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The roundworm C. elegans has been successfully used for
more than 50 y as a genetically tractable invertebrate model in
diverse biological fields such as neurobiology, development
and interactions. C. elegans feeds on bacteria and can be
naturally infected by a wide range of microorganisms,
including viruses, bacteria and fungi. Most of these pathogens
infect C. elegans through its gut, but some have developed
ways to infect the epidermis. In this review, we will mainly
focus on epidermal innate immunity, in particular the signaling
pathways and effectors activated upon wounding and fungal
infection that serve to protect the host. We will discuss the
parallels that exist between epidermal innate immune
responses in nematodes andmammals.

Introduction

A large body of knowledge has been accumulated for the tiny
worm Caenorhabditis elegans since it was chosen as a model
organism by Brenner 50 y ago.1 C. elegans, first described by
Maupas at the start of the last century,2 is a free-living nematode,
1 mm long, found in rotting fruit. In the lab it can easily be
grown on agar petri dishes or in liquid culture. Being a self-fertil-
izing hermaphrodite, it can be expanded as a clonal population,
but males can also be maintained, allowing genetic approaches to
be undertaken. With a short life cycle of 3 days, and 300 progeny
per adult, large homogenous populations can be generated easily.
Its transparency facilitates live imaging, very useful for cell bio-
logical studies. C. elegans has a simple anatomy with less than
1000 cells organized in a small number of tissues and internal
organs.3

In C. elegans, as in mammals, the epidermis acts as a barrier to
protect the organism from environmental damage and patho-
gens, prevents leakage of internal molecules and blocks the
entrance of foreign compounds. Unlike the multilayered strati-
fied epithelium in mammals, the adult C. elegans epidermis (also
termed “hypodermis” for historical reasons) is mainly composed
of one cell layer, including a large syncytial cell, called hypoder-
mal cell 7 (hyp7), which surrounds the worm and covers most of
the body length, and a line of specialized lateral cells on each side
of the worm, called the seam cells (Fig. 1).4

As in most invertebrates, C. elegans possesses an exoskeleton. In
nematodes, this is a tough, but flexible external cuticle secreted by
the epidermis. This collagenous extracellular matrix (ECM) main-
tains the integrity of the worm, defines the body shape of the ani-
mal and is required for locomotion, through its attachment to the
underlying muscles. The cuticle is subdivided into basal, medial
and cortical zones, overlaid by the epicuticle and the most external
layer, the surface coat. While the cuticle is mainly composed of
collagen and insoluble proteins, called cuticlins, the epicuticle and
the surface coat are rich in lipids and structural glycoproteins such
as mucins, respectively. Secreted non-structural proteins also likely
make up an important part of the cuticle, such as enzymes
involved in post-secretion modification and cross-linking of
matrix proteins or structural proteins associated with the surface
coat.5,6 In mammals, the most external layer of the skin, the stra-
tum corneum (SC) is the final product of keratinocyte differentia-
tion, resulting from denucleation and crosslinking of intracellular
proteins. It is mainly composed of keratin, cholesterol, free fatty
acids and ceramides.7 Although differing in composition, the C.
elegans cuticle can be considered analogous to the SC as they both
function as a permeability barrier.8

Cuticle Collagen: A Key Component in Barrier
Integrity

Collagen is the main structural protein of the extracellular
matrix in animals, and the most abundant protein in mammals.
It is an essential component of the skin and plays a key role in
organogenesis and body morphology. In C. elegans, 2 major col-
lagen families are present, the cuticle and the basement
membrane collagens. While only 3 genes encodes type IV and
type XVIII basement membrane collagens, the cuticle collagens
are encoded by more than 170 genes. They are most similar to
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the fibril-associated collagens with interrupted triple helices
(FACIT) found in vertebrates.5 They are regulated differentially,
most of them following the 4 molting cycles during larval devel-
opment and are involved in the formation of distinct sub-cuticle
structures (e.g. annular furrows and alae) and layers.9 Collagen
biogenesis involves a complex maturation process, partially
shared between nematodes and vertebrates, during which
pro-collagen undergoes several co-translational and post-transla-
tional modifications. Collagen maturation ends with the secre-
tion of collagen triple helices that are covalently cross-linked via
tyrosine residues. This determines the characteristic stiffness and
integrity of the worm cuticle.5 During this step, a peroxidase
(MLT-7) cooperates with an NADPH dual oxidase (BLI-3), to
promote reactive oxygen species (ROS)-mediated catalysis of di-
and tri- tyrosine covalent bonds.10,11 Recently, a tetraspanin pro-
tein (TSP-15) was found to form a complex with BLI-3/DUOX
and MLT-7/peroxidase and to be required for ROS generation.12

