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Abstract: 

Individuals born after intrauterine growth restriction (IUGR) have an 
increased risk of perinatal morbidity/mortality, and those who survive face 
long-term consequences such as cardiovascular-related diseases, including 
systemic hypertension, atherosclerosis, coronary heart disease, and 
chronic kidney disease.  
In addition to the demonstrated long-term effects of decreased nephron 
endowment and hyperactivity of the hypothalamic-pituitary-adrenal axis, 
individuals born after IUGR also exhibit early alterations in vascular 
structure and function, which have been identified as key factors of the 
development of cardiovascular-related diseases. The endothelium plays a 
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major role in maintaining vascular function and homeostasis. Therefore, it 
is not surprising that impaired endothelial function can lead to the long-
term development of vascular-related diseases. Endothelial dysfunction, 
particularly impaired endothelium-dependent vasodilation and vascular 
remodeling, involves decreased nitric oxide (NO) bioavailability, impaired 
endothelial NO synthase functionality, increased oxidative stress, 
endothelial progenitor cell dysfunction and accelerated vascular 
senescence. Preventive approaches such as breastfeeding, 
supplementation with folate, vitamins, antioxidants, L-citrulline, L-arginine 

and treatment with NO modulators represent promising strategies for 
improving endothelial function, mitigating long-term outcomes and possibly 
preventing IUGR of vascular origin.  
Moreover, the identification of early biomarkers of endothelial dysfunction, 
especially epigenetic biomarkers, could allow early screening and follow-up 
of individuals at risk of developing cardiovascular and renal diseases, thus 
contributing to the development of preventive and therapeutic strategies to 
avert the long-term effects of endothelial dysfunction in infants born after 
IUGR.  
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Individuals born after intrauterine growth restriction (IUGR) have an increased risk of 

perinatal morbidity/mortality, and those who survive face long-term consequences such as 

cardiovascular-related diseases, including systemic hypertension, atherosclerosis, coronary 

heart disease, and chronic kidney disease. 

In addition to the demonstrated long-term effects of decreased nephron endowment and 

hyperactivity of the hypothalamic-pituitary-adrenal axis, individuals born after IUGR also 

exhibit early alterations in vascular structure and function, which have been identified as key 

factors of the development of cardiovascular-related diseases. The endothelium plays a major 

role in maintaining vascular function and homeostasis. Therefore, it is not surprising that 

impaired endothelial function can lead to the long-term development of vascular-related 

diseases. Endothelial dysfunction, particularly impaired endothelium-dependent vasodilation 

and vascular remodeling, involves decreased nitric oxide (NO) bioavailability, impaired 

endothelial NO synthase functionality, increased oxidative stress, endothelial progenitor cell 

dysfunction and accelerated vascular senescence. Preventive approaches such as 

breastfeeding, supplementation with folate, vitamins, antioxidants, L-citrulline, L-arginine 

and treatment with NO modulators represent promising strategies for improving endothelial 

function, mitigating long-term outcomes and possibly preventing IUGR of vascular origin. 

Moreover, the identification of early biomarkers of endothelial dysfunction, especially 

epigenetic biomarkers, could allow early screening and follow-up of individuals at risk of 

developing cardiovascular and renal diseases, thus contributing to the development of 

preventive and therapeutic strategies to avert the long-term effects of endothelial dysfunction 

in infants born after IUGR. 

Key words: intrauterine growth restriction, endothelial dysfunction, developmental 

programming, DOHaD, hypertension, cardiovascular disease, chronic renal disease. 
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We performed an extensive and critical review of the literature in order to explore the 

manifestations of endothelial dysfunction in individuals born after intrauterine growth 

restriction (IUGR) and examined which mechanisms may be incriminated and which 

preventive strategies could represent promising approaches. We used the following terms in 

the Pubmed library (MESH terms and free text, without time or language limits: (Prenatal 

Exposure Delayed Effects OR Late Effect, Prenatal Exposure OR Nutrition 

Disorders/Physiopathology OR Fetal Growth restriction) AND (Cardiovascular 

Diseases/Etiology OR Hypertension/Etiology) AND (Impaired Endothelial Function OR 

Oxidative Stress/Senescence). We included the most significant human and animal studies. 

From the references of the retrieved papers, additional articles were selected for this review. 

One author (CY) read the titles and abstracts and selected the articles to be included. 

 

I- Intrauterine growth restriction: definition and risk factors 

I-a-Definition  

Intrauterine growth restriction (IUGR) is defined as the inability of the fetus to reach its 

genetically determined potential size.
1,2
 IUGR affects approximately 5–15% of all 

pregnancies in the United States and Europe, but its incidence varies widely and appears to be 

higher in low income countries (it affects 30–55% of infants born in South Central Asia, 15–

25% in Africa, and 10–20% in Latin America).
3
 Using the ReCoDe classification system, 

IUGR has been considered the most commonly identified factor in stillborn infants.
4
 

Therefore, the management of growth-restricted fetuses in terms of choosing the optimal 

delivery time is important to decrease perinatal mortality/morbidity. Fetal growth restriction is 

difficult to detect because of the lack of international consensus on the definition and 

diagnostic criteria for IUGR. In clinical practice, growth-restricted fetuses are usually 

identified based on birth weight (<10
th
 percentile). However, some propose that using <3

rd
 or 
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<5
th
 percentile as the criterion would better identify individuals at a higher risk of adverse 

perinatal outcomes.
5
 Moreover, low estimated fetal weight (<10

th
 percentile), certain 

ultrasound findings of fetal growth (abdominal circumference <2.5
th
 percentile) and altered 

Doppler velocimetry indices, such as abnormal umbilical artery waveforms or decreased 

pulsatility of the middle cerebral artery, that suggest abnormalities in fetal circulation are also 

indicative of IUGR.
6
 To better understand abnormal fetal growth and to detect IUGR, specific 

computerized fetal growth charts that consider fetal gender and maternal characteristics such 

as height, weight, parity and ethnic origin were developed by Gardosi et al.
7
 Pathological 

factors, including maternal systemic hypertension (HTN), diabetes, tobacco use and preterm 

delivery, were excluded from the model to predict the optimum weight that a baby can reach 

at term during a normal pregnancy. Because it is necessary to distinguish between growth-

restricted and constitutive “small for gestational age” fetuses, longitudinal assessments of 

fetal growth trajectories are required to identify pathological fetal growth restriction, even if 

the altered growth trajectory is above the 10
th
 centile limit.

8
 More recently, universal 

standards of fetal growth have been proposed by the Intergrowth project.
9,10
 

I-b-Risk factors for intrauterine growth restriction 

IUGR can result from a multitude of risk factors, including maternal and fetal causes. Several 

maternal factors have been identified, such as undernutrition, which notably affects the 

activity and/or expression of placental nutrient and ion transporters;
11-13

 chronic diseases, such 

as preeclampsia;
14
 bacterial infection during pregnancy, particularly with Escherichia coli, 

group B Streptococcus, Listeria monocytogenes, Treponema pallidum, or Trichomonas 

vaginalis; parasitic diseases, such as malaria; viral infection (for example, human 

cytomegalovirus or rubella virus);
15,16

 young age (adolescent pregnancy); and alcohol and/or 

tobacco consumption.
17
 Additionally, pregnancy-induced HTN, preeclampsia and placental 

insufficiency are known causes of asymmetrical IUGR (defined as restriction of weight 
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followed by length).
18
 Among the fetal causes, chromosomal anomalies (including trisomy of 

chromosome 13, 18, or 21; tri- and polyploidies; Mulibrey nanism; 3-M, Bloom, and Turner 

syndromes; and Majewski osteodysplastic primordial dwarfism (MOPD) type II)
19
 and fetal 

structural defects, such as congenital heart disease,
20
 result in symmetrical IUGR (defined as 

global growth restriction), which is usually more severe than asymmetrical IUGR.
18
 

Along with maternal causes, paternal health has also been identified as a possible contributor 

to IUGR. Insulin resistance, smoking habits, elevated blood pressure, endothelial dysfunction, 

upper body fat distribution and an atherogenic lipid profile have all been suggested as 

potential paternally determined factors that correlate with IUGR.
21
 These factors presumably 

impact fetal growth through epigenetic processes.
22
 

IUGR is now considered a critical public health issue because of its high perinatal mortality 

rate and long-term consequences. As numerous epidemiological studies have reported, infants 

born with fetal growth restriction have an increased risk of developing non-communicable 

chronic diseases, notably cardiovascular (e.g., systemic HTN and coronary artery disease) and 

renal (chronic kidney disease, CKD) diseases, later in life. These observations are consistent 

with the concept of Developmental Origins of Health and Disease, which suggests that 

conditions affecting specific sensitive developmental periods, from conception throughout 

pregnancy to early infancy, “program” tissue/organ structure and function throughout life in a 

process known as developmental plasticity that is adapted to short-term, prevailing 

environmental conditions but possibly not to the further life course. The underlying 

mechanisms are not clearly defined. In parallel with the long-term effects of decreased 

nephron numbers and hyperactivity of the hypothalamic-pituitary-adrenal axis in these infants, 

endothelial dysfunction may also contribute to the development of certain chronic diseases in 

adulthood. 
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II- Endothelium dysfunction in individuals born with intrauterine growth restriction 

II-a The endothelium: a major role in vascular homeostasis 

The endothelium plays a major role in maintaining vascular homeostasis and is one of the 

largest organs in the human body, consisting of more than 10
14
 cells lining the vascular 

network. It is intimately involved in the balance between vasodilation and vasoconstriction 

and between thrombogenesis and fibrinolysis, the inhibition and promotion of smooth muscle 

cell proliferation and migration, and the prevention and stimulation of platelet adhesion and 

aggregation.
23
 All these functions are mediated by the release of numerous vasoactive factors, 

such as nitric oxide (NO) and endothelin. In this respect, the maintenance of endothelial 

structural and functional integrity is essential for vascular homeostasis; therefore, impaired 

endothelial function can lead to the development of vascular-related diseases. 

Convincing evidence suggests that endothelial dysfunction during early childhood and 

persisting to adulthood in individuals born with IUGR is a key event in the development of 

HTN, atherosclerosis, coronary heart disease, and CKD later in life. In these individuals, 

endothelial dysfunction primarily manifests as impaired endothelium-dependent vasodilation 

and vascular remodeling. 

 

II-b-Impaired endothelium-dependent vasodilation in individuals born with fetal growth 

restriction 

Endothelium-dependent vasodilation can be clinically evaluated using flow-mediated brachial 

artery tests, plethysmography, or skin perfusion in response to acetylcholine using the laser 

Doppler technique.
24-26

 Impaired endothelium-dependent vasodilation has been described in 

children (9-11 years)
27-29

 and young adults (20-28 years) born with fetal growth restriction
30
 

and in umbilical and placental vessels derived from growth-restricted fetuses.
31
 

An association between fetal growth restriction and impaired NO-dependent vasorelaxation 
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has also been observed in several animal models, mainly in rats, mice and sheep. IUGR can 

be induced in rats by exposure to a maternal low-protein diet (LPD, containing 9% casein)
32
 

or restricted diet (50% of normal intake) and in sheep by single in utero umbilical artery 

ligation (at 105-110 days gestation); these diets and procedures result in low birth weight 

(LBW) offspring and lead to impaired endothelium-dependent vasodilation in small 

arteries,
33,34

  the  aorta
35
 and coronary  arteries

36
  in adulthood. 

