 0.005 in the F5L Family Study and 0.03 in MARTHA 

(supplementary Fig. S1).  

Table 1. Study sample characteristics  

Characteristic 
F5L Family Study 

(N = 251)  

MARTHA (N = 

1,033)  

Female sex, N (%)  126 (50.2) 684 (66.2) 

Mean age (SD) 40.5 (18.0) 47.5 (15.2) 

History of venous thromboembolism, N (%)  15 (6.0) 1,033 (100) 

Mean TFPI (SD), in ng/mL 8.3 (3.8) 13.5 (6.5) 

F5L mutation carrier, N (%)  63 (25.1) 237 (22.9) 

Current smoker 61 (24.3) 234 (22.7) 

Female hormone therapy use, N (%)  18 (7.2) 66 (6.4) 

Mean body mass index (SD), in kg/m2 26.9 (5.9) 25.4 (4.8) 

Antiplatelet use, N (%)  17 (6.8) 69 (6.7) 
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Characteristic 
F5L Family Study 

(N = 251)  

MARTHA (N = 

1,033)  

Anticoagulant use (vitamin K antagonists and low molecular weight or 

unfractioned heparin), N (%)a 
8 (3.2) 235 (22.7) 

• N, number; SD, standard deviation; TFPI, tissue factor pathway inhibitor; F5L, the F5 
Leiden mutation.  

• a Information was not available on the specific types of anticoagulant drugs used by 
individuals in the F5L Family Study. MARTHA individuals using heparin were excluded 
from all analyses.  

In total, 131 SNPs with suggestive (P‐value < 1 × 10−5) evidence for association were 

identified in the GWAS, but no SNPs reached the genome‐wide significance threshold of P‐
value < 5 × 10−8 (Fig. 1). Results were similar after applying the empirical normal quantile 

transformation (supplementary Fig. S2), and when using genotyped SNPs only 

(supplementary Fig. S3).  

 

Figure 1  

Manhattan plot (A) and q‐q plot (B) of results from a genome‐wide association scan of TFPI 

plasma levels in the F5L Family Study. Included in the Manhattan plot are the suggestive 

(blue; P‐value < 1 × 10−5) and genome‐wide (red; P‐value < 5 × 10−8) thresholds for statistical 

significance  
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We defined hemostasis pathway genes using Reactome (Croft et al., 2011), which is a curated 

and peer‐reviewed pathways database with 512 proteins annotated to the “Hemostasis” 

pathway (R‐HSA‐109582.1; 2015‐03‐17). We mapped these proteins to 495 genes in Ensembl 

and defined gene regions according to the genes’ position in hg19 ± 100 kb. The 495 

Hemostasis genes covered 278,493 SNPs (4.5% of total), but did not contain more TFPI 

plasma level associated SNPs than expected by chance (global hypothesis test P‐value = 

0.147; Fig. 2A).  

 

Figure 2  

Global hypothesis test results for genotyped and imputed SNPs. We tested SNPs in (A) 

Reactome “Hemostasis” genes, and (B) H3K27ac‐bound regions in vascular endothelial cells 

for association with TFPI plasma levels in the F5L Family Study and compared the sum of 

observed Wald values (red dotted line) to the distribution of test statistics possible when the 

null hypothesis of no association was true  

To identify putative vascular EC enhancers/promoters, we focused on gene regulatory regions 

that were common to both arterial and venous EC. These regions are more likely to harbor 

sequence variation that is relevant to EC processes, including TFPI plasma level regulation. 
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We therefore retained all HAEC peaks that overlapped (by at least 1 bp) an H3K27ac peak in 

human umbilical vein EC (HUVEC) from the ENCODE consortium (ENCFF000BSI, 

ENCFF000BSD, ENCFF000BRV) (The ENCODE Project Consortium, 2012). Of the 58,408 

regions we identified bound by H3K27ac in HAEC, 52,164 (89%) overlapped an H3K27ac‐
bound region in HUVEC, including the transcription start site of TFPI (Fig. 3). The 52,164 

H3K27ac‐bound regions in vascular EC included 159,223 genotyped and imputed SNPs 

(2.6% of total), and the global hypothesis test revealed that these regions were enriched for 

TFPI plasma level associated SNPs (P‐value = 0.046; Fig. 2B).  