In the absence of any one of these 3 proteins, no di- and tri- tyro-
sine bonds are made and the cuticle is fragile and blistered. In
vertebrates, the formation of covalent cross-links of proteins such

as involucrin and loricrin in the
SC is also essential for the func-
tion of mammalian skin as an
external barrier. It occurs via the
action of transglutaminases that
leads to the oxidation of amino
group of lysine or glutamate resi-
dues into aldehyde derivatives.
Collagen helices are cross-linked
by lysyl oxidase in vertebrates
between lysine and hydroxyl
lysine residues. Lysyl oxidase-
mediated cross-linkages are not
found in the C. elegans cuticle,
they only contribute to cross-
linking of type IV collagen in the
basement membrane.13,14

In human skin, collagens are
mainly found in the dermis.
Many mutations in different col-
lagen genes have been associated
with various diseases.15 For exam-
ple, patients with epidermolysis
bullosa, carry mutations in
COL7A1 or COL17A1 that lead
to blisters in the skin and mucosal
membranes, and mutations in
COL3A1 or COL5A1 have been
found in patients with Ehlers–
Danlos syndrome, with various
symptoms including a fragile
skin.16,17 Similarly, in nemato-
des, mutations in genes encoding
collagens, like DPY-9, ROL-6,
BLI-1, or processing enzymes,
including the prolyl 4-hydroxy-

lase DPY-18 or the disulfide isomerase PDI-2, result in diverse
body morphology defects described as ROLler (Rol: helical twist-
ing of the animal’s body), DumPY (Dpy: shortening in the body
length), or BLIster (Bli: blistering of cuticle material away from
the surface of the animal).5

The nematode cuticle is made of successive layers of different
collagens. Interestingly, some mutants in specific collagen genes,
such as dpy-2, dpy-7 or dpy-10, which are presumed to be the
most external collagens of the cuticle, show high osmotic resis-
tance, due to a higher internal level of glycerol. These same colla-
gens are also required for proper circumferential furrow
formation.18 Wheeler and Thomas proposed that these collagens
on the furrows could act as a stretch sensor, monitoring the tur-
gor pressure of the cuticle. OSM-7 and OSM-11, which are nem-
atode-specific proteins structurally related to the Notch ligand
Delta, possibly associated with the cuticle, could transduce the
signal, leading to the increase in glycerol.18 The same mutants
also show a constitutive activation of innate immunity (see
below).19,20 As previous studies found these mutants to be
involved in the suppression of diverse hypomorphic mutations,

Figure 1. C. elegans anatomy. (A) Image of an early larval stage in DIC, scale bar is 20 mm. Schematic of an adult
C. elegans body (B) and cuticle (C). The adult cuticle is approximately 0.5 mm in thickness and subdivided in (Bs)
basal zone, (Md) medial zone, (Co) cortical zone, (Ep) epicuticle and (Sc) Surface coat “should be” subdivided in
basal zone (Bs), medial zone (Md), cortical zone (Co), epicuticle (Ep) and surface coat (Sc). Collagen is present in
all the major layers, except for Ep and Sc which are rich in lipids and glycoproteins, respectively. The cuticle is
synthesized by the epidermis, formed by the hypodermis (hyp), a simple epidermal syncitium and the lateral
seam cells (adapted fromWormatlas, http://www.wormatlas.org/hermaphrodite/cuticle/mainframe.htm).
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probably through the induction of
chaperone function,21-24 these results
suggest that some collagens are part of
a general stress sensing mechanism.

