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diffraction data from the
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Free-electron lasers (FEL) hold the potential to revolutionize structural biology by producing X-ray pules
short enough to outrun radiation damage, thus allowing imaging of biological samples without the
limitation from radiation damage. Thus, a major part of the scientific case for the first FELs was
three-dimensional (3D) reconstruction of non-crystalline biological objects. In a recent publication we
demonstrated the first 3D reconstruction of a biological object from an X-ray FEL using this technique.
The sample was the giant Mimivirus, which is one of the largest known viruses with a diameter of 450 nm.
Here we present the dataset used for this successful reconstruction. Data-analysis methods for
single-particle imaging at FELs are undergoing heavy development but data collection relies on very limited
time available through a highly competitive proposal process. This dataset provides experimental data to
the entire community and could boost algorithm development and provide a benchmark dataset for new
algorithms.

Design Type(s) macromolecular structure generation objective

Measurement Type(s) X-ray diffraction data

Technology Type(s) X-ray free electron laser

Factor Type(s)

Sample Characteristic(s) Acanthamoeba polyphaga mimivirus

Correspondence and requests for materials should be addressed to T.E. (email: ekeberg@xray.bmc.uu.se).
#A full list of authors and their affiliations appears at the end of the paper.

OPEN
SUBJECT CATEGORIES

» Biological physics

» Virus structures

» X-rays

Received: 04 February 2016

Accepted: 22 June 2016

Published: 1 August 2016

www.nature.com/scientificdata

SCIENTIFIC DATA | 3:160060 | DOI: 10.1038/sdata.2016.60 1

mailto:ekeberg@xray.bmc.uu.se


Background & Summary
Free-electron lasers (FEL) provide ultra short and extremely bright pulses of coherent X-rays1. It has been
predicted that such pulses could enable structure determination without crystallization by outrunning
radiation damage and thus capturing diffraction data before the particle has time to respond and
eventually be destroyed by the deposited energy2. Experimental verification of this ‘diffraction-before-
destruction’ principle has been demonstrated several times for resolution down to 10 nm (refs 3,4).

Using many such diffraction patterns from multiple copies of a reproducible sample, the patterns
could be assembled into a 3D diffraction space from which the 3D structure could be derived5,6. This
promise was a main part of the scientific case for building free-electron lasers7. Several examples of 2D
reconstructions from biological samples at X-ray FEL have been demonstrated4,8,9 but 3D reconstructions
have remained elusive.

A single diffraction pattern represents a curved slice through the Fourier transform of the electron
density of the object. For successful 3D reconstruction many diffraction patterns from identical particles
need to be assembled into the complete 3D Fourier transform of the particle. This is difficult since the
orientation of the injected particles is unknown and has to be recovered from the diffraction data alone.
A recent paper10 demonstrates this, using a modified version of the expand, maximize and compress
algorithm5 (EMC) on the Mimivirus particle. Here we describe the data collection, data preprocessing
and the dataset that was used for this reconstruction.

Today, beam time at free-electron lasers is scarce as there are few facilities and they serve a multitude
of scientific disciplines. Furthermore, applications such as 3D imaging require a large amount of effort in
algorithm development and testing. Several groups around the world are active in this development but
the majority of them don’t have regular beam time access. This dataset can thus serve as a benchmark for
algorithm testing and give many more groups access to experimental data.

For any new method, validation tools are of crucial importance. Therefore, together with the 3D
reconstruction of the Mimivirus we also presented two new validation methods10. Further development
of these methods, and the development of new ones will therefore benefit from being applied to this
dataset in particular.

The sample in this dataset is the Mimivirus (Acanthamoeba polyphaga mimivirus)11,12. Mimivirus is
part of a recently discovered class of giant DNA viruses. Viral capsid is pseudo-icosahedral with a
corner-to-corner diameter of 500 nm and a face-to-face diameter of 400 nm (ref. 13). The virus is covered
by fibres with a length of 125 nm giving it a total diameter of 750 nm (ref. 14).

Methods
These methods were described in ref. 10. The description here is more detailed with regards to data
collection and on-line data analysis.