 

Figure 3  

H3K27ac enrichment around TFPI in human aortic endothelial cells (HAEC: red; this study) 

and human umbilical vein endothelial cells (HUVEC; black; ENCODE consortium). Sequence 

enrichments obtained from DNA isolated from nonimmunoprecipitated whole cell extract 

are plotted below each H3K27ac experiment. The total size of the genomic window shown 

(x‐axis) is 154 kb with TFPI on the minus strand. The y‐axis represents number of sequencing 

reads and has been arbitrarily capped at 30 reads. Both HAEC and HUVEC H3K27ac ChIP‐seq 

experiments produced peaks at the transcription start site of TFPI that exceeded 30 reads 

and these regions are indicated with pink lines above the red and black peaks  

We additionally conducted two negative control hypothesis tests. In the first, we reasoned that 

SNPs associated with TFPI plasma levels would not be enriched in active regulatory regions 

of melanocytes, a cell type unrelated to thrombosis and with minimal TFPI expression. We 

identified 95,164 melanocyte regulatory regions from H3K27ac peaks in Roadmap 

Epigenomics melanocytes (GSM1127072 and GSM1127073; input controls GSM941740, 

GSM941741; supplementary Table S1). Most melanocyte regions (N = 74,736; 79%) did not 

overlap (by at least 1 bp) one of the 52,164 vascular EC regions, and these 74,736 

melanocyte‐specific regions were used in subsequent analyses. As expected, H3K27ac‐bound 

regions in melanocytes did not contain an excess of TFPI plasma level associated SNPs 

beyond what was expected by chance (global hypothesis test P‐value = 0.339).  
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In the second negative control hypothesis test, we tested whether the 52,164 vascular EC 

regulatory regions were enriched for SNPs associated with age, a phenotype with no genetic 

liability. The global hypothesis test P‐value was 0.538.  

Nearly 10% (N = 4,875) of the 52,164 vascular EC regions overlapped a hemostasis pathway 

gene by at least 1 bp. These overlapping regions included 14,819 SNPs, but subsetting to 

these regions did not better define the associated regulatory regions than all 52,164 vascular 

EC regions (subsetting P‐value = 0.537).  

Sixty two percent of the 52,164 vascular EC regions (N = 32,311) did not overlap (by at least 

1 bp) a melanocyte region. Nonetheless, these vascular EC‐specific regions (containing 

79,232 SNPs) did not additionally enrich for TFPI plasma level associated SNPs compared to 

all vascular EC regions (subsetting P‐value = 0.238).  

Because our primary hypothesis yielded the most promising global hypothesis test results, we 

proceeded with an HD‐GWAS of TFPI plasma levels, prioritizing SNPs in H3K27ac regions 

in vascular EC, and computing sFDR and wFDR q‐values. No SNPs, however, reached our 

threshold for genome‐wide statistical significance. The minimum sFDR q‐value was 0.27, and 

only two SNPs (rs55778554 and rs7904454, with pairwise r2 = 0.92 in the 1000 Genomes 

reference population) had sFDR q‐values < 0.30. The SNPs did not replicate in MARTHA 

(Table 2). The sFDR q‐value was consistently smaller than the wFDR q‐value, implying that 

the MACS2 peak P‐values added little information. Association evidence for these SNPs was 

unchanged after applying the empirical quantile normal transformation to TFPI plasma levels 

and under the quantile regression models (supplementary Table S2). Associations were still 

null in MARTHA when anticoagulant and/or antiplatelet users were excluded.  