Epidermal Wounding: Cell
Autonomous Innate

and Healing Response

Just as mutation of genes required
for the proper development of the
worm’s cuticle can trigger an innate
immune response, so too does directly
wounding the worm. This can be done
either by hand, with a fine glass needle,
when the worm is pricked at the tail, or
in a more controlled manner with a
laser that enables precise wounding of
the epidermis. In both cases, at the
wound site there is an immediate depo-
sition of as-yet uncharacterized auto-
fluorescent material that perdures for
many hours. Later, the secretion of
basal cuticle components leads to the
repair of the damaged cuticle, leaving a
scar at the wound site. Moreover, injury
provokes a rapid induction of antimi-
crobial peptide (AMP) gene expression
in the epidermis. For example a rise in
the expression of nlp-29 is detectable
within one hour after injury and is sus-
tained for several hours (Fig. 2A).20

This induction of innate effectors upon
wounding is not due to microbe inva-
sion but is a preventive response of the
tissues, as previously shown in other
species.25 Indeed, mutants that are
defective for the induction of defense
gene expression upon wounding suc-
cumb to opportunistic infections.26

In order to identify the first event
which initiates the epidermal response
to damage, Xu and Chisholm focused
their attention on calcium signaling, as
it was already known to be involved in
embryonic wound healing and the
response to membrane injury in single
cells.27,28 Upon injury to the epidermal
syncytium, an immediate Ca2C wave,
released from internal stores, can be
detected at the wound site and provokes local formation of a
dense actin ring which, in turn, will trigger complete wound clo-
sure in 24 hrs. This epidermal Ca2C response involves the epider-
mal transient receptor potential channel, metastatin family
(TRPM) GTL-2, the Gaq EGL-30 and its effector PLCb EGL-

8.29 Subsequently it was shown that specific Ca2C uptake into
the mitochondria close to the wound site leads to local mitochon-
drial ROS (mtROS) production and that mtROS release inhibits
the Rho GTPase RHO-1, promoting actin polymerization and
filopodial-like protrusion in a Cdc-42 and Arp2/3 dependent
manner.29,30 This wound closure process is different from the

Figure 2. (A) Images of an adult worm infected with D. coniospora inducing an AMP reporter gene
linked to GFP in his epidermis. (B) Schematic representation of the innate immunity pathways acti-
vated in C. elegans epidermis upon D. coniospora infection and wounding. AMP, antimicrobial peptide.
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most common Rho GTPase-dependent purse-string mechanism
that occurs, for instance, after wounding in the Drosophila
embryo.31

While the pathways leading either to wound healing or AMP
production (see below) are genetically and mechanistically dis-
tinct,29 the worm homolog of the tumor suppressor
death-associated protein kinase, DAPK-1, functions as a negative
regulator of both barrier repair and AMP expression. Loss of
function of dapk-1 leads to spontaneous cuticle hypertrophy with
associated appearance of autofluorescent aggregates and to the
constitutive upregulation of epidermal AMPs.26 Thus as for
other immune responses, the epidermal response to damage has
to be tightly regulated to prevent the deleterious consequences of
chronic activation.

Pathogen Infection

While some pathogens will only passively enter the host
through a wound, others have developed active ways to infect the
worm through the cuticle. The nematophagous fungus Lecanicil-
lium psalliotae is able to degrade the worm cuticle by secreting a
serine protease, thus facilitating mycelia penetration and com-
plete nematode degradation.32 Other fungi, such as Arthrobotrys
oligospora, Drechslerella stenobrocha and Dactylellina ellipsospora,
are able to form traps to capture, kill and digest worms as a food
source.33 One of the most studied pathogens able to infect the
worms via its cuticle is Drechmeria coniospora. This endoparasitic
fungi is frequently found associated with nematodes in
nature.34,35 Its conidia (non-motile spores) can bind to the
worm’s cuticle through specialized adhesive knobs and upon ger-
mination spread hyphae throughout the worm’s body, causing
death after as little as 48 hours.36 Some bacteria also adhere to
the cuticle, like Leucobacter spp Verde37 or Microbacterium nema-
tophilum that colonizes the rectal cuticle and provokes swelling in
the adjacent epithelia.38,39

Fungi and bacteria take advantage of the carbohydrate-rich
surface coat and are believed to use lectins to adhere to the nema-
tode cuticle. Recent studies in C. elegans have identified mutants
with defects in their surface coat carbohydrates and an increased
adhesion of D. coniospora. For instance, the bus-2 mutant carries
a mutation in the enzyme galactosyltransferase and is enriched in
core-2 fucosyl O-glycans at the expense of core-1 glycans, sug-
gesting that there is an increase in fucose exposure in this
mutant.40,41 Moreover a fucose-specific lectin binds the vulva of
wild-type worms, a preferential site for D. coniospora adhesion.
Taken together, these results suggest that fucosyl glycans are a
target for the binding of D. coniospora spores.42