Sample injection
Purified Mimivirus particles15 were transferred into a volatile buffer (250 mM ammonium acetate, pH
7.5) and the suspension was aerosolized with helium in a gas dynamic nebulizer16. The aerosol of
hydrated and adiabatically cooled particles entered a differentially pumped aerodynamic lens17.

Data collection
Experiments were performed at the Atomic Molecular Optics (AMO) beam line18 of the Linac Coherent
Light Source (LCLS) hard X-ray laser1, using the CAMP19 instrument20,21. The experiment was part of an
experiment running from June 17 to June 21 of 2010 with proposal number L150. Diffraction data were
recorded on a pair of pnCCD detectors19 at a repetition rate of 60 Hz matching the repetition rate of
LCLS. The two detectors were placed at a distance of 740 mm from the interaction region with a gap
between them of 2.1 mm to let the direct beam through. The pixel size is 75 μm and each detector in the
pair has 512 × 1,024 pixels giving the full setup a pixel count of 1,024 × 1,024 pixels.

The photon energy was 1.2 keV corresponding to a wavelength of 1.03 nm. At this wavelength the
full-period resolution at the edge of the detector is 19.9 nm. The electron bunch used to create the X-ray
pulse was 70 fs long (full duration at half maximum) and the X-ray pulse is believed to be shorter than
this22. The focus was ~10 μm (full width at half maximum) at the interaction point, giving a power
density of ~3.4 1015 W cm− 2 or 1012 photons per pulse.

The experiment was performed at a pressure of 10− 6 mbar to reduce background scattering. Some of
the most important experiment parameters are summarized in Table 1.

On-line data analysis
On-line hit-identification provided real-time statistics that guided injector alignment and tuning. Hits
with a high scattering strength were identified by counting the number of pixels that measured a value
above a threshold. Diffraction patterns with more than 500 pixels with a value above 170 ADU were
defined as a hit. See ref. 21 for a detailed description.

Data Records
Two datasets are provided: the full record of all collected data and a smaller preprocessed dataset. Both
data sets are available in the same CXIDB entry (Data Citation 1).
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Full data record
We provide all data collected from the Mimivirus at this beamtime before any preprocessing or sorting.
This dataset is in the extended tagged container (XTC) file format. This can be converted to HDF5 format
using programs such as CASS23 or Cheetah24. This conversion normally also involves preprocessing and
the data is therefore provided in the untouched XTC format.

The record contains 19 LCLS runs. 14 of these had the sample injector and X-ray laser turned on while
the remaining 5 runs only collected detector background noise. These so called ‘dark runs’ can be used for
to better subtract the background from the actual data. Table 2 shows a list of all 19 runs.

Initial hit finding showed that 0.3% of the frames contained diffraction that was stronger than the
background. The rest were misses, i.e., frames that were read out when the pulse did not hit any particle.
In addition to hits from single Mimivirus particles the hits also include droplets of buffer, clusters of
viruses and a few particles that were injected earlier and had stayed in the injection system.

Preprocessed and filtered data
This dataset contains the 198 preprocessed (see ref. 19) diffraction patterns that were used in ref. 10 to
recover the 3D structure of the Mimivirus particle. This data is in the CXIDB format described in ref. 25.
The pixel values in the data are in arbitrary detector units (ADU). The conversion factor from ADU to
number of photons is 7 ADU per photon. Some areas of the detector were unreadable and some
scattering angles were not covered by the detector, such as the gap between the two detector halves that
lets the direct beam through. These areas are identified by a mask entry in the CXIDB file format.

The data was filtered in three steps. (1) Hits were distinguished from blanks using methods described
in refs 21 and 24. This yielded 1,600 hits. (2) 307 Diffraction patterns that correspond to a Mimivirus

Parameter Value

Photon energy 1,200 keV

Detector distance 0.74 m

Pixel size 75 μm

Number of pixels 1,024 × 1,024

Focal size 10 μm2

Table 1. Summary of experimental parameters.