Table 2. Association Results for SNPs with sFDR q‐values <0.30 in the F5L Family Study  

    F5L Family Study MARTHA 

SNP 
CH

R 

Position 

(hg19) 

Alleles

a 

MA

F 

Effect

b (SE)  
P 

FDR 

q 

wFD

R q 

sFDR 

q 

FDR 

Ran

k 

wFD

R 

Rank 

sFD

R 

Ran

k 

MA

F 

Effect 

(SE) 
P 

rs5577855

4 
10 

7361968

5 
A/G 0.12 

−0.23 

(0.05) 

2.3

4 × 

10−6 

0.39

1 

0.38

6 

0.27

0 
13 13 1 0.13 

−0.01

4 

(0.025

) 

0.56

8 

rs7904454

c 
10 

7363136

1 
C/A 0.10 

−0.25 

(0.05) 

3.3

9 × 

10−6 

0.39

1 

0.38

6 

0.27

0 
24 24 2    

• MAF, minor allele frequency; SE, standard error; FDR, false discovery rate. 
• a Allele format is major/minor.  
• b Effect is relative to the minor allele.  
• c rs7904454 (pairwise r2 = 0.92 with rs55778554 in the 1000 Genomes reference 

population) was not imputed in the MARTHA study sample.  
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To minimize the potential bias in FDR estimates introduced by including correlated (imputed) 

SNPs, we restricted our HD‐GWAS to genotyped SNPs (N = 77,374). We prioritized SNPs in 

vascular EC regulatory regions, as well as those in LD with a SNP in a vascular EC regulatory 

region. The global hypothesis P‐value for these SNPs was 0.106, but no SNPs had sFDR q‐
values < 0.10. The minimum sFDR q‐value was 0.13, and only two SNPs (rs4746097 and 

rs4237333, also in LD with rs55778554 and rs7904454) had sFDR q‐values < 0.15.  

5 DISCUSSION 

We conducted the first reported GWAS of TFPI plasma levels, and incorporated experimental 

epigenetic data for mapped active enhancers and promoters in vascular EC, which were 

marginally enriched for TFPI plasma level associated SNPs. In contrast, genes annotated to 

the hemostasis pathway did not contain more TFPI plasma level associated SNPs than 

expected by chance. Prioritization of SNPs in vascular EC regulatory regions, however, did 

not identify individual genome‐wide significant variants.  

Previous candidate gene studies of TFPI plasma levels have focused on hemostatic‐ and lipid‐
related genes (reviewed in Dennis et al., 2015). Increasingly, however, genes with no 

previously known roles in clotting are being implicated in VTE (Antoni et al., 2010), arterial 

thrombosis, and thrombosis‐related phenotypes (Antoni et al., 2010; Morange et al., 2010; 

Rocanin‐Arjo et al., 2014). A recent meta‐analysis of over 7,000 VTE cases and their controls 

identified two genes never associated with cardiovascular phenotypes (Germain et al., 2015). 

Likewise, the 9p21 locus has been robustly implicated in coronary artery disease, but the 

biological mechanism and gene underlying the association remains elusive (Miller, Assimes, 

Montgomery, & Quertermous, 2014). The null results from our hemostatic pathway 

hypothesis align with these large thrombosis studies. Active enhancers and promoters in 

vascular EC showed the most promising global enrichment results, and although these results 

need to be replicated in an independent sample of healthy individuals, our analysis suggests 

that a cell type specific regulatory region prioritization approach is relevant to TFPI biology.  

Detecting causal SNPs is a persistent challenge to GWAS. Although many successes are 

reported (Welter et al., 2014), there are likely SNPs that are truly trait associated, but whose 

effect sizes and P‐values fall below the multiple testing significance threshold (Schork et al., 

2013). Indeed, the proportion of trait heritability explained by all GWAS SNPs combined is 

much greater than the proportion explained by top GWAS hits (Gusev et al., 2014; Yang 

et al., 2010, 2011), and meta‐analyses have identified SNPs that were only suggestive 

associations in individual studies (Germain et al., 2015).  

These challenges have prompted the development of methods that improve discovery in 

GWAS by incorporating prior information (Carbonetto & Stephens, 2013; Darnell, Duong, 

Han, & Eskin, 2012; Nicolae et al., 2010; Zablocki et al., 2014). We used the sFDR (Sun 

et al., 2006) and wFDR (Roeder et al., 2006), which were among the first methods proposed. 