It is interesting to note that if mutants like bus-2 have an
increased adhesion to D. coniospora, they conversely have a
reduced adhesion to the bacterial pathogen M. nematophilum,
hence their name Bus for bacterial unswollen.43 The same opposite
effect has been revealed with 2 different strains of Leucobacter spp
Verde. Thus, resistance to some natural pathogens can be associ-
ated with increased susceptibility to others, revealing the opposing
selective forces that must shape the evolution of C. elegans.37

The surface coat composition changes during development
through the different larval stages and it was also shown to
change upon environmental signals,44,45 which could be presages,
for instance, of the presence of pathogens. Thus, it is reasonable
to think that this switch could enable evasion of pathogens or, in
case of the parasitic nematodes, escape of the host immune
response.6 This would complement the purely mechanical shed-
ding of pathogens that can accompany molting.46

AMP Induction in C. elegans Epidermis

If pathogens have developed ways to attach to the cuticle, it is
now clear that the worm is able to mount an innate immune
response after infection. Using cDNA and genomic DNA micro-
arrays or more recently RNAseq, transcriptomic profiling has
identified many genes induced upon infection with Monacrospo-
rium haptotylum47 or/and D. coniospora.19,48-50 Among this latter
class, some were predicted to encode AMPs, including 2 related
families: a subset of neuropeptide-like proteins (NLPs) and the
caenacins (CNCs).48,51 Members of these 2 families are present
in 2 distinct genomic clusters: the nlp-29 (including nlp-27, nlp-
28, nlp-29, nlp-30, nlp-31 and nlp-34) and the cnc-2 (including
cnc-1, cnc-2, cnc-4, cnc-5, and cnc-11) clusters, which contribute
to resistance to D. coniospora infection.19,52,53 While these 2 clas-
ses of genes are upregulated by infection and act in the epidermis,
they are regulated by different signaling pathways (see below,
Fig. 2B). The main immune players were mostly identified
through genetic screens, through the selection of mutants, termed
Nipi, which fail to express antimicrobial peptide genes after D.
coniospora infection.20

A Cell Autonomous Response via the p38 MAPK
Pathway

After D. coniospora infection or wounding, the expression of
nlp genes is induced by the activation of a G-protein-coupled-
receptor (GPCR) DCAR-1 in an epidermis-specific and cell-
autonomous way (Fig. 2B). DCAR-1 is expressed in the apical
part of the epidermal syncytium (hyp7) and is activated by HPLA
(4-hydroxyphenyllactic acid). The level of this ligand is increased
after infection, and also in mutants with defects in the cuticle like
dpy-10. Thus, it seems that HPLA acts as a DAMP (damage-asso-
ciated molecular pattern). Even though dcar-1 orthologs are only
found in nematodes, these findings point to an ancient role for
GPCR in innate immunity.54 Interestingly HPLA, a common
tyrosine metabolite, is detected across all species and its elevated
concentration was detected in patients with phenylketonuria
(PKU), tyrosinemia or with Zellweger’s syndrome.55-57

DCAR-1 acts upstream of the Ga protein GPA-12 and of the
Gb protein RACK-1 (orthologous to the mammalian Ga G12
and similar to the human Gb-2-like 1, respectively), which in
turn, act genetically upstream of the serine, threonine Protein
Kinase C (PKC) TPA-1, whose activation is diacylglycerol
(DAG) dependent. DAG is a second messenger produced from
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phosphatidylinositol biphosphate (PIP2) by the catalytic action
of the phospholipase C (PLC) EGL-8 and PLC-3 (a PLCg
homolog).54,58

In mammals and insect, a family of adaptor proteins contain-
ing a domain named TIR, for Toll Interleukin Receptor, appears
to be crucial for Toll Like receptor (TLR) signaling.59 C. elegans
has only 2 genes encoding proteins with a TIR domain, the TLR
tol-1 and the SARM adaptor tir-1. Upon fungal infection, AMP
induction is tol-1 independent but tir-1 dependent.48 tir-1 acts
upstream of the nsy-1/sek-1/pmk-1 p38-MAPK pathway to induce
epidermal AMP expression20 and it is required for full resistance
to infection.48 Both the STAT family protein STA-2 and the
GATA transcription factor ELT-3 are required for the transcrip-
tion of nlps19,60 (Fig. 2B).