The effects on endothelium-dependent vasodilation are more pronounced in males, while 

females seem to be protected by the NO-dependent vasoprotective role of estrogens. However, 

impaired endothelium-dependent vasodilation has been observed in female Wistar rats born 

with IUGR stemming from maternal undernutrition.
35
 As suggested by Borwick et al., fetal 

undernutrition may decrease estrogen synthesis, ultimately leading to ovarian damage.
37
 

Interestingly, estrogen-mediated vasoprotective activity has been reported in humans; 

specifically, postmenopausal women taking conjugated equine estrogens (0.625 mg for 28 

days) showed improved vascular  NO-dependent relaxation of the brachial artery.
38
 

 

II-c-Vascular remodeling in individuals born with fetal growth restriction 

Endothelial activation 

Endothelial dysfunction is associated with leukocyte infiltration and the adhesion of 

monocytes, macrophages and low-density lipoprotein (LDL), which is oxidized to OxLDL in 

the arterial wall. This leads to foam cell formation and initiates atherogenesis. In addition, 

monocytes and macrophages secrete higher levels of cytokines and pro-inflammatory proteins 

such as interleukin-6 (IL-6), tumor necrosis factor-alpha and C-reactive protein (CRP).
39
 

These events create a vicious cycle: neutrophils and macrophages produce higher levels of IL-

6 in response to inflammation, which in turn increases CRP production in the liver. CRP 

decreases NO availability and increases endothelin-1 production, thereby contributing to 
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impaired endothelium-dependent vasodilation and leading to irreversible vascular 

damage.
39,40

 Elevated levels of pro-inflammatory markers and endothelial activators are 

characteristic of middle-aged adults (45–64 years) born with LBW, indicating that endothelial 

dysfunction is patent in these individuals.
41
  

 

Vascular structural changes 

Histopathological analyses showed that the first atherosclerotic lesions begin to develop in the 

abdominal aorta.
42
 Increased arterial wall thickness, measured using non-invasive assessments 

of the intima-media or carotid intima-media thickness, has been observed in newborns
43-46

 

and young children
47,48

 and persists in adults (27-30 years) born after IUGR, and it is 

particularly apparent in those with exaggerated postnatal growth.
49
 

Hypoxia and oxidative stress in vascular remodeling 

Hypoxia and oxidative stress have been implicated in vascular remodeling. 

Placental insufficiency is related to reduced nutrient and oxygen delivery to the fetus, 

contributing to the development of fetal growth restriction. Several maternal factors, such as 

living at a high altitude, HTN, anemia, pulmonary disease, preeclampsia, drugs and/or 

tobacco consumption can contribute to fetal hypoxia
50
 which can induce IUGR, LBW

51
 and 

increase the risk of CVD later in life.
52,53

 During fetal development, hypoxia plays a crucial 

role by driving vasculogenesis/angiogenesis, hematopoeisis, and chondrogenesis.
54
 However, 

prolonged in utero hypoxia can lead to detrimental effects. In growth-restricted fetuses, 

circulating levels of angiopoietin-2, an angiogenic factor up-regulated by hypoxia, were 

increased at postnatal day 4 compared with appropriate-for-gestational age infants, thus 

contributing to postnatal vascular remodeling.
55
 

Oxidative stress can be defined by decreased antioxidant defenses and increased reactive 

oxygen species (ROS) production. Under physiological conditions, ROS play an important 
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role as a regulator of vascular functions such as migration, growth, smooth muscle and 

endothelial cell survival and the secretion of extracellular matrix proteins. However, 

uncontrolled ROS production can contribute to vascular diseases.
56,57

 ROS have been 

implicated in the hypertrophy and hyperplasia of vascular smooth muscle cells. In vascular 

cells (endothelial cells and vascular smooth muscle cells, adventitial fibroblasts), the main 

enzyme responsible for ROS production is NADPH oxidase.
58
 

Angiotensin II (AngII), via Angiotensin type 1 receptor (AT1R), has been implicated in 

increasing superoxide anion levels followed by increased hydrogen peroxide production, 

which induces long-term outcomes of AngII, such as hypertrophy and hyperplasia of vascular 

smooth muscle cells.
59,60

 The flavoprotein inhibitor DPI
60
 and catalase overexpression

61
 

inhibits these vascular defects. In a rat model of IUGR induced by maternal LPD associated 

with adult HTN, we observed increased ex vivo vasoreactivity of the carotid rings to AngII, 

mediated by AT1R, which was normalized by diphenyleneiodonium (DPI) and apocynin 

(NADPH oxidase inhibitor) pre-incubation.
32
 

The regulation of extracellular matrix proteins such as collagen and elastin can be modulated 

by ROS. Elastinolysis and collagenolysis play crucial roles in arterial remodeling and 

vascular diseases.
62
 Metalloproteinases (MMPs) and their related TIMPs are enzymes 

secreted by macrophages and vascular smooth muscle cells. MMP-2 and MMP-9 cleave 

gelatin, collagen and elastin and have been associated with vascular diseases.
63
 ROS have 

been demonstrated to activate MMPs.
64
 Increased circulating levels of MMP-2 and MMP-9 

and increased MMP-2/TIMP-2 and MMP-9/TIMP-2 ratios have been observed in children 

who were small for gestational age and are positively correlated with systolic blood pressure 

and vascular function.
65
 In a developmental programing animal model of HTA induced by 

neonatal oxygen exposure, we observed increased aortic MMP-2 and TIMP-1 and reduced 

TIMP-2 staining as early as 4 weeks of age, indicating a shift in the balance towards 
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degradation of the extracellular matrix and increased collagen deposition.
66
 These data 

suggest that early changes could contribute to the onset of the elevated blood pressure and 

arterial stiffness observed at adulthood in this animal model.
67,68

 

 

III- Mechanisms involved in endothelial dysfunction in individuals born with fetal 

growth restriction 

III-a- Impaired NO bioavailability 

The endothelium-mediated release of NO is widely accepted as the key determinant of 

endothelial function, and reduced NO bioavailability has been linked to most serious vascular 

pathologies.
69
 In particular, the loss of NO production contributes to impaired endothelium-

dependent vasodilation and to endothelium activation by improving the recruitment of pro-

inflammatory cytokines, such as VCAM-1 and ICAM-1, and the infiltration of leukocytes into 

the vessel wall.
70-72

 In normal pregnancies, NO synthesis is up-regulated, as reflected by 

increased nitrite/nitrate concentrations in maternal and fetal circulation, thus mediating 

maternal cardiovascular adaptations and the low systemic and umbilical vascular resistance in 

the fetus. In pregnancies complicated by IUGR, research findings are inconsistent. Some have 

displayed a decrease in NO metabolite concentrations in maternal and/or fetal serum, 

reflecting reduced NO synthesis compared with controls.
73,74

 Other have found higher 

nitrite/nitrate concentrations in umbilical venous plasma
55
 or an increase in eNOS protein 

staining in placental vessels compared with normal pregnancies, suggesting that increased NO 

production could be a compensatory response to improve blood flow in the placenta.
75,76

  

Decreased NO synthesis, evaluated in terms of nitrate/nitrite production, was observed in 

animal models of IUGR induced by a reduction in utero-placental perfusion pressure
77
 or 

maternal LPD
78,79

 and in a rat model of developmental programming of HTN induced by 

exposing pregnant rats to androgens.
80
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Reduced NO bioavailability may result either from altered NO synthesis or from NO 

scavenging by other molecules, such as ROS. 

 

III-b-Impaired eNOS functionality 

Under physiological conditions, NO is synthetized in the vasculature by endothelial nitric 

oxide synthase (eNOS), using L-arginine (L-Arg) as a substrate and tetrahydrobiopterin 

(BH4) as a cofactor. There are contradictory data on eNOS expression in individuals born 

after IUGR. In humans, independent studies have indicated that eNOS expression is increased 

in the umbilical arteries of babies born after fetal growth restriction, suggesting that activated 

NO synthesis may be a compensatory mechanism to improve placental blood flow.
31,81

 

However, these results are controversial because they could not be replicated.
82
 Moreover, 

differences in eNOS expression have been observed in human endothelial cells isolated from 

the umbilical arteries (HUAEC) or veins (HUVEC) of IUGR newborns. eNOS expression is 

increased in IUGR-HUAEC but decreased in IUGR-HUVEC. These differences may be 

explained by the type of vessel (artery vs. vein) or could be the consequence of altered blood 

flow and oxygen levels in pregnancies complicated by IUGR.
18
   

In animal studies, eNOS expression varies depending on the animal model of IUGR used. In 

Dahl-S rats fed a high-salt diet to induce fetal growth restriction, the placental eNOS mRNA 

expression level was significantly increased compared with controls.
83
 In an animal model of 

IUGR induced by placental insufficiency using hyperthermic exposure, placental and 

umbilical artery eNOS protein in the placenta was decreased at mid-gestation but increased 

near term.
84
 

However, eNOS expression and activity and the gender effect seem particularly sensitive to 

undernutrition. In fact, decreased eNOS expression and/or activity have been reported in 

animal models of IUGR induced by intrauterine undernourishment.
35
 In a rat IUGR model 
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induced by intrauterine undernourishment,
35
 eNOS expression was decreased only in males, 

whereas eNOS activity was decreased in both males and females. This reduction in eNOS 

activity in females, which is probably the consequence of decreased estrogen levels, could 

explain the impaired endothelium-dependent vasodilation observed in this animal model.
35
 

The modulation of eNOS activity by estrogens has been confirmed in vitro. Long-term 

estrogen treatment of cultured human and bovine endothelial cells up-regulates eNOS 

activity.
85
  

 

III-c-Upregulation of the arginase pathway 

Arginases produce urea and ornithine, using L-Arg as a substrate. By competing with eNOS 

for the bioavailability of L-Arg, arginases can indirectly contribute the reduction of NO 

synthesis by eNOS. Accordingly, arginase up-regulation is an important factor that drives 

endothelial dysfunction. Increased arginase-2 expression was observed in human umbilical 

endothelium from IUGR fetuses.
86
 Pre-incubation with S-(2-boronoethyl)-L-cysteine (BEC), 

an arginase inhibitor, improved ex vivo endothelium-dependent relaxation in umbilical and 

placental vessels from babies born after fetal growth restriction
31
 and in aortic rings from a rat 

IUGR model induced by maternal LPD (personal unpublished data). These data suggest that 

arginase activity was increased in these vessels.  

 

III-d- Increased ADMA levels 

Asymmetric dimethylarginine (ADMA), an endogenous NO synthase inhibitor, is also 

considered an early marker and mediator of endothelial dysfunction. ADMA acts as a 

competitor of L-Arg, thereby inhibiting NO synthesis by eNOS. However, the observations in 

human studies are controversial. In pregnancies complicated by IUGR, ADMA levels in 

maternal serum were found to be either increased
87,88

 or decreased compared with those in 
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normal gestations during the first (11–14 weeks), second (20–24 weeks) and third trimesters 

(28–35 weeks).
89
 Estrogen therapy could improve endothelial function by reducing ADMA 

levels. Clinical data revealed that estrogen therapy, chiefly the oral form, decreased plasma 

ADMA concentrations and therefore improved NO production in healthy postmenopausal 

women.
90,91

 

In animal models of atherosclerosis (rabbits and monkeys), endothelial dysfunction was 

associated with increased ADMA levels.
92,93

 To the best of our knowledge, ADMA levels 

have not been assessed in animal models of IUGR. 

 

III-e-Oxidative stress 

Oxidative stress plays an important role in endothelial dysfunction. ROS, particularly the 

superoxide anion (O2
-
), play a central role in vascular physiology, and their overproduction is 

especially relevant to vascular pathologies.
94
 In IUGR placentae, markers of oxidative stress, 

such as 8-hydroxy-2'-deoxyguanosine, redox factor-1,
95,96

 malondialdehyde and oxidized 

LDL, are increased in venous cord blood.
97
 Therefore, it has been suggested that oxidative 

stress is involved in both the short- and long-term modulation of endothelial function in 

individuals born after IUGR.
98
 Oxidative stress affects the NO pathway by influencing NO 

synthesis and bioavailability. NO rapidly reacts with O2
-.
 to form peroxynitrite, a highly 

reactive and toxic species, which reduces endothelium-dependent relaxation
99
 and accelerates 

the development of pre-atherosclerotic lesions.
100
  

As mentioned above, L-Arg and BH4 are crucial for NO production. A deficit in substrate 

and/or cofactor leads to enzymatic uncoupling, which causes eNOS to produce O2
-.
 rather than 

NO,
101
 thus contributing to endothelial dysfunction and impaired endothelium-dependent 

vasodilation.
102,103

 Decreased BH4 bioavailability can contribute to eNOS uncoupling. 

Regardless of whether the BH4 level is sufficient, the oxidation of L-Arg is coupled with the 
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reduction of oxygen molecules to form L-citrulline and NO. However, BH4 bioavailability 

can be decreased through reduced production,
104
 increased oxidation

105
 or impaired recycling 

of the oxidized form (BH2)
106
 therefore leading to eNOS uncoupling. 