Both the sFDR and wFDR are flexible, easy to apply and interpret, and have been validated 

with a variety of priors, including linkage scores (Roeder et al., 2006; Sun et al., 2006; Wright 

et al., 2011), MAF (Xing, Cohen, & Boerwinkle, 2010), SNPs in disease‐relevant gene 

pathways (Sun et al., 2012), and SNPs with pleiotropic effects on related phenotypes 

(Andreassen et al., 2014). The sFDR and wFDR have also been successfully used to prioritize 

putative regulatory variants, namely, eQTL (Li et al., 2013), and SNPs in regulatory genic 

categories (e.g., 5′ and 3′ UTR) (Schork et al., 2013).  
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Machine learning algorithms are another class of methods for integrating GWAS and gene 

regulatory data, and have been heavily investigated in recent years (Gagliano, Barnes, Weale, 

& Knight, 2014; Iversen, Lipton, Clyde, & Monteiro, 2014; Kircher et al., 2014; Pickrell, 

2014; Ritchie, Dunham, Zeggini, & Flicek, 2014). These methods use massive amounts of 

functional data (e.g., multiple cell types and functional annotations from ENCODE; The 

ENCODE Project Consortium, 2012) to predict the most relevant functional class of variants 

for a given phenotype, and then to prioritize SNPs in these functional categories. Power gains 

with machine learning algorithms, however, are mixed (Gagliano, Ravji, Barnes, Weale, & 

Knight, 2015; Ritchie, Holzinger, Li, Pendergrass, & Kim, 2015). Whether this is a function 

of the input data or of underlying biology is unclear, as few machine learning algorithms 

explicitly modeled cell‐type specificity.  

Alternatively, the genome may contain many redundancies, and gene regulatory data may still 

be too nonspecific to use as informative priors. Using epigenetic data as priors will most 

likely benefit from knowing which tissue(s), and more specifically which cell types within 

specific tissues, play a role in the biology of the trait measured by GWAS. For complex traits 

especially, this question is not trivial. Although TFPI is constitutively expressed by vascular 

ECs (Bajaj et al., 1990; Lupu et al., 1995, 1999), other physiologically relevant sources exist 

including megakaryocytes (Novotny et al., 1988), monocytes (Bajaj, Ghosh, & Bajaj, 2007; 

Basavaraj et al., 2010), cardiomyocytes, vascular smooth muscle cells, and fibroblasts (Bajaj, 

Steer, Kuppuswamy, Kisiel, & Bajaj, 1999; Caplice et al., 1998; Kereveur, Enjyoji, Masuda, 

Yutani, & Kato, 2001). Moreover, expression changes during inflammation add additional 

complexities that could be relevant to include as biological priors.  

Clinical differences between the F5L Family and MARTHA study samples may have also 

contributed to the lack of individual SNP replications. The F5L Family Study included mostly 

nondiseased individuals, whereas the MARTHA study included only VTE cases. Although 

TFPI plasma levels did not differ by VTE status in the F5L Family Study, others have 

reported that TFPI plasma levels are elevated immediately following a VTE event 

(Sidelmann, Bladbjerg, Gram, Munster, & Jespersen, 2008), and the cell types and SNPs 

involved in this pathological TFPI expression may differ from those that regulate endogenous 

TFPI production (Bjorkegren, Kovacic, Dudley, & Schadt, 2015). HAEC regulatory regions 

were ascertained in cells from healthy individuals, so the F5L Family Study was ideally suited 

for testing our global hypotheses, but our lack of individual SNP replication in MARTHA 

suggests systemic differences in gene regulation post‐VTE.  

In the first GWAS of TFPI plasma levels, we report a slight enrichment of TFPI plasma level 

associated SNPs in the active enhancers and promoters of vascular ECs, the predominant cell 

type to express TFPI. We leveraged the observed enrichment in our GWAS, prioritizing SNPs 

in vascular EC regulatory regions via sFDR control, but did not identify any individual SNPs 

associated with TFPI plasma levels. The overrepresentation of trait‐associated SNPs in cell 

type specific regulatory regions is now well documented, but methods that efficiently 

incorporate functional epigenomic data into GWAS are lacking. Our approach provides a 

framework for integrating genetic and epigenetic data, and may be useful in larger study 

samples.  
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