Parallel to this pathway, a conserved Tribbles-like kinase,
NIPI-3, has been found to act upstream of TPA-1 and the p38/
MAPK cassette specifically upon D. coniospora infection.20,58

The tribbles family of pseudokinases are key controllers of signal
transduction via their interactions with diverse kinases, ubiquitin
ligases and transcription factors. Early studies in the fly also asso-
ciated Tribbles-like kinase with the control of cell cycle during
development.61 It will be interesting to test if NIPI-3/TriB has
also a general function in cell cycle regulation in C. elegans.

A Paracrine role of Non-Canonical DBL-1/TGFb
Pathway

cnc gene expression is induced both after D. coniospora infec-
tion and injury, but is controlled in a complex way depending on
the stimulus (Fig. 2B). It was shown that the induction of the
cnc-2 gene cluster is p38-MAPK dependent after wounding,
while it is p38-MAPK independent upon infection. After infec-
tion, cnc genes are upregulated by a non-canonical DBL-1/
TGFb pathway.53

The canonical DBL-1/TGFb pathway was previously shown
to be involved in regulation of body size and male tail develop-
ment in C. elegans. DBL-1 binding to the heterodimeric DAF-4/
SMA-6 receptor activates the intracellular Smad signal-trans-
ducer homolog SMA-2/SMA-3/SMA-4 complex which, in turn,
will control gene expression through recruitment of the zinc-fin-
ger transcription factor, SMA-9, in the nucleus.62 If the entire
SMA-2/SMA-3/SMA-4 complex is needed also for a response to
P. aeruginosa,63 instead, only SMA-3 is required for a response to
D. coniospora. The identity of the transcription factor involved in
this process is still unclear (Fig. 2B).53 Strikingly, the DBL-1
ligand is mainly expressed in the nervous system, so it might act
in a paracrine way to induce cnc gene expression in the epider-
mis,53 in addition to controlling defense gene expression in the
intestine.64 It’s still unknown, however, how the signal is trans-
mitted from the neurons to the epidermis. It’s possible that
DBL-1-secreting neurons are directly in contact with the pseudo-
coelom, suggesting that DAF-4/SMA-6 receptor could be acti-
vated from the basal side of the epidermis.46

Role of Solute Carrier Family (SLC)
and Pseudokinases in Immunity

C. elegans genetic screens highlighted also the presence of
unexpected players in these innate immune pathways, such as the
sodium-neurotransmitter symporter SNF-12, a member of
the solute carrier family (SLC6). Interestingly, SNF-12 controls
the constitutive expression of cnc genes and nlp gene induction
after infection and wounding. SNF-12 physically interacts with
the transcription factor STA-2 and they have been found to
colocalise in dyn-1-dependent-endocytic vesicles through which
they regulate part of the innate immune response (Fig. 2B).60

SNF-12/SLC6 is predicted to be a transporter of a bioactive
amine, but its endogenous substrate has yet to be identified.

Studies in vertebrates revealed that another class of SLC pro-
tein, transporting oligopeptides, might have a crucial function
for the antibacterial or antiviral activity of macrophages, mature
dendritic cells (mDCs)65 and plasmacytoid dendritic cells
(pDCs).66 In mouse mDCs and macrophages, Slc15a mediates
the internalization in late endosomes/lysosome of fragments of
peptidoglycan coming from bacteria cell wall, and stimulates
NF-kB and other immune effector pathways.65 Moreover, it was
shown that the peptide/histidine transporter Slc15a4 is present
both in mouse pDCs66 and B cells lysosomes where, by main-
taining the appropriate pH, it can promote optimal TLR7 and
TLR9 activation.67 Interestingly, Slc15a4 is associated with sys-
temic lupus erythematosus (SLE).68

Another player genetically interacting with STA-2 and SNF-12
in C. elegans is the pseudokinase NIPI-4 (Fig. 2B).69 Interestingly,
even though pseudokinases lack the ability to phosphorylate sub-
strates, they are still able to regulate cellular processes, forming
heterodimers with other protein kinases and controlling their activ-
ity.70 For instance, in humans, the pseudokinase STe20 Related
ADaptor (STRAD)a, with its closed conformation typical of active
protein kinases, can bind the tumor suppressor protein kinase
LKB-1, induce a conformational change in LKB-1, which, in turn,
enables cell proliferation, and regulates cell polarity as well as energy
levels.70,71 NIPI-4 is expected to have a similar regulatory role.
Although the identity of its target kinase is unknown, the p38
MAPK PMK-1 is a prime candidate.