 Increased O2
-.
 production up-regulates ADMA levels, thus worsening endothelial 

dysfunction.
107
 In humans, impaired NO-dependent vasodilation in placental vessels from 

IUGR pregnancies is coupled with a higher sensitivity to oxidative stress.
108
  

Increased O2
-. 
production mediated by NADPH oxidase and eNOS uncoupling was associated 

with defective endothelial function in a rat model of HTN induced by deoxycorticosterone 

and saline treatment
109
 and in a rat model of IUGR induced by maternal diet restriction (50% 

of ad libitum intake throughout gestation) or LPD (9% casein).
32,110

 

 

III-f-Endothelial progenitor cell dysfunction 

Endothelial dysfunction is characterized by impaired vasculogenesis and decreased repair 

capacity, functions that are mediated by circulating endothelial progenitor cells (EPCs). These 

cells are bone marrow-derived stem cells that can differentiate into mature endothelial cells, 

thus contributing to postnatal vasculogenesis and endothelial repair at damage sites.
111
 EPC 

subsets are differentiated by their phenotype and functional properties. The myeloid subset 

represents early EPCs, called colony-forming unit-endothelial cells, that appear early in 

cultures and display endothelial markers but do not form vessels in vivo.
112,113

 Endothelial 

colony-forming cells (ECFCs), the true angioblasts, appear later and display properties such 

as proliferation, auto-renewal, migration, and differentiation; additionally, they can support 

vascular growth and neovascularization. Both loss and impaired function of EPCs have been 

identified as markers of endothelial dysfunction, as described by Hill et al.
114
 In adult men 

with different degrees of cardiovascular risk but without a history of cardiovascular disease, 

levels of circulating EPCs have been identified as a surrogate biological marker of vascular 
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function and cumulative cardiovascular risk.
114
 In pregnancy-related complications, most 

notably IUGR, aberrant vasculature and abnormal endothelial function were found on both 

the maternal and fetal sides of the placenta, and it is believed that altered fetal circulating 

EPCs contribute to these complications.
115
 We and others have evaluated ECFCs isolated 

from LBW newborns and observed altered angiogenic properties in vitro, as evidenced by 

decreased numbers of colonies and sprouts,
116
 and in vivo, as shown by a reduction in the 

number of perfused vessels.
117
 Moreover, an imbalance between angiogenic and anti-

angiogenic factors was noted.
117,118

 These data suggest that the impairment of early 

angiogenic properties (structural and functional) could predispose LBW infants to endothelial 

dysfunction later in life. 

 

III-g-Vascular senescence 

Vascular senescence can contribute to endothelial dysfunction.
119
 It is characterized by a state 

of irreversible (replicative senescence) or reversible (stress-induced senescence) growth arrest, 

the expression of negative cell cycle regulators (such as p53 and p16) and increased 

senescence-related β-galactosidase staining.
120
 Senescent endothelial cells have a decreased 

ability to form new vascular structures; therefore, they contribute to impaired endothelial 

function. Sirtuins (SIRTs), particularly SIRT1, belong to a family of proteins involved in the 

regulation of many cellular processes, including senescence. SIRT1 is highly expressed in 

endothelial cells, wherein it regulates numerous functions, such as NOS expression and 

cellular senescence.
121
 The depletion of SIRT1 expression in endothelial cells led to 

endothelial dysfunction and premature senescence in several models of cardiovascular 

diseases, whereas overexpression of SIRT1 protected endothelial cells from senescence-

associated morphological and molecular changes.
122
 ECFCs from LBW newborns exhibit 

stress-induced vascular senescence characterized by growth arrest, increased β-galactosidase 
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activity, and p16
INK4a

 expression, all of which are mediated by decreased SIRT1 levels.
123
 

Therefore, stress-induced vascular senescence is coincident with impaired angiogenic 

properties and could participate in the endothelial dysfunction observed later in life in 

individuals born after IUGR.  

 

IV- Relationship between intrauterine growth restriction and cardiovascular and renal 

outcomes later in life 

Early endothelial dysfunction observed in individuals born after IUGR could persist for the 

long term and lead to the onset of cardiovascular-related diseases. 

IV-a- Systemic hypertension 

Epidemiological studies have highlighted an inverse correlation between LBW and increased 

blood pressure in infancy,
124
 adolescence,

125,126
 young adulthood

127,128
 and adulthood.

129-132
 

Some authors have questioned these results, suggesting that the data were inappropriately 

adjusted for confounding factors
133
 that could potentially damage kidneys and/or vascular 

endothelial cells early in life (e.g., nephrotoxic drugs or umbilical catheter placement). Recent 

data have indicated that the risk of HTN is not only linked to birth weight but is also 

amplified by postnatal overfeeding, leading to exaggerated catch-up growth.
134
 

Several animal models have shown that IUGR induced by ligation of the bilateral uterine 

vessels, prenatal exposure to hypoxia (11.5% vs. 21% O2) or glucocorticoids, maternal global 

undernutrition, caloric restriction or LPD during gestation induces HTN in adulthood
32,135-141

 

and is often associated with vascular dysfunction.
32,142,143

 However, it is not well established 

whether HTN precedes endothelial dysfunction. Some clinical investigations have suggested 

that endothelial dysfunction is a primary defect in essential HTN that appears before the 

increase in blood pressure,
144
 but other observations have hinted that endothelial dysfunction 

is a consequence of elevated blood pressure. Different animal models of HTN induced by 

Page 17 of 115

Cambridge University Press

Developmental Origins of Health and Disease - For Peer Review



For Peer Review

 17 

aortic coarctation (rabbits),
145
 a high-salt diet (rats)

146
 or neonatal hyperoxia (rats)

67
 showed 

selective impairment of endothelium-dependent vasodilation secondary to increased blood 

pressure. However, in an animal model of IUGR caused by maternal LPD during gestation, 

impaired endothelium-dependent relaxation preceded the onset of increased blood pressure 

(personal unpublished data). 

IV-b-Coronary heart disease 

Impaired endothelial function plays a major role in the development and progression of 

atherosclerosis,
147,148

 which ultimately leads to coronary heart disease. Many studies have 

proposed a relationship between birth weight and coronary heart disease: some showed an 

inverse relationship between LBW and increased risk of coronary heart disease,
149-151

 while 

others found no significant correlation
152
 or a positive correlation only in males.

153
 

Interestingly, the risk of coronary heart disease decreases with increasing birth weight. In fact, 

a 1-kg increase in birth weight was associated with a 10-20% decreased risk of coronary heart 

disease later in life.
151
 

 

IV-c-Chronic kidney disease 

The role of vascular components in the renal system is of particular significance because the 

kidneys receive approximately 20–25% of the total cardiac output. However, the contribution 

of the endothelial compartment to kidney development has been the subject of many 

hypotheses. Previous experiments showed that a significant proportion of the renal 

endothelium is derived from a resident precursor, the metanephric mesenchyme.
154
 Sprouting 

angiogenesis from the major renal vessels plays a significant role in forming the kidney 

endothelium, thus giving rise to most of the renal vessels and glomerular capillaries.
155
 

Endothelial dysfunction is involved in the development and progression of CKD.
156
 Patients 

with CKD display microalbuminuria, which is thought to reflect endothelial damage in the 
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capillary system of the renal medulla and increased endothelial permeability.
156-159

 Capillary 

damage is characterized by increased plasma concentrations of endothelium-derived proteins, 

such as von Willebrand factor, tissue-type plasminogen activator and urokinase-type 

plasminogen activator, and increased concentrations of markers of endothelial cell injury, 

such as soluble thrombomodulin. Decreased endothelium-dependent vasodilation occurs in 

end-stage kidney disease.
160
 Several epidemiological and experimental studies have shown 

that intrauterine insults are associated with the development of CKD. In humans, birth weight 

is positively correlated with glomerular number and inversely correlated with glomerular 

volume.
161
 In a meta-analysis of 18 studies, infants born after fetal growth restriction 

appeared to have a significantly higher risk of albuminuria (OR, 1.81; 95% CI, 1.19 to 2.77), 

end-stage renal disease (OR, 1.58; 95% CI, 1.33 to 1.88), or a low estimated glomerular 

filtration rate (OR, 1.79; 95% CI, 1.31 to 2.45).
162
 Similar to HTN, the impairment of 

glomerular and tubular function secondary to IUGR is further amplified by environmental 

insults, such as drug exposure during the neonatal period
163
 or overweight in adulthood.

164
 

Several animal models have enabled the identification of mechanisms involved in the 

development of renal dysfunction later in life. Rat models of IUGR induced by exposure to 

maternal LPD followed by early postnatal overnutrition during the lactation period or not 

according litter size reduction or increased protein intake to induce accelerated postnatal 

growth displayed alterations in renal structural development and a risk of chronic renal failure 

later in life.
165-169

 Decreased glomerular number potentially leads to reduced filtration 

capacity, reduced salt and water retention and the subsequent development of HTN. 

Furthermore, early loss of nephron numbers/mass may result in a state of hyperfiltration in the 

remaining nephrons, which will lead to focal segmental glomerulosclerosis and further loss of 

glomeruli, thus initiating a vicious circle.
170
 However, it is not clear whether endothelial 

dysfunction precedes or is a consequence of CKD. Regarding the impact of postnatal nutrition 
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on renal maturation, rodent models could likely be more affected than humans because 

nephrogenesis is completed at approximately 36 weeks of gestation in humans, whereas in 

rats, this process is completed during postnatal life (between 7 to 10 days of life).  

 

V- Potential preventive approaches 

Several interventions have been identified to potentially prevent IUGR, improve endothelial 

function and thus antagonize the development of detrimental cardiovascular issues. 

V-a-Breastfeeding 

Breast milk could represent a promising approach, and the easiest one, for improving 

endothelial function in offspring. In fact, breastfeeding, as opposed to feeding with 

commercial infant formulas, is one of the best approaches for fighting neonatal oxidative 

stress because of breast milk’s ability to "trap" free radicals. Breast milk contains enzymatic 

and non-enzymatic components such as superoxide dismutase, glutathione peroxidase, 

vitamins (A, C, and E), alpha-carotene, lactoferrin, and trace amounts of iron. Breastfeeding 

could improve endothelial function, primarily due to the presence of lactoferrin, an iron-

binding glycoprotein with antioxidant, anti-inflammatory, pro-angiogenic and NO-dependent 

vasodilator properties. Daily treatment with lactoferrin after unilateral hind limb surgery-

induced ischemia in C57BL/6J mice promoted angiogenesis, activated endothelial function 

via an NO-dependent mechanism
171
 and protected HUVECs against hydrogen peroxide-

induced oxidative stress.
172
 

 

V-b-Folate supplementation 

Epidemiological studies have shown that folate deficiency is associated with increased 
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cardiovascular risk.
173,174

 Because of the homocysteine-lowering and antioxidant effects of 

folate and its ability to modulate eNOS activity and cofactor availability, folic acid 

supplementation could improve vascular endothelial structure and function.  

In a study including patients with coronary heart disease, the circulating form of folic acid, 5-

methyltetrahydrofolate, increased NO-dependent vasodilation, reduced vascular superoxide 

production, and improved enzymatic coupling of eNOS by increasing the availability of 

tetrahydrobiopterin.
175
 Folate supplementation in patients with acute ischemic stroke

176
 or 

HTN
177
 decreased plasma ADMA levels, suggesting that folate intake may also be beneficial 

in these contexts. Moreover, folic acid supplementation during pregnancy increased the birth 

weight of newborns.
178
 

Folate deficiency in ApoE
-/-
 mice was associated with the development of atherosclerotic 

lesions, which can be prevented by folate supplementation.
179
 Moreover, folate 

supplementation of a maternal LPD diet prevented the development of increased blood 

pressure and restored endothelium-dependent vasodilation and eNOS mRNA expression
180
 

and enzyme activity.
181
 

 

V-c-Vitamin supplementation 

Studies of animal models of IUGR and developmental programming of CVD have 

demonstrated that maternal diet supplementation with vitamins C and E can prevent adverse 

perinatal and long-term outcomes. In an animal model of IUGR induced by high maternal 

cholesterol levels during the early stages of gestation, maternal dietary supplementation with 

vitamin E was found to prevent growth restriction in fetuses. Vitamin E has been shown to 

regulate molecular pathways controlling cell proliferation and viability
182
 and to increase the 

release of vasodilator prostanoids from human aortic endothelial cells
183
 and human umbilical 

vein endothelial cells,
184
 thus improving placenta-fetal blood flow and thereby increasing 

Page 21 of 115

Cambridge University Press

Developmental Origins of Health and Disease - For Peer Review



For Peer Review

 21 

nutrient delivery to the fetus. 

Vitamin C was found to protect chick embryos against the developmental toxicity of ethanol. 

Indeed, concomitant injection of vitamin C and ethanol in chick embryos prevented the 

decreased survival, growth retardation and malformations induced by ethanol alone.
185
 

However, in human studies, these treatments have failed to show clear benefits in terms of 

birth weight and associated long-term diseases.
186-189

 A possible explanation is the potential 

confounding effects of maternal endogenous antioxidant defenses and redox status and 

maternal vitamin intake resulting from diversified nutrition. Differences in vitamin 

metabolism between humans and animals could also be involved in the discrepancy between 

human and animal studies. 

 

V-d-Antioxidant therapy 

Supplementation with resveratrol, a polyphenolic molecule found at high concentrations in 

red grapes, berries and peanuts, has been identified as a potential therapeutic strategy for the 

treatment of cardiovascular diseases, primarily due to its antioxidant properties and ability to 

modulate the NO signaling pathway. In spontaneously hypertensive rats, maternal dietary 

supplementation with resveratrol during the perinatal period prevented the onset of HTN in 

adult offspring.
190
 Resveratrol also modulates SIRT1 expression. Pre-incubation with 

resveratrol restored angiogenic capacity and reversed the accelerated senescence of ECFCs 

from LBW newborns.
123
  

Lazaroid is a potent inhibitor of free radical formation, notably O2
-
-mediated lipid 

peroxidation. Treatment with Lazaroid reversed HTN in several rat models,
191,192

 and the 

addition of Lazaroid to a maternal LPD diet throughout gestation increased birth weight and 

reversed later vascular dysfunction in offspring by decreasing oxidative stress.
143
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In a guinea pig model of IUGR induced by progressive uterine artery occlusion starting at 

mid-gestation, maternal N-acetylcysteine treatment during the second half of gestation 

restored ex vivo eNOS-dependent relaxation in the fetal aorta and umbilical artery and 

normalized eNOS expression in fetal and umbilical endothelial cells.
193
 

Melatonin, a hormone with antioxidant and anti-inflammatory properties, is involved in 

regulating circadian and circannual rhythms
194
 and could improve endothelial function. 

Melatonin exhibits direct scavenging activity on O2
-
,
36,195,196

 up-regulates antioxidant enzymes 

such as superoxide dismutase and glutathione peroxidase, and down-regulates pro-oxidant 

enzymes such as lipoxygenase,
197
 thereby increasing NO production and improving its 

availability to induce vasodilation
198
 in different vascular beds.

199-202
   

 

V-e- L-citrulline supplementation  

L-citrulline is a precursor of L-arginine. L-citrulline is a non-protein amino acid, which is 

absent from the regular diet, escapes liver metabolism, has high bioavailability, and is 

quantitatively converted to arginine in vivo.
203
 Data have suggested that L-citrulline 

supplementation improves fetal growth an in animal model of IUGR induced by in utero 

exposure to maternal LPD,
79
 probably by improving maternal nutritional status and fetal 

growth through increased NO synthesis as a result of enhanced L-arginine availability in fetal 

circulation. L-citrulline can also exert a protective role on vascular endothelium. In fact, it has 

been proposed that L-citrulline supplementation could represent an alternative to L-arginine 

supplementation to improve vascular function,
204,205

 and it attenuated blood pressure in young 

normotensive men.
206
 In animal models, ex vivo pre-incubation with L-citrulline prevented 

endothelial dysfunction induced by ADMA in porcine coronary artery; indeed, such 

incubation favors L-citrulline to L-arginine recycling and the restoration of NO production, as 

a consequence of eNOS expression and activity up-regulation, the inhibition of superoxide 
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anion production, and activation of the cGMP pathway.
207
 Such direct beneficial effects of L-

citrulline on endothelium-dependent relaxation suggest that L-citrulline supplementation 

could be an efficient way to improve endothelial function in individuals born after fetal 

growth restriction. 

 

V-f-Supplementation with L-arginine and NO mediators 

It was reported that L-Arg could be administered to increase maternal NO levels to enhance 

birth weight and decrease neonatal morbidity.
74
 More recently, the combined results of ten 

small trials showed that L-Arg supplementation can increase the body weight and gestational 

age at birth of IUGR fetuses.
208
 However, this study contrasts with others that reported no 

benefit of L-Arg therapy.
209,210

 Such differences could be explained by the different route of 

administration (oral or intravenous). In fact, with oral administration, 40% of L-Arg is 

degraded by the small intestine and metabolized by arginase in the liver. Therefore, poor L-

Arg availability in the blood could decrease its efficacy.
203,211

 

Among NO modulators, phosphodiesterase inhibitors are promising agents for improving 

uterine perfusion in pregnancies complicated by IUGR. Type 5 phosphodiesterase (PDE5) is 

one of the enzymes responsible for the degradation of cGMP to GMP in smooth muscle. 

Therefore, inhibiting PDE5 delays the breakdown of cGMP and increases vasorelaxation. 

Sildenafil citrate (Viagra®) is probably the most famous PDE5 inhibitor. In women whose 

pregnancies were complicated by IUGR, sildenafil citrate improved fetoplacental perfusion
212
 

and decreased the ex vivo vasoconstriction (in response to the thromboxane analogue U46619) 

of myometrial small arteries.
213
 

In animal models, parenteral administration of L-Arg (from day 60 of pregnancy to 

parturition) to underfed ewes prevented fetal growth restriction,
214
 and in a rat model of IUGR 

induced by maternal LPD, pre-incubating the aortic rings with L-Arg restored impaired 
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endothelium-dependent vasodilation (personal unpublished data). Sildenafil citrate 

supplementation reversed the maternal effects of preeclampsia by improving uteroplacental 

and fetal perfusion
215
 in a Wistar rat model and increased fetal size in pregnant rats exposed to 

hypoxia at the end of gestation (18–20 days).
216
 

 

VI- Epigenetic markers of endothelial dysfunction  

Epigenetics plays a major role in the developmental origins of health and diseases.
217
 

Epigenetics can be defined as a phenomenon of altered phenotypic expression of heritable 

genetic information without changes in the DNA sequence. Three main pathways can silence, 

activate, or regulate the level and time of expression of many genes: DNA methylation, 

histone modifications (acetylation, methylation, ubiquitination, phosphorylation, or ADP-

ribosylation), and small non-coding RNAs, such as microRNAs (miRNAs).
218,219

 In general, 

these three epigenetic mechanisms appear to work together to regulate gene expression. DNA 

methylation or histone modifications can alter the expression of miRNAs, which can in turn 

regulate the epigenetic processes of DNA methylation and histone modifications.  

VI-a-DNA methylation 

DNA methylation has been known to be particularly sensitive to an adverse early 

environment. DNA methylation occurs through the binding of a methyl group in position 5 of 

the cytosine ring dinucleotide CpG sequences present in the DNA by DNA-methyltransferase, 

which can methylate and demethylate the DNA, thus making the modification reversible.
220
 In 

general, low levels of DNA methylation (hypomethylation) are associated with increased gene 

activity, whereas high levels of methylation (hypermethylation) are associated with gene 

repression.
221
 Moreover, hydroxymethylated cytosine (5-hydroxymethylcytosine (5 hmeC)) 

has been identified as another functional DNA modification, representing an intermediate 

state of active DNA demethylation and also influencing gene expression.
222,223
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eNOS expression in human endothelial cells isolated from umbilical arteries (HUAECs) and 

veins (HUVECs) of IUGR pregnancies can be controlled by DNA methylation levels. eNOS 

protein and mRNA levels were increased in HUAECs but decreased in HUVECs from IUGR 

pregnancies
86
 and were associated in the eNOS promoter with decreased DNA methylation at 

CpG -352 in IUGR-HUAECs and an increased in IUGR-HUVECs. Additionally, in human 

umbilical artery endothelial cells from patients with placental insufficiency, levels of 5hmeC 

at the eNOS transcription start site directly correlated with elevated eNOS levels.
224
 In a 

guinea pig model of IUGR, increased eNOS expression was associated with decreased DNA 

methylation levels in eNOS promoter of endothelial cells derived from aorta, femoral and 

umbilical arteries; such modifications were prevented by maternal administration of N-

acetylcysteine.
193
 

VI-b-histone modifications  

In the nucleus, DNA is packaged into chromatin as repeating units of nucleosomes, which 

form a “beads-on-a-string” structure that can compact into higher order structures to affect 

gene expression. Nucleosomes are composed of 146-bp DNA wrapped in histone octamers 

(composed of two H2A, H2B, H3, and H4) and are connected by a linker DNA, which can 

associate with histone H1 to form heterochromatin. Histone proteins contain a globular 

domain and an amino-terminal tail, which can be post-translationally modified. The post-

translational modification of lysine (acetylation, methylation, ubiquitination, sumoylation), 

arginine (methylation) and serine and threonine (phosphorylation) are the most commonly 

described modifications.
218,225

 In general, the acetylation of histone H3 and H4 is associated 

with increased gene expression and has been shown to regulate the angiogenic function of 

endothelial cells. 

Levels of H3K9ac and H2A.Zac were significantly higher at the eNOS transcription start site 

Page 26 of 115

Cambridge University Press

Developmental Origins of Health and Disease - For Peer Review



For Peer Review

 26 

and were directly correlated with elevated eNOS levels observed in the human umbilical 

artery endothelial cells from patients with placental insufficiency.
224
 Additionally, increased 

histone H3 acetylation in the endothelin-1 promoter of pulmonary vascular endothelial cells 

and in the peripheral leucocytes in a IUGR rat model induced by maternal undernutrition has 

been correlated with higher endothelin-1 expression, which could increase the risk of 

pulmonary disorders (pulmonary hypertension or asthma) later in life.
226
 Recently, we 

observed that SIRT1 repression in ECFCs from LBW newborns, associated with premature 

senescence, could be modulated by changes in “active” or “repressive” epigenetic marks. The 

“active” marks trimethyl-H3K4 (H3K4me3) associated with the SIRT1 promoter were 

significantly decreased in LBW newborns compared to controls, whereas the “repressive” 

marks trimethyl- H3K9, associated with heterochromatin formation, were increased.
123
  

VI-c-Non-coding RNAs 

MiRNAs are small single-strand RNAs that do not encode proteins. Each miRNA binds to 

specific messenger RNAs (mRNAs), resulting in the degradation of target mRNA or the 

inhibition of its translation into protein. miRNAs regulate the post-transcriptional expression 

level of many genes and processes such as apoptosis, cell growth, and differentiation in a 

large range of tissues,
227,228

 and notably in the regulation of endothelial functions. MiR-21 

expression is increased in cases of shear stress, which helps to protect endothelial cells by 

decreasing apoptosis and increasing eNOS expression and NO production.
229
 However, in 

atherosclerotic plaques, an up-regulation of miR-21 decreases the function of superoxide 

dismutase, which leads to increased ROS production and decreased migration of the 

progenitor cells.
230
 MiR-221 and miR-222 are highly expressed in endothelial cells

231
 and 

exert antiangiogenic, antiproliferative, antimigration and proapoptotic effects on endothelial 

cells,
231
 which can be partly caused by reduced eNOS expression.

232
 Additionally, miRNAs 

can modulate SIRT1 expression. Increased expression of miR-217 and miR-34a have been 
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observed in endothelial senescence, which leads to loss of SIRT1 function, notably by 

reducing eNOS expression.
233
 

 

VI-Conclusions 

In individuals born after fetal growth restriction, early endothelial dysfunction plays an 

important role in the subsequent development of HTN, coronary heart disease and CKD. 

Decreased NO synthesis and bioavailability caused by defective eNOS function and oxidative 

stress, decreased EPC number and function, and vascular senescence have all been shown to 

be involved in endothelial dysfunction (Figure 1). Preventive approaches, including 

breastfeeding and supplementation with folate, vitamins, antioxidants, L-citrulline, L-Arg and 

NO modulators, represent promising and simple ways to prevent fetal growth restriction, 

improve endothelial function and vasodilation responses early in life and delay/prevent 

detrimental cardiovascular issues. 

Epigenetic modulation of gene expression appears to be one of the main contributors to the 

long-term effects of an adverse perinatal environment. The identification of early biomarkers 

of endothelial dysfunction, especially epigenetic biomarkers, could allow early screening and 

follow-up of individuals at risk of developing CVD, thus contributing to the development of 

preventive and therapeutic strategies to avert the long-term effects of endothelial dysfunction 

in infants born after IUGR. 
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Individuals born after intrauterine growth restriction (IUGR) have an increased risk of 

perinatal morbidity/mortality, and those who survive face long-term consequences such as 

cardiovascular-related diseases, including systemic hypertension, atherosclerosis, coronary 

heart disease, and chronic kidney disease. 

In addition to the demonstrated long-term effects of decreased nephron endowment and 

hyperactivity of the hypothalamic-pituitary-adrenal axis, individuals born after IUGR also 

exhibit early alterations in vascular structure and function, which have been identified as key 

factors of the development of cardiovascular-related diseases. The endothelium plays a major 

role in maintaining vascular function and homeostasis. Therefore, it is not surprising that 

impaired endothelial function can lead to the long-term development of vascular-related 

diseases. Endothelial dysfunction, particularly impaired endothelium-dependent vasodilation 

and vascular remodeling, involves decreased nitric oxide (NO) bioavailability, impaired 

endothelial NO synthase functionality, increased oxidative stress, endothelial progenitor cell 

dysfunction and accelerated vascular senescence. Preventive approaches such as 

breastfeeding, supplementation with folate, vitamins, antioxidants, L-citrulline, L-arginine 

and treatment with NO modulators represent promising strategies for improving endothelial 

function, mitigating long-term outcomes and possibly preventing IUGR of vascular origin. 

Moreover, the identification of early biomarkers of endothelial dysfunction, especially 

epigenetic biomarkers, could allow early screening and follow-up of individuals at risk of 

developing cardiovascular and renal diseases, thus contributing to the development of 

preventive and therapeutic strategies to avert the long-term effects of endothelial dysfunction 

in infants born after IUGR. 

Key words: intrauterine growth restriction, endothelial dysfunction, developmental 

programming, DOHaD, hypertension, cardiovascular disease, chronic renal disease. 
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In this systematic review, we have exploredWe performed an extensive and critical review of 

the literature in order to explore the manifestations of endothelial dysfunction in individuals 

born after intrauterine growth restriction (IUGR) and examined which mechanisms may be 

incriminated and which preventive strategies could represent promising approaches. We used 

the following terms in the Pubmed library (MESH terms and free text, without time or 

language limits: (Prenatal Exposure Delayed Effects OR Late Effect, Prenatal Exposure OR 

Nutrition Disorders/Physiopathology OR Fetal Growth restriction) AND (Cardiovascular 

Diseases/Etiology OR Hypertension/Etiology) AND (Impaired Endothelial Function OR 

Oxidative Stress/Senescence). We included the most significant human and animal studies. 

From the references of the retrieved papers, additional articles were selected for this review. 

One author (CY) read the titles and abstracts and selected the articles to be included. 

 

I- Intrauterine growth restriction: definition and risk factors 

I-a-Definition  

Intrauterine growth restriction (IUGR) is defined as the inability of the fetus to reach its 

genetically determined potential size.
1,2
 IUGR affects approximately 5–15% of all 

pregnancies in the United States and Europe, but its incidence varies widely and appears to be 

higher in low income countries (it affects 30–55% of infants born in South Central Asia, 15–

25% in Africa, and 10–20% in Latin America).
3
 Using the ReCoDe classification system, 

IUGR has been considered the most commonly identified factor in stillborn infants.
4
 

Therefore, the management of growth-restricted fetuses in terms of choosing the optimal 

delivery time is important to decrease perinatal mortality/morbidity. Fetal growth restriction is 

difficult to detect because of the lack of international consensus on the definition and 

diagnostic criteria for IUGR. In clinical practice, growth-restricted fetuses are usually 

identified based on birth weight (<10
th
 percentile). However, some propose that using <3

rd
 or 
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<5
th
 percentile as the criterion would better identify individuals at a higher risk of adverse 

perinatal outcomes.
5
 Moreover, low estimated fetal weight (<10

th
 percentile), certain 

ultrasound findings of fetal growth (abdominal circumference <2.5
th
 percentile) and altered 

Doppler velocimetry indices, such as abnormal umbilical artery waveforms or decreased 

pulsatility of the middle cerebral artery, that suggest abnormalities in fetal circulation are also 

indicative of IUGR.
6
 To better understand abnormal fetal growth and to detect IUGR, specific 

computerized fetal growth charts that consider fetal gender and maternal characteristics such 

as height, weight, parity and ethnic origin were developed by Gardosi et al.
7
 Pathological 

factors, including maternal systemic hypertension (HTN), diabetes, tobacco use and preterm 

delivery, were excluded from the model to predict the optimum weight that a baby can reach 

at term during a normal pregnancy. Because it is necessary to distinguish between growth-

restricted and constitutive “small for gestational age” fetuses, longitudinal assessments of 

fetal growth trajectories are required to identify pathological fetal growth restriction, even if 

the altered growth trajectory is above the 10
th
 centile limit.

8
 More recently, universal 

standards of fetal growth have been proposed by the Intergrowth project.
9,10
 

I-b-Risk factors for intrauterine growth restriction 

IUGR can result from a multitude of risk factors, including maternal and fetal causes. Several 

maternal factors have been identified, such as undernutrition, which notably affects the 

activity and/or expression of placental nutrient and ion transporters;
11-13

 chronic diseases, such 

as preeclampsia;
14
 bacterial infection during pregnancy, particularly with Escherichia coli, 

group B Streptococcus, Listeria monocytogenes, Treponema pallidum, or Trichomonas 

vaginalis; parasitic diseases, such as malaria; viral infection (for example, human 

cytomegalovirus or rubella virus);
15,16

 young age (adolescent pregnancy); and alcohol and/or 

tobacco consumption.
17
 Additionally, pregnancy-induced HTN, preeclampsia and placental 

insufficiency are known causes of asymmetrical IUGR (defined as restriction of weight 
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followed by length).
18
 Among the fetal causes, chromosomal anomalies (including trisomy of 

chromosome 13, 18, or 21; tri- and polyploidies; Mulibrey nanism; 3-M, Bloom, and Turner 

syndromes; and Majewski osteodysplastic primordial dwarfism (MOPD) type II)
19
 and fetal 

structural defects, such as congenital heart disease,
20
 result in symmetrical IUGR (defined as 

global growth restriction), which is usually more severe than asymmetrical IUGR.
18
 

Along with maternal causes, paternal health has also been identified as a possible contributor 

to IUGR. Insulin resistance, smoking habits, elevated blood pressure, endothelial dysfunction, 

upper body fat distribution and an atherogenic lipid profile have all been suggested as 

potential paternally determined factors that correlate with IUGR.
21
 These factors presumably 

impact fetal growth through epigenetic processes.
22
 

IUGR is now considered a critical public health issue because of its high perinatal mortality 

rate and long-term consequences. As numerous epidemiological studies have reported, infants 

born with fetal growth restriction have an increased risk of developing non-communicable 

chronic diseases, notably cardiovascular (e.g., systemic HTN and coronary artery disease) and 

renal (chronic kidney disease, CKD) diseases, later in life. These observations are consistent 

with the concept of Developmental Origins of Health and Disease, which suggests that 

conditions affecting specific sensitive developmental periods, from conception throughout 

pregnancy to early infancy, “program” tissue/organ structure and function throughout life in a 

process known as developmental plasticity that is adapted to short-term, prevailing 

environmental conditions but possibly not to the further life course. The underlying 

mechanisms are not clearly defined. In parallel with the long-term effects of decreased 

nephron numbers and hyperactivity of the hypothalamic-pituitary-adrenal axis in these infants, 

endothelial dysfunction may also contribute to the development of certain chronic diseases in 

adulthood. 
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II- Endothelium dysfunction in individuals born with intrauterine growth restriction 

II-a The endothelium: a major role in vascular homeostasis 

The endothelium plays a major role in maintaining vascular homeostasis and is one of the 

largest organs in the human body, consisting of more than 10
14
 cells lining the vascular 

network. It is intimately involved in the balance between vasodilation and vasoconstriction 

and between thrombogenesis and fibrinolysis, the inhibition and promotion of smooth muscle 

cell proliferation and migration, and the prevention and stimulation of platelet adhesion and 

aggregation.
23
 All these functions are mediated by the release of numerous vasoactive factors, 

such as nitric oxide (NO) and endothelin. In this respect, the maintenance of endothelial 

structural and functional integrity is essential for vascular homeostasis; therefore, impaired 

endothelial function can lead to the development of vascular-related diseases. 

Convincing evidence suggests that endothelial dysfunction during early childhood and 

persisting to adulthood in individuals born with IUGR is a key event in the development of 

HTN, atherosclerosis, coronary heart disease, and CKD later in life. In these individuals, 

endothelial dysfunction primarily manifests as impaired endothelium-dependent vasodilation 

and vascular remodeling. 

 

II-b-Impaired endothelium-dependent vasodilation in individuals born with fetal growth 

restriction 

Endothelium-dependent vasodilation can be clinically evaluated using flow-mediated brachial 

artery tests, plethysmography, or skin perfusion in response to acetylcholine using the laser 

Doppler technique.
24-26

 Impaired endothelium-dependent vasodilation has been described in 

children (9-11 years)
27-29

 and young adults (20-28 years) born with fetal growth restriction
30
 

and in umbilical and placental vessels derived from growth-restricted fetuses.
31
 

An association between fetal growth restriction and impaired NO-dependent vasorelaxation 

Page 65 of 115

Cambridge University Press

Developmental Origins of Health and Disease - For Peer Review



For Peer Review

 

 7

has also been observed in several animal models, mainly in rats, mice and sheep. IUGR can 

be induced in rats by exposure to a maternal low-protein diet (LPD, containing 9% casein)
32
 

or restricted diet (50% of normal intake) and in sheep by single in utero umbilical artery 

ligation (at 105-110 days gestation); these diets and procedures result in low birth weight 

(LBW) offspring and lead to impaired endothelium-dependent vasodilation in small 

arteries,
33,34

  the  aorta
35
 and coronary  arteries

36
  in adulthood. 

The effects on endothelium-dependent vasodilation are more pronounced in males, while 

females seem to be protected by the NO-dependent vasoprotective role of estrogens. However, 

impaired endothelium-dependent vasodilation has been observed in female Wistar rats born 

with IUGR stemming from maternal undernutrition.
35
 As suggested by Borwick et al., fetal 

undernutrition may decrease estrogen synthesis, ultimately leading to ovarian damage.
37
 

Interestingly, estrogen-mediated vasoprotective activity has been reported in humans; 

specifically, postmenopausal women taking conjugated equine estrogens (0.625 mg for 28 

days) showed improved vascular  NO-dependent relaxation of the brachial artery.
38
 

 

II-c-Vascular remodeling in individuals born with fetal growth restriction 

Endothelial activation 

Endothelial dysfunction is associated with leukocyte infiltration and the adhesion of 

monocytes, macrophages and low-density lipoprotein (LDL), which is oxidized to OxLDL in 

the arterial wall. This leads to foam cell formation and initiates atherogenesis. In addition, 

monocytes and macrophages secrete higher levels of cytokines and pro-inflammatory proteins 

such as interleukin-6 (IL-6), tumor necrosis factor-alpha and C-reactive protein (CRP).
39
 

These events create a vicious cycle: neutrophils and macrophages produce higher levels of IL-

6 in response to inflammation, which in turn increases CRP production in the liver. CRP 

decreases NO availability and increases endothelin-1 production, thereby contributing to 
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impaired endothelium-dependent vasodilation and leading to irreversible vascular 

damage.
39,40

 Elevated levels of pro-inflammatory markers and endothelial activators are 

characteristic of middle-aged adults (45–64 years) born with LBW, indicating that endothelial 

dysfunction is patent in these individuals.
41
  

 

Vascular structural changes 

Histopathological analyses showed that the first atherosclerotic lesions begin to develop in the 

abdominal aorta.
42
 Increased arterial wall thickness, measured using non-invasive assessments 

of the intima-media or carotid intima-media thickness, has been observed in newborns
43-46

 

and young children
47,48

 and persists in adults (27-30 years) born after IUGR, and it is 

particularly apparent in those with exaggerated postnatal growth.
49
 

Hypoxia and oxidative stress in vascular remodeling 

Hypoxia and oxidative stress have been implicated in vascular remodeling. 

Placental insufficiency is related to reduced nutrient and oxygen delivery to the fetus, 

contributing to the development of fetal growth restriction. Several maternal factors, such as 

living at a high altitude, HTN, anemia, pulmonary disease, preeclampsia, drugs and/or 

tobacco consumption can contribute to fetal hypoxia
50
 which can induce IUGR, LBW

51
 and 

increase the risk of CVD later in life.
52,53

 During fetal development, hypoxia plays a crucial 

role by driving vasculogenesis/angiogenesis, hematopoeisis, and chondrogenesis.
54
 However, 

prolonged in utero hypoxia can lead to detrimental effects. In growth-restricted fetuses, 

circulating levels of angiopoietin-2, an angiogenic factor up-regulated by hypoxia, were 

increased at postnatal day 4 compared with appropriate-for-gestational age infants, thus 

contributing to postnatal vascular remodeling.
55
 

Oxidative stress can be defined by decreased antioxidant defenses and increased reactive 

oxygen species (ROS) production. Under physiological conditions, ROS play an important 
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role as a regulator of vascular functions such as migration, growth, smooth muscle and 

endothelial cell survival and the secretion of extracellular matrix proteins. However, 

uncontrolled ROS production can contribute to vascular diseases.
56,57

 ROS have been 

implicated in the hypertrophy and hyperplasia of vascular smooth muscle cells. In vascular 

cells (endothelial cells and vascular smooth muscle cells, adventitial fibroblasts), the main 

enzyme responsible for ROS production is NADPH oxidase.
58
 

Angiotensin II (AngII), via Angiotensin type 1 receptor (AT1R), has been implicated in 

increasing superoxide anion levels followed by increased hydrogen peroxide production, 

which induces long-term outcomes of AngII, such as hypertrophy and hyperplasia of vascular 

smooth muscle cells.
59,60

 The flavoprotein inhibitor DPI
60
 and catalase overexpression

61
 

inhibits these vascular defects. In a rat model of IUGR induced by maternal LPD associated 

with adult HTN, we observed increased ex vivo vasoreactivity of the carotid rings to AngII, 

mediated by AT1R, which was normalized by diphenyleneiodonium (DPI) and apocynin 

(NADPH oxidase inhibitor) pre-incubation.
32
 

The regulation of extracellular matrix proteins such as collagen and elastin can be modulated 

by ROS. Elastinolysis and collagenolysis play crucial roles in arterial remodeling and 

vascular diseases.
62
 Metalloproteinases (MMPs) and their related TIMPs are enzymes 

secreted by macrophages and vascular smooth muscle cells. MMP-2 and MMP-9 cleave 

gelatin, collagen and elastin and have been associated with vascular diseases.
63
 ROS have 

been demonstrated to activate MMPs.
64
 Increased circulating levels of MMP-2 and MMP-9 

and increased MMP-2/TIMP-2 and MMP-9/TIMP-2 ratios have been observed in children 

who were small for gestational age and are positively correlated with systolic blood pressure 

and vascular function.
65
 In a developmental programing animal model of HTA induced by 

neonatal oxygen exposure, we observed increased aortic MMP-2 and TIMP-1 and reduced 

TIMP-2 staining as early as 4 weeks of age, indicating a shift in the balance towards 
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degradation of the extracellular matrix and increased collagen deposition.
66
 These data 

suggest that early changes could contribute to the onset of the elevated blood pressure and 

arterial stiffness observed at adulthood in this animal model.
67,68

 

 

III- Mechanisms involved in endothelial dysfunction in individuals born with fetal 

growth restriction 

III-a- Impaired NO bioavailability 

The endothelium-mediated release of NO is widely accepted as the key determinant of 

endothelial function, and reduced NO bioavailability has been linked to most serious vascular 

pathologies.
69
 In particular, the loss of NO production contributes to impaired endothelium-

dependent vasodilation and to endothelium activation by improving the recruitment of pro-

inflammatory cytokines, such as VCAM-1 and ICAM-1, and the infiltration of leukocytes into 

the vessel wall.
70-72

 In normal pregnancies, NO synthesis is up-regulated, as reflected by 

increased nitrite/nitrate concentrations in maternal and fetal circulation, thus mediating 

maternal cardiovascular adaptations and the low systemic and umbilical vascular resistance in 

the fetus. In pregnancies complicated by IUGR, research findings are inconsistent. Some have 

displayed a decrease in NO metabolite concentrations in maternal and/or fetal serum, 

reflecting reduced NO synthesis compared with controls.
73,74

 Other have found higher 

nitrite/nitrate concentrations in umbilical venous plasma
55
 or an increase in eNOS protein 

staining in placental vessels compared with normal pregnancies, suggesting that increased NO 

production could be a compensatory response to improve blood flow in the placenta.
75,76

  

Decreased NO synthesis, evaluated in terms of nitrate/nitrite production, was observed in 

animal models of IUGR induced by a reduction in utero-placental perfusion pressure
77
 or 

maternal LPD
78,79

 and in a rat model of developmental programming of HTN induced by 

exposing pregnant rats to androgens.
80
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Reduced NO bioavailability may result either from altered NO synthesis or from NO 

scavenging by other molecules, such as ROS. 

 

III-b-Impaired eNOS functionality 

Under physiological conditions, NO is synthetized in the vasculature by endothelial nitric 

oxide synthase (eNOS), using L-arginine (L-Arg) as a substrate and tetrahydrobiopterin 

(BH4) as a cofactor. There are contradictory data on eNOS expression in individuals born 

after IUGR. In humans, independent studies have indicated that eNOS expression is increased 

in the umbilical arteries of babies born after fetal growth restriction, suggesting that activated 

NO synthesis may be a compensatory mechanism to improve placental blood flow.
31,81

 

However, these results are controversial because they could not be replicated.
82
 Moreover, 

differences in eNOS expression have been observed in human endothelial cells isolated from 

the umbilical arteries (HUAEC) or veins (HUVEC) of IUGR newborns. eNOS expression is 

increased in IUGR-HUAEC but decreased in IUGR-HUVEC. These differences may be 

explained by the type of vessel (artery vs. vein) or could be the consequence of altered blood 

flow and oxygen levels in pregnancies complicated by IUGR.
18
   

In animal studies, eNOS expression varies depending on the animal model of IUGR used. In 

Dahl-S rats fed a high-salt diet to induce fetal growth restriction, the placental eNOS mRNA 

expression level was significantly increased compared with controls.
83
 In an animal model of 

IUGR induced by placental insufficiency using hyperthermic exposure, placental and 

umbilical artery eNOS protein in the placenta was decreased at mid-gestation but increased 

near term.
84
 

However, eNOS expression and activity and the gender effect seem particularly sensitive to 

undernutrition. In fact, decreased eNOS expression and/or activity have been reported in 

animal models of IUGR induced by intrauterine undernourishment.
35
 In a rat IUGR model 
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induced by intrauterine undernourishment,
35
 eNOS expression was decreased only in males, 

whereas eNOS activity was decreased in both males and females. This reduction in eNOS 

activity in females, which is probably the consequence of decreased estrogen levels, could 

explain the impaired endothelium-dependent vasodilation observed in this animal model.
35
 

The modulation of eNOS activity by estrogens has been confirmed in vitro. Long-term 

estrogen treatment of cultured human and bovine endothelial cells up-regulates eNOS 

activity.
85
  

 

III-c-Upregulation of the arginase pathway 

Arginases produce urea and ornithine, using L-Arg as a substrate. By competing with eNOS 

for the bioavailability of L-Arg, arginases can indirectly contribute the reduction of NO 

synthesis by eNOS. Accordingly, arginase up-regulation is an important factor that drives 

endothelial dysfunction. Increased arginase-2 expression was observed in human umbilical 

endothelium from IUGR fetuses.
86
 Pre-incubation with S-(2-boronoethyl)-L-cysteine (BEC), 

an arginase inhibitor, improved ex vivo endothelium-dependent relaxation in umbilical and 

placental vessels from babies born after fetal growth restriction
31
 and in aortic rings from a rat 

IUGR model induced by maternal LPD (personal unpublished data). These data suggest that 

arginase activity was increased in these vessels.  

 

III-d- Increased ADMA levels 

Asymmetric dimethylarginine (ADMA), an endogenous NO synthase inhibitor, is also 

considered an early marker and mediator of endothelial dysfunction. ADMA acts as a 

competitor of L-Arg, thereby inhibiting NO synthesis by eNOS. However, the observations in 

human studies are controversial. In pregnancies complicated by IUGR, ADMA levels in 

maternal serum were found to be either increased
87,88

 or decreased compared with those in 
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normal gestations during the first (11–14 weeks), second (20–24 weeks) and third trimesters 

(28–35 weeks).
89
 Estrogen therapy could improve endothelial function by reducing ADMA 

levels. Clinical data revealed that estrogen therapy, chiefly the oral form, decreased plasma 

ADMA concentrations and therefore improved NO production in healthy postmenopausal 

women.
90,91

 

In animal models of atherosclerosis (rabbits and monkeys), endothelial dysfunction was 

associated with increased ADMA levels.
92,93

 To the best of our knowledge, ADMA levels 

have not been assessed in animal models of IUGR. 

 

III-e-Oxidative stress 

Oxidative stress plays an important role in endothelial dysfunction. ROS, particularly the 

superoxide anion (O2
-
), play a central role in vascular physiology, and their overproduction is 

especially relevant to vascular pathologies.
94
 In IUGR placentae, markers of oxidative stress, 

such as 8-hydroxy-2'-deoxyguanosine, redox factor-1,
95,96

 malondialdehyde and oxidized 

LDL, are increased in venous cord blood.
97
 Therefore, it has been suggested that oxidative 

stress is involved in both the short- and long-term modulation of endothelial function in 

individuals born after IUGR.
98
 Oxidative stress affects the NO pathway by influencing NO 

synthesis and bioavailability. NO rapidly reacts with O2
-.
 to form peroxynitrite, a highly 

reactive and toxic species, which reduces endothelium-dependent relaxation
99
 and accelerates 

the development of pre-atherosclerotic lesions.
100
  

As mentioned above, L-Arg and BH4 are crucial for NO production. A deficit in substrate 

and/or cofactor leads to enzymatic uncoupling, which causes eNOS to produce O2
-.
 rather than 

NO,
101
 thus contributing to endothelial dysfunction and impaired endothelium-dependent 

vasodilation.
102,103

 Decreased BH4 bioavailability can contribute to eNOS uncoupling. 

Regardless of whether the BH4 level is sufficient, the oxidation of L-Arg is coupled with the 
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reduction of oxygen molecules to form L-citrulline and NO. However, BH4 bioavailability 

can be decreased through reduced production,
104
 increased oxidation

105
 or impaired recycling 

of the oxidized form (BH2)
106
 therefore leading to eNOS uncoupling. 

 Increased O2
-.
 production up-regulates ADMA levels, thus worsening endothelial 

dysfunction.
107
 In humans, impaired NO-dependent vasodilation in placental vessels from 

IUGR pregnancies is coupled with a higher sensitivity to oxidative stress.
108
  

Increased O2
-. 
production mediated by NADPH oxidase and eNOS uncoupling was associated 

with defective endothelial function in a rat model of HTN induced by deoxycorticosterone 

and saline treatment
109
 and in a rat model of IUGR induced by maternal diet restriction (50% 

of ad libitum intake throughout gestation) or LPD (9% casein).
32,110

 

 

III-f-Endothelial progenitor cell dysfunction 

Endothelial dysfunction is characterized by impaired vasculogenesis and decreased repair 

capacity, functions that are mediated by circulating endothelial progenitor cells (EPCs). These 

cells are bone marrow-derived stem cells that can differentiate into mature endothelial cells, 

thus contributing to postnatal vasculogenesis and endothelial repair at damage sites.
111
 EPC 

subsets are differentiated by their phenotype and functional properties. The myeloid subset 

represents early EPCs, called colony-forming unit-endothelial cells, that appear early in 

cultures and display endothelial markers but do not form vessels in vivo.
112,113

 Endothelial 

colony-forming cells (ECFCs), the true angioblasts, appear later and display properties such 

as proliferation, auto-renewal, migration, and differentiation; additionally, they can support 

vascular growth and neovascularization. Both loss and impaired function of EPCs have been 

identified as markers of endothelial dysfunction, as described by Hill et al.
114
 In adult men 

with different degrees of cardiovascular risk but without a history of cardiovascular disease, 

levels of circulating EPCs have been identified as a surrogate biological marker of vascular 
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function and cumulative cardiovascular risk.
114
 In pregnancy-related complications, most 

notably IUGR, aberrant vasculature and abnormal endothelial function were found on both 

the maternal and fetal sides of the placenta, and it is believed that altered fetal circulating 

EPCs contribute to these complications.
115
 We and others have evaluated ECFCs isolated 

from LBW newborns and observed altered angiogenic properties in vitro, as evidenced by 

decreased numbers of colonies and sprouts,
116
 and in vivo, as shown by a reduction in the 

number of perfused vessels.
117
 Moreover, an imbalance between angiogenic and anti-

angiogenic factors was noted.
117,118

 These data suggest that the impairment of early 

angiogenic properties (structural and functional) could predispose LBW infants to endothelial 

dysfunction later in life. 

 

III-g-Vascular senescence 

Vascular senescence can contribute to endothelial dysfunction.
119
 It is characterized by a state 

of irreversible (replicative senescence) or reversible (stress-induced senescence) growth arrest, 

the expression of negative cell cycle regulators (such as p53 and p16) and increased 

senescence-related β-galactosidase staining.
120
 Senescent endothelial cells have a decreased 

ability to form new vascular structures; therefore, they contribute to impaired endothelial 

function. Sirtuins (SIRTs), particularly SIRT1, belong to a family of proteins involved in the 

regulation of many cellular processes, including senescence. SIRT1 is highly expressed in 

endothelial cells, wherein it regulates numerous functions, such as NOS expression and 

cellular senescence.
121
 The depletion of SIRT1 expression in endothelial cells led to 

endothelial dysfunction and premature senescence in several models of cardiovascular 

diseases, whereas overexpression of SIRT1 protected endothelial cells from senescence-

associated morphological and molecular changes.
122
 ECFCs from LBW newborns exhibit 

stress-induced vascular senescence characterized by growth arrest, increased β-galactosidase 
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activity, and p16
INK4a

 expression, all of which are mediated by decreased SIRT1 levels.
123
 

Therefore, stress-induced vascular senescence is coincident with impaired angiogenic 

properties and could participate in the endothelial dysfunction observed later in life in 

individuals born after IUGR.  

 

IV- Relationship between intrauterine growth restriction and cardiovascular and renal 

outcomes later in life 

Early endothelial dysfunction observed in individuals born after IUGR could persist for the 

long term and lead to the onset of cardiovascular-related diseases. 

IV-a- Systemic hypertension 

Epidemiological studies have highlighted an inverse correlation between LBW and increased 

blood pressure in infancy,
124
 adolescence,

125,126
 young adulthood

127,128
 and adulthood.

129-132
 

Some authors have questioned these results, suggesting that the data were inappropriately 

adjusted for confounding factors
133
 that could potentially damage kidneys and/or vascular 

endothelial cells early in life (e.g., nephrotoxic drugs or umbilical catheter placement). Recent 

data have indicated that the risk of HTN is not only linked to birth weight but is also 

amplified by postnatal overfeeding, leading to exaggerated catch-up growth.
134
 

Several animal models have shown that IUGR induced by ligation of the bilateral uterine 

vessels, prenatal exposure to hypoxia (11.5% vs. 21% O2) or glucocorticoids, maternal global 

undernutrition, caloric restriction or LPD during gestation induces HTN in adulthood
32,135-141

 

and is often associated with vascular dysfunction.
32,142,143

 However, it is not well established 

whether HTN precedes endothelial dysfunction. Some clinical investigations have suggested 

that endothelial dysfunction is a primary defect in essential HTN that appears before the 

increase in blood pressure,
144
 but other observations have hinted that endothelial dysfunction 

is a consequence of elevated blood pressure. Different animal models of HTN induced by 
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aortic coarctation (rabbits),
145
 a high-salt diet (rats)

146
 or neonatal hyperoxia (rats)

67
 showed 

selective impairment of endothelium-dependent vasodilation secondary to increased blood 

pressure. However, in an animal model of IUGR caused by maternal LPD during gestation, 

impaired endothelium-dependent relaxation preceded the onset of increased blood pressure 

(personal unpublished data). 

IV-b-Coronary heart disease 

Impaired endothelial function plays a major role in the development and progression of 

atherosclerosis,
147,148

 which ultimately leads to coronary heart disease. Many studies have 

proposed a relationship between birth weight and coronary heart disease: some showed an 

inverse relationship between LBW and increased risk of coronary heart disease,
149-151

 while 

others found no significant correlation
152
 or a positive correlation only in males.

153
 

Interestingly, the risk of coronary heart disease decreases with increasing birth weight. In fact, 

a 1-kg increase in birth weight was associated with a 10-20% decreased risk of coronary heart 

disease later in life.
151
 

 

IV-c-Chronic kidney disease 

The role of vascular components in the renal system is of particular significance because the 

kidneys receive approximately 20–25% of the total cardiac output. However, the contribution 

of the endothelial compartment to kidney development has been the subject of many 

hypotheses. Previous experiments showed that a significant proportion of the renal 

endothelium is derived from a resident precursor, the metanephric mesenchyme.
154
 Sprouting 

angiogenesis from the major renal vessels plays a significant role in forming the kidney 

endothelium, thus giving rise to most of the renal vessels and glomerular capillaries.
155
 

Endothelial dysfunction is involved in the development and progression of CKD.
156
 Patients 

with CKD display microalbuminuria, which is thought to reflect endothelial damage in the 
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capillary system of the renal medulla and increased endothelial permeability.
156-159

 Capillary 

damage is characterized by increased plasma concentrations of endothelium-derived proteins, 

such as von Willebrand factor, tissue-type plasminogen activator and urokinase-type 

plasminogen activator, and increased concentrations of markers of endothelial cell injury, 

such as soluble thrombomodulin. Decreased endothelium-dependent vasodilation occurs in 

end-stage kidney disease.
160
 Several epidemiological and experimental studies have shown 

that intrauterine insults are associated with the development of CKD. In humans, birth weight 

is positively correlated with glomerular number and inversely correlated with glomerular 

volume.
161
 In a meta-analysis of 18 studies, infants born after fetal growth restriction 

appeared to have a significantly higher risk of albuminuria (OR, 1.81; 95% CI, 1.19 to 2.77), 

end-stage renal disease (OR, 1.58; 95% CI, 1.33 to 1.88), or a low estimated glomerular 

filtration rate (OR, 1.79; 95% CI, 1.31 to 2.45).
162
 Similar to HTN, the impairment of 

glomerular and tubular function secondary to IUGR is further amplified by environmental 

insults, such as drug exposure during the neonatal period
163
 or overweight in adulthood.

164
 

Several animal models have enabled the identification of mechanisms involved in the 

development of renal dysfunction later in life. Rat models of IUGR induced by exposure to 

maternal LPD followed by early postnatal overnutrition during the lactation period or not 

according litter size reduction or increased protein intake to induce accelerated postnatal 

growth displayed alterations in renal structural development and a risk of chronic renal failure 

later in life.
165-169

 Decreased glomerular number potentially leads to reduced filtration 

capacity, reduced salt and water retention and the subsequent development of HTN. 

Furthermore, early loss of nephron numbers/mass may result in a state of hyperfiltration in the 

remaining nephrons, which will lead to focal segmental glomerulosclerosis and further loss of 

glomeruli, thus initiating a vicious circle.
170
 However, it is not clear whether endothelial 

dysfunction precedes or is a consequence of CKD. Regarding the impact of postnatal nutrition 
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on renal maturation, rodent models could likely be more affected than humans because 

nephrogenesis is completed at approximately 36 weeks of gestation in humans, whereas in 

rats, this process is completed during postnatal life (between 7 to 10 days of life).  

 

V- Potential preventive approaches 

Several interventions have been identified to potentially prevent IUGR, improve endothelial 

function and thus antagonize the development of detrimental cardiovascular issues. 

V-a-Breastfeeding 

Breast milk could represent a promising approach, and the easiest one, for improving 

endothelial function in offspring. In fact, breastfeeding, as opposed to feeding with 

commercial infant formulas, is one of the best approaches for fighting neonatal oxidative 

stress because of breast milk’s ability to "trap" free radicals. Breast milk contains enzymatic 

and non-enzymatic components such as superoxide dismutase, glutathione peroxidase, 

vitamins (A, C, and E), alpha-carotene, lactoferrin, and trace amounts of iron. Breastfeeding 

could improve endothelial function, primarily due to the presence of lactoferrin, an iron-

binding glycoprotein with antioxidant, anti-inflammatory, pro-angiogenic and NO-dependent 

vasodilator properties. Daily treatment with lactoferrin after unilateral hind limb surgery-

induced ischemia in C57BL/6J mice promoted angiogenesis, activated endothelial function 

via an NO-dependent mechanism
171
 and protected HUVECs against hydrogen peroxide-

induced oxidative stress.
172
 

 

V-b-Folate supplementation 

Epidemiological studies have shown that folate deficiency is associated with increased 
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cardiovascular risk.
173,174

 Because of the homocysteine-lowering and antioxidant effects of 

folate and its ability to modulate eNOS activity and cofactor availability, folic acid 

supplementation could improve vascular endothelial structure and function.  

In a study including patients with coronary heart disease, the circulating form of folic acid, 5-

methyltetrahydrofolate, increased NO-dependent vasodilation, reduced vascular superoxide 

production, and improved enzymatic coupling of eNOS by increasing the availability of 

tetrahydrobiopterin.
175
 Folate supplementation in patients with acute ischemic stroke

176
 or 

HTN
177
 decreased plasma ADMA levels, suggesting that folate intake may also be beneficial 

in these contexts. Moreover, folic acid supplementation during pregnancy increased the birth 

weight of newborns.
178
 

Folate deficiency in ApoE
-/-
 mice was associated with the development of atherosclerotic 

lesions, which can be prevented by folate supplementation.
179
 Moreover, folate 

supplementation of a maternal LPD diet prevented the development of increased blood 

pressure and restored endothelium-dependent vasodilation and eNOS mRNA expression
180
 

and enzyme activity.
181
 

 

V-c-Vitamin supplementation 

Studies of animal models of IUGR and developmental programming of CVD have 

demonstrated that maternal diet supplementation with vitamins C and E can prevent adverse 

perinatal and long-term outcomes. In an animal model of IUGR induced by high maternal 

cholesterol levels during the early stages of gestation, maternal dietary supplementation with 

vitamin E was found to prevent growth restriction in fetuses. Vitamin E has been shown to 

regulate molecular pathways controlling cell proliferation and viability
182
 and to increase the 

release of vasodilator prostanoids from human aortic endothelial cells
183
 and human umbilical 

vein endothelial cells,
184
 thus improving placenta-fetal blood flow and thereby increasing 
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nutrient delivery to the fetus. 

Vitamin C was found to protect chick embryos against the developmental toxicity of ethanol. 

Indeed, concomitant injection of vitamin C and ethanol in chick embryos prevented the 

decreased survival, growth retardation and malformations induced by ethanol alone.
185
 

However, in human studies, these treatments have failed to show clear benefits in terms of 

birth weight and associated long-term diseases.
186-189

 A possible explanation is the potential 

confounding effects of maternal endogenous antioxidant defenses and redox status and 

maternal vitamin intake resulting from diversified nutrition. Differences in vitamin 

metabolism between humans and animals could also be involved in the discrepancy between 

human and animal studies. 

 

V-d-Antioxidant therapy 

Supplementation with resveratrol, a polyphenolic molecule found at high concentrations in 

red grapes, berries and peanuts, has been identified as a potential therapeutic strategy for the 

treatment of cardiovascular diseases, primarily due to its antioxidant properties and ability to 

modulate the NO signaling pathway. In spontaneously hypertensive rats, maternal dietary 

supplementation with resveratrol during the perinatal period prevented the onset of HTN in 

adult offspring.
190
 Resveratrol also modulates SIRT1 expression. Pre-incubation with 

resveratrol restored angiogenic capacity and reversed the accelerated senescence of ECFCs 

from LBW newborns.
123
  

Lazaroid is a potent inhibitor of free radical formation, notably O2
-
-mediated lipid 

peroxidation. Treatment with Lazaroid reversed HTN in several rat models,
191,192

 and the 

addition of Lazaroid to a maternal LPD diet throughout gestation increased birth weight and 

reversed later vascular dysfunction in offspring by decreasing oxidative stress.
143
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In a guinea pig model of IUGR induced by progressive uterine artery occlusion starting at 

mid-gestation, maternal N-acetylcysteine treatment during the second half of gestation 

restored ex vivo eNOS-dependent relaxation in the fetal aorta and umbilical artery and 

normalized eNOS expression in fetal and umbilical endothelial cells.
193
 

Melatonin, a hormone with antioxidant and anti-inflammatory properties, is involved in 

regulating circadian and circannual rhythms
194
 and could improve endothelial function. 

Melatonin exhibits direct scavenging activity on O2
-
,
36,195,196

 up-regulates antioxidant enzymes 

such as superoxide dismutase and glutathione peroxidase, and down-regulates pro-oxidant 

enzymes such as lipoxygenase,
197
 thereby increasing NO production and improving its 

availability to induce vasodilation
198
 in different vascular beds.

199-202
   

 

V-e- L-citrulline supplementation  

L-citrulline is a precursor of L-arginine. L-citrulline is a non-protein amino acid, which is 

absent from the regular diet, escapes liver metabolism, has high bioavailability, and is 

quantitatively converted to arginine in vivo.
203
 Data have suggested that L-citrulline 

supplementation improves fetal growth an in animal model of IUGR induced by in utero 

exposure to maternal LPD,
79
 probably by improving maternal nutritional status and fetal 

growth through increased NO synthesis as a result of enhanced L-arginine availability in fetal 

circulation. L-citrulline can also exert a protective role on vascular endothelium. In fact, it has 

been proposed that L-citrulline supplementation could represent an alternative to L-arginine 

supplementation to improve vascular function,
204,205

 and it attenuated blood pressure in young 

normotensive men.
206
 In animal models, ex vivo pre-incubation with L-citrulline prevented 

endothelial dysfunction induced by ADMA in porcine coronary artery; indeed, such 

incubation favors L-citrulline to L-arginine recycling and the restoration of NO production, as 

a consequence of eNOS expression and activity up-regulation, the inhibition of superoxide 
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anion production, and activation of the cGMP pathway.
207
 Such direct beneficial effects of L-

citrulline on endothelium-dependent relaxation suggest that L-citrulline supplementation 

could be an efficient way to improve endothelial function in individuals born after fetal 

growth restriction. 

 

V-f-Supplementation with L-arginine and NO mediators 

It was reported that L-Arg could be administered to increase maternal NO levels to enhance 

birth weight and decrease neonatal morbidity.
74
 More recently, the combined results of ten 

small trials showed that L-Arg supplementation can increase the body weight and gestational 

age at birth of IUGR fetuses.
208
 However, this study contrasts with others that reported no 

benefit of L-Arg therapy.
209,210

 Such differences could be explained by the different route of 

administration (oral or intravenous). In fact, with oral administration, 40% of L-Arg is 

degraded by the small intestine and metabolized by arginase in the liver. Therefore, poor L-

Arg availability in the blood could decrease its efficacy.
203,211

 

Among NO modulators, phosphodiesterase inhibitors are promising agents for improving 

uterine perfusion in pregnancies complicated by IUGR. Type 5 phosphodiesterase (PDE5) is 

one of the enzymes responsible for the degradation of cGMP to GMP in smooth muscle. 

Therefore, inhibiting PDE5 delays the breakdown of cGMP and increases vasorelaxation. 

Sildenafil citrate (Viagra®) is probably the most famous PDE5 inhibitor. In women whose 

pregnancies were complicated by IUGR, sildenafil citrate improved fetoplacental perfusion
212
 

and decreased the ex vivo vasoconstriction (in response to the thromboxane analogue U46619) 

of myometrial small arteries.
213
 

In animal models, parenteral administration of L-Arg (from day 60 of pregnancy to 

parturition) to underfed ewes prevented fetal growth restriction,
214
 and in a rat model of IUGR 

induced by maternal LPD, pre-incubating the aortic rings with L-Arg restored impaired 
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endothelium-dependent vasodilation (personal unpublished data). Sildenafil citrate 

supplementation reversed the maternal effects of preeclampsia by improving uteroplacental 

and fetal perfusion
215
 in a Wistar rat model and increased fetal size in pregnant rats exposed to 

hypoxia at the end of gestation (18–20 days).
216
 

 

VI- Epigenetic markers of endothelial dysfunction  

Epigenetics plays a major role in the developmental origins of health and diseases.
217
 

Epigenetics can be defined as a phenomenon of altered phenotypic expression of heritable 

genetic information without changes in the DNA sequence. Three main pathways can silence, 

activate, or regulate the level and time of expression of many genes: DNA methylation, 

histone modifications (acetylation, methylation, ubiquitination, phosphorylation, or ADP-

ribosylation), and small non-coding RNAs, such as microRNAs (miRNAs).
218,219

 In general, 

these three epigenetic mechanisms appear to work together to regulate gene expression. DNA 

methylation or histone modifications can alter the expression of miRNAs, which can in turn 

regulate the epigenetic processes of DNA methylation and histone modifications.  

VI-a-DNA methylation 

DNA methylation has been known to be particularly sensitive to an adverse early 

environment. DNA methylation occurs through the binding of a methyl group in position 5 of 

the cytosine ring dinucleotide CpG sequences present in the DNA by DNA-methyltransferase, 

which can methylate and demethylate the DNA, thus making the modification reversible.
220
 In 

general, low levels of DNA methylation (hypomethylation) are associated with increased gene 

activity, whereas high levels of methylation (hypermethylation) are associated with gene 

repression.
221
 Moreover, hydroxymethylated cytosine (5-hydroxymethylcytosine (5 hmeC)) 

has been identified as another functional DNA modification, representing an intermediate 

state of active DNA demethylation and also influencing gene expression.
222,223
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eNOS expression in human endothelial cells isolated from umbilical arteries (HUAECs) and 

veins (HUVECs) of IUGR pregnancies can be controlled by DNA methylation levels. eNOS 

protein and mRNA levels were increased in HUAECs but decreased in HUVECs from IUGR 

pregnancies
86
 and were associated in the eNOS promoter with decreased DNA methylation at 

CpG -352 in IUGR-HUAECs and an increased in IUGR-HUVECs. Additionally, in human 

umbilical artery endothelial cells from patients with placental insufficiency, levels of 5hmeC 

at the eNOS transcription start site directly correlated with elevated eNOS levels.
224
 In a 

guinea pig model of IUGR, increased eNOS expression was associated with decreased DNA 

methylation levels in eNOS promoter of endothelial cells derived from aorta, femoral and 

umbilical arteries; such modifications were prevented by maternal administration of N-

acetylcysteine.
193
 

VI-b-histone modifications  

In the nucleus, DNA is packaged into chromatin as repeating units of nucleosomes, which 

form a “beads-on-a-string” structure that can compact into higher order structures to affect 

gene expression. Nucleosomes are composed of 146-bp DNA wrapped in histone octamers 

(composed of two H2A, H2B, H3, and H4) and are connected by a linker DNA, which can 

associate with histone H1 to form heterochromatin. Histone proteins contain a globular 

domain and an amino-terminal tail, which can be post-translationally modified. The post-

translational modification of lysine (acetylation, methylation, ubiquitination, sumoylation), 

arginine (methylation) and serine and threonine (phosphorylation) are the most commonly 

described modifications.
218,225

 In general, the acetylation of histone H3 and H4 is associated 

with increased gene expression and has been shown to regulate the angiogenic function of 

endothelial cells. 

Levels of H3K9ac and H2A.Zac were significantly higher at the eNOS transcription start site 
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and were directly correlated with elevated eNOS levels observed in the human umbilical 

artery endothelial cells from patients with placental insufficiency.
224
 Additionally, increased 

histone H3 acetylation in the endothelin-1 promoter of pulmonary vascular endothelial cells 

and in the peripheral leucocytes in a IUGR rat model induced by maternal undernutrition has 

been correlated with higher endothelin-1 expression, which could increase the risk of 

pulmonary disorders (pulmonary hypertension or asthma) later in life.
226
 Recently, we 

observed that SIRT1 repression in ECFCs from LBW newborns, associated with premature 

senescence, could be modulated by changes in “active” or “repressive” epigenetic marks. The 

“active” marks trimethyl-H3K4 (H3K4me3) associated with the SIRT1 promoter were 

significantly decreased in LBW newborns compared to controls, whereas the “repressive” 

marks trimethyl- H3K9, associated with heterochromatin formation, were increased.
123
  

VI-c-Non-coding RNAs 

MiRNAs are small single-strand RNAs that do not encode proteins. Each miRNA binds to 

specific messenger RNAs (mRNAs), resulting in the degradation of target mRNA or the 

inhibition of its translation into protein. miRNAs regulate the post-transcriptional expression 

level of many genes and processes such as apoptosis, cell growth, and differentiation in a 

large range of tissues,
227,228

 and notably in the regulation of endothelial functions. MiR-21 

expression is increased in cases of shear stress, which helps to protect endothelial cells by 

decreasing apoptosis and increasing eNOS expression and NO production.
229
 However, in 

atherosclerotic plaques, an up-regulation of miR-21 decreases the function of superoxide 

dismutase, which leads to increased ROS production and decreased migration of the 

progenitor cells.
230
 MiR-221 and miR-222 are highly expressed in endothelial cells

231
 and 

exert antiangiogenic, antiproliferative, antimigration and proapoptotic effects on endothelial 

cells,
231
 which can be partly caused by reduced eNOS expression.

232
 Additionally, miRNAs 

can modulate SIRT1 expression. Increased expression of miR-217 and miR-34a have been 
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observed in endothelial senescence, which leads to loss of SIRT1 function, notably by 

reducing eNOS expression.
233
 

 

VI-Conclusions 

In individuals born after fetal growth restriction, early endothelial dysfunction plays an 

important role in the subsequent development of HTN, coronary heart disease and CKD. 

Decreased NO synthesis and bioavailability caused by defective eNOS function and oxidative 

stress, decreased EPC number and function, and vascular senescence have all been shown to 

be involved in endothelial dysfunction (Figure 1). Preventive approaches, including 

breastfeeding and supplementation with folate, vitamins, antioxidants, L-citrulline, L-Arg and 

NO modulators, represent promising and simple ways to prevent fetal growth restriction, 

improve endothelial function and vasodilation responses early in life and delay/prevent 

detrimental cardiovascular issues. 

Epigenetic modulation of gene expression appears to be one of the main contributors to the 

long-term effects of an adverse perinatal environment. The identification of early biomarkers 

of endothelial dysfunction, especially epigenetic biomarkers, could allow early screening and 

follow-up of individuals at risk of developing CVD, thus contributing to the development of 

preventive and therapeutic strategies to avert the long-term effects of endothelial dysfunction 

in infants born after IUGR. 
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