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Neuronal communication in the central
nervous system is ensured by synapses
through which neuronal events can be
transmitted from one cell to the next.
Classically, two major classes of synapses
can be distinguished: (i) chemical synapses
that use a chemical transmitter to activate
or inhibit the postsynaptic neuron and (ii)
electrical synapses that transmit information
to the next cell by passive transmission of
voltage in an analogue way (i.e. they do
not require an action potential). While the
basic function and plasticity of chemical
synapses is relatively well established today,
much less is known about the mechanism
of activity-dependent plasticity at electrical
synapses. Electrical synapses connect two
adjacent neurons through intercellular
channels that form gap junctions. They
are widely expressed in the central nervous
system of mammals and are particularly
abundant in inhibitory interneurons
(Pereda, 2014). Unlike chemical synapses,
electrical synapses are bidirectional, reliable
and conduct almost instantaneously.
Functionally, electrical synapses are
involved in many features of the network
activity. Because of their ohmic nature, they
can transmit excitation as well as inhibition,
and it has been shown that they are involved
in synchronous oscillatory activity.

The thalamic reticular nucleus (TRN)
contains a homogeneous population of
parvalbumin-positive γ-aminobutyric acid
(GABA)-releasing neurons that surround
the dorsal thalamus. TRN neurons inhibit
thalamic relay cells and thus control the
switch of their discharge from bursting to
tonic mode occurring during the trans-
ition from sleep to wakefulness. These inter-
neurons communicate essentially through
gap junctions constituted of connexin36
(Cx36), the main connexin found in the
mammalian brain.

Long-term depression of electrical
coupling (eLTD) at electrical synapses in
the TRN has been shown to occur when

afferent cortical input to electrically coupled
neurons is tetanized at 100 Hz (Landisman
& Connors, 2005). This eLTD is mediated
by activation of the metabotropic glutamate
receptor (mGluR) and it can be induced
by the sole stimulation of group I mGluR
(Wang et al. 2015). Alternatively, eLTD
can be induced at TRN electrical synapses
with a physiological protocol based
on the synchronous activation of both
neurons (Haas et al. 2011). Functionally,
modification of electrical coupling in
TRN neurons is thought to modulate
temporal and spatial transmission of
information within the thalamo-cortical
system. Today, the mechanisms under-
lying both forms of eLTD remain
unclear.

In this issue of The Journal of Physio-
logy, Sevetson and co-workers addressed
this important issue by showing that,
while mGluR-dependent eLTD and
burst-induced eLTD occlude each other,
Ca2+ entry through T-type calcium
channels is required for the induction
of burst-induced eLTD but not for
mGluR-dependent eLTD (Sevetson et al.
2017). In fact, while the Ca2+ chelator
BAPTA or the T-type calcium channel
antagonist TTA-A2 blocked burst-induced
eLTD, these compounds were found
to have no effect on mGluR-dependent
eLTD. Induction of burst-induced eLTD was
blocked by caffeine or ryanodine, indicating
that Ca2+ influx recruits intracellular
pools of Ca2+. Furthermore, blocking
activation of the calcium-activated protein
phosphatase calcineurin with FK-506
or cyclosporin A occluded induction of
burst-induced eLTD.

This paper is important because it opens
several interesting perspectives. First, the
findings reported in Sevetson et al. (2017)
indicate that there are at least two forms
of eLTD at TRN electrical synapses that
are independent in both their induction
and expression mechanisms. While
mGluR-dependent eLTD corresponds to a
global phenomenon in which glutamatergic
stimulation affects many neighbouring
electrical synapses, the burst-induced
eLTD is initiated by activity in pairs of
coupled neurons and may thus correspond
to a more local phenomenon. Second,
the involvement of calcineurin in eLTD
suggests that other forms of plasticity
at electrical synapses might be induced.

In fact, calcineurin controls activity of
calcium/calmodulin-dependent protein
kinase II (CaMKII), which is involved
in NMDA receptor-dependent long-term
synaptic plasticity (long-term potentiation;
LTP) in cortical chemical synapses but
also in some forms of LTP of electrical
coupling (eLTP) (Pereda, 2014; Turecek
et al. 2014). Moreover, Cx36, interacts with
and is phosphorylated by CaMKII in a
way similar to CaMKII interaction with
glutamate receptors. eLTP has been shown
to be induced in TRN neurons following
stimulation of group II metabotropic
glutamate receptors (Wang et al. 2015).
However, no physiological induction
of mGluR-dependent eLTP has been
described so far nor the conditions to
induce burst-dependent eLTP. At chemical
synapses, the degree of synchrony between
pre- and postsynaptic activity determines
the polarity of synaptic modification
(Debanne et al. 1994). Since eLTD is
induced by synchronous bursting activity in
electrically coupled neurons, it is tempting
to suggest, by analogy with what we know
about plasticity at chemical synapses, that
eLTP might be induced by asynchronous
bursting in weakly coupled TRN
neurons.

To complete the library of plasticity
rules at electrical synapses, one must
also explore the existence of homeo-
static plasticity (i.e. compensatory plastic
changes to maintain the global network
activity constant) at electrical synapses.
There is no doubt that sooner or later
both induction mechanisms of physio-
logical eLTP and induction mechanisms of
homeostatic plasticity will be elucidated at
electrical synapses.
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