Is Mechanosensation Involved in Innate Immunity
Induction?

It is still not clear how p38 MAPK-dependent STA-2 activa-
tion and trafficking are regulated in C. elegans epidermis. A very
recent study suggests that in the case of severe epidermal injury,
upregulation of nlp-29 and cnc-2 could occur in a p38 indepen-
dent, but STA-2 dependent way.72 STA-2 was found in the
nucleus but also associated with hemidesmosomes (CeHDs),60,72

structures responsible for the attachment of the epidermal cells to
the cuticle.73,74 Zhang et al. showed that STA-2 physically inter-
acts with one apical component of CeHDs, MUP-4 a transmem-
brane multidomain protein. They hypothesized that the
interaction of STA-2 with CeHDs inhibits its activity and that

www.tandfonline.com e1078432-5Tissue Barriers



severe damage or CeHDs disruption would free STA-2 to induce
AMP production.72 They further propose that this mechanism is
conserved in humans where b-defensin transcription correlates
with disruption of hemidesmosomes protein complexes (HPC)
and inactivation of STA-3 or STA-5B attenuates AMPs upregu-
lation after HPC disassembly in human epidermal keratinocyte
(HEKa) cells.72 The suggestion that hemidesmosomes will act as
a damage-sensor raises very interesting questions, like how do the
HDs perceive the damage? And what are the signals that will acti-
vate HDs? Some hints have come from studies of epidermal
development.

In C. elegans, it was known that muscle contraction is
required in the embryo during morphogenesis for epidermal
elongation. From a recent study, it was shown that upon muscle
contraction p21-activated kinase (PAK-1), a component of
CeHDs, is activated and together with the adaptor GIT-1 (G-
protein-coupled receptor kinase interactor) and its partner PIX-
1 (PAK-interacting exchange factor) can phosphorylate epider-
mal intermediate filaments and promote CeHD biogenesis. In
mutants defective for muscle contraction, GIT-1 progressively
leaves HDs. Zhang et al. could show that applying external
mechanical pressure on these mutants considerably retarded the
diffusion of GIT-1. Thus, they demonstrated that CeHDs are
mechanosensitive and direct targets of physical forces.75 In the
future it would be of interest to address whether injury or spore
adhesion could induce a mechanical signal that could be sensed
by apical CeHDs.

Interestingly, there is evidence suggesting a role for colla-
gens in HDs integrity. In humans, mature type-1 HDs con-
tain the bullous pemphigoid (BP) antigens BP180/collagen
XVII as well as integrin a6b4 and plectin. Mutations in the
corresponding genes in patients with epidermolysis bullosa
alter hemidesmosomal structure.76 Also during carcinogenesis,
extracellular cleavage of collagen XVII by matrix-metallopro-
tease MMP-9 disrupts HDs.77 In C. elegans, worms with
mutations in collagen genes, such as dpy-9 and rol-6, present
constitutive upregulation of AMPs.19 As the extracellular por-
tion of MUP-4, the apical CeHD component, contains a von
Willebrand factor A domain for collagen binding,72 it is pos-
sible that MUP-4 acts as a regulator of the epidermal
immune response conceivably sensing, after injury or spore
adhesion, collagen disruption.

Conclusions

C. elegans lacks both an adaptive immune system and special-
ized immune cells. This obviously limits its relevance for the
understanding of human immunity. On the other hand, its rela-
tive simplicity and the extensive range of available experimental
methods facilitate its use in biology. The major molecular mecha-
nisms involved in the epidermal innate immune response in C.
elegans have been identified. As in humans, they involve the upre-
gulation of AMP expression and wound healing, governed by a
combination of highly conserved and nematode-specific path-
ways. A common theme that has emerged is the importance of
damage recognition as a trigger for the induction of defense
genes. Future studies should reveal the mechanisms leading to
the production and/or release of DAMPs and the identity of the
elusive “fungus-receptor” putatively responsible for triggering
pathogen-specific innate immune defenses. Together with a bet-
ter understanding of how cross-tissue communication contributes
to the regulation of host immunity, this will lead to a more com-
prehensive insight into how an organism can re-establish homeo-
stasis after the integrity of epithelial barriers has been
compromised by injury or infection.
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