Run number Sample Number of frames Number of frames selected for analysis in ref. 10

73 Dark 651 N/A

80 Mimivirus 14,273 0

81 Mimivirus 14,450 0

82 Mimivirus 11,371 0

83 Dark 15,636 N/A

84 Mimivirus 65,594 0

87 Mimivirus 93,840 0

89 Dark 3,821 N/A

90 Mimivirus 77,644 30

91 Mimivirus 4,943 6

92 Mimivirus 33,721 39

93 Mimivirus 43,679 24

94 Mimivirus 58,931 40

95 Mimivirus 42,083 10

97 Mimivirus 36,899 33

98 Dark 7,794 N/A

152 Dark 2,498 N/A

156 Mimivirus 64,977 3

157 Mimivirus 90,403 13

Table 2. List of experimental runs. Runs labeled as dark had the X-ray beam turned off and are included to
allow for detector calibration. The lack of good hits before run 90 was possibly fixed by a changed injection
nozzle at this point.
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particle were selected by hand. An icosahedral or pseudo-icosahedral particle will in most orientations
yield a distinctive type of pattern showing six outwards-going streaks. This feature and particle size,
determined from the fringe spacing, was used for this selection. (3) When the detector is exposed to high
intensities, the intensity can spill over from a pixel to neighboring pixels. We start seeing these effects at
intensities above 750 photons per pixel. In the final dataset, diffraction patterns suffering from this effect
were filtered out, resulting in 198 unsaturated diffraction patterns. A subset of this dataset is shown in Fig. 1.

Technical Validation
3D reconstruction
The 198 diffraction patterns were successfully assembled in a 3D Fourier volume and subsequent
phase retrieval provided the full 3D electron density of the virus with a full-period resolution of 125 nm10.
This indicates that the Mimivirus is reproducible to at least this resolution.

Validation of the 3D reconstruction
In cryo-electron microscopy (cryo-EM), data is routinely split prior to analysis and the analysis is
performed in parallel on the two sets26. Our first method for validating the 3D reconstruction is an
adaptation of this technique. The diffraction patterns are randomly split in two sets of equal size. The
recovery of the 3D alignment is performed independently on the two sets using the same parameters but
independent random starting points. Phase retrieval is also performed independently using the same
parameters. The standard practice in the field is to repeat the reconstruction at least 100 times and the
results are then averaged to average out effects of the random starting point4,27.

The EMC algorithm recovers the relative orientation of the particles from the diffracted data alone but
the arbitrary rotation of the entire system can be different comparing the two resulting 3D electron
density maps. In order to compare the two recovered electron densities we therefore have to rotate one of
the two data sets to best match the other. This is done using brute force by interpolating one of the maps
at a regular array corresponding to the tested rotation. To compare the two maps, the Pearson correlation
coefficient is calculated. The rotation with the highest Pearson correlation is assumed to correspond to
the proper relative orientation.

The two aligned electron density maps are then compared using the Fourier shell correlation (FSC)26,
which provides a measure of the similarity as a function of resolution. The threshold for what is regarded
as an acceptable fit ranges between 0.14 and 0.5 in cryo-EM literature28,29.

820

1

Figure 1. The first 24 of the 198 diffraction patterns in this dataset. The color scale is logarithmic and ranges

from 1 to 820 photons per pixel. This is a modification of a figure previously presented in ref. 10.
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In X-ray crystallography some Bragg spots are usually excluded from the analysis and instead that
information is used to verify the recovered expected strength of the respective Bragg spot30. Using the
same idea, 10% of the diffraction patterns were selected to be used for validation only. In the EMC
scheme these patterns are excluded from the analysis but are still compared to the recovered Fourier
transform of the particle. The measure for determining whether the recovered model agrees with the
excluded diffraction patterns is the likelihood function used internally in EMC.

The analogy with the Rfree value in crystallography should not be over emphasized. Bragg peaks are
linearly independent parameters and ther is no suitable analogy in the continuous diffraction case.
Furthermore, in the case described here, the process that is validated is that of pattern alignment and not
phase retrieval. It is therefore natural to choose individual diffraction patterns as the information unit to
exclude rather than i.e., individual pixels or regions of pixels.

These validation methods were previously described in ref. 10.

Usage Notes
Data was stored in the CXIDB25 data format which uses the HDF5 format. HDF5 files are readable in
many computing environments including python using the h5py module and MATLAB using e.g., the
h5read function. Convenient functions for accessing the CXIDB data file exist in the libspimage package
for C and python31. For visualizing data the CXIDB file browser Owl (https://github.com/FilipeMaia/owl)
is recommended.
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