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Sulfolobus acidocaldarius is a proficient lactonase

Janek Bzdrenga'", Julien Hiblot'", Guillaume Gotthard', Charlotte Champion', Mikael Elias®” and Eric Chabriere'”

Abstract

Background: SacPox, an enzyme from the extremophilic crenarchaeal Sulfolobus acidocaldarius (Sac), was isolated
by virtue of its phosphotriesterase (or paraoxonase; Pox) activity, i.e. its ability to hydrolyze the neurotoxic
organophosphorus insecticides. Later on, SacPox was shown to belong to the Phosphotriesterase-Like Lactonase
family that comprises natural lactonases, possibly involved in quorum sensing, and endowed with promiