A. Kerin, Power vs. Performance Management of the CPU, 2013.

V. Adhinarayanan, B. Subramaniam, and W. Feng, Online Power Estimation of Graphics Processing Units, 2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), 2016.
DOI : 10.1109/CCGrid.2016.93

N. Ardalani, C. Lestourgeon, K. Sankaralingam, and X. Zhu, Cross-architecture performance prediction (XAPP) using CPU code to predict GPU performance, Proceedings of the 48th International Symposium on Microarchitecture, MICRO-48, pp.725-737, 2015.
DOI : 10.1109/MICRO.2012.45

E. H. Fung, Y. Wong, H. Ho, and M. P. Mignolet, Modelling and prediction of machining errors using ARMAX and NARMAX structures, Applied Mathematical Modelling, vol.27, issue.8, pp.27611-627, 2003.
DOI : 10.1016/S0307-904X(03)00071-4

S. Hong and H. Kim, An integrated GPU power and performance model, In ACM SIGARCH Computer Architecture News, vol.3810, p.280, 2010.

H. Kim, R. Vuduc, S. Baghsorkhi, J. Choi, and W. Hwu, Performance Analysis and Tuning for General Purpose Graphics Processing Units (GPGPU), Synthesis Lectures on Computer Architecture, vol.7, issue.2, 2012.
DOI : 10.1109/HPCA.2011.5749745

M. Kim and S. W. Chung, Accurate GPU power estimation for mobile device power profiling, Digest of Technical Papers -IEEE International Conference on Consumer Electronics, pp.183-184, 2013.

M. Kim, J. Kong, C. , and S. W. , Enhancing online power estimation accuracy for smartphones, IEEE Transactions on Consumer Electronics, vol.58, issue.2, pp.333-339, 2012.
DOI : 10.1109/TCE.2012.6227431

Y. G. Kim, M. Kim, J. M. Kim, M. Sung, C. et al., A Novel GPU Power Model for Accurate Smartphone Power Breakdown, ETRI Journal, vol.37, issue.1, pp.157-164, 2015.
DOI : 10.1145/1966445.1966460

J. Leng, T. Hetherington, A. Eltantawy, S. Gilani, N. S. Kim et al., , 2013.

, GPUWattch: Enabling Energy Optimizations in GPG- PUs. Proceedings of the 40th Annual International Symposium on Computer Architecture -ISCA '13, p.487

J. Meng and K. Skadron, A Performance Study for Iterative Stencil Loops on GPUs with Ghost Zone Optimizations, International Journal of Parallel Programming, vol.3, issue.3, pp.115-142, 2011.
DOI : 10.1109/CSSE.2008.1448

M. Kim, J. Kong, and S. W. Chung, , 2012.

, An online power estimation technique for multi-core smartphones with advanced display components, 2012 IEEE International Conference on Consumer Electronics (ICCE), pp.666-667

M. Sirdi, S. Godard, W. Pantel, and M. , A Multi- Core Interference-Aware Schedulability Test for IMA Systems, as a Guide for SW/HW Integration, 8th European Congress on Embedded Real Time Software and Systems (ERTS 2016), 2016.
URL : https://hal.archives-ouvertes.fr/hal-01289687

A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, W. et al., Fine-grained power modeling for smartphones using system call tracing, Proceedings of the sixth conference on Computer systems, EuroSys '11, p.153, 2011.
DOI : 10.1145/1966445.1966460

, Samsung Opensource Release Center, Samsung, 2016.

C. Wang, F. Yan, Y. Guo, C. , and X. , Power estimation for mobile applications with profile-driven battery traces, International Symposium on Low Power Electronics and Design (ISLPED), pp.120-125, 2013.
DOI : 10.1109/ISLPED.2013.6629277

S. Williams, A. Waterman, and D. Patterson, , 2009.

, Roofline: An Insight Visual Performance Model for Multicore Architectures, Communications of the ACM, vol.52, issue.4, p.65

L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick et al., Accurate online power estimation and automatic battery behavior based power model generation for smartphones, Proceedings of the eighth IEEE/ACM/IFIP international conference on Hardware/software codesign and system synthesis, CODES/ISSS '10, p.105, 2010.
DOI : 10.1145/1878961.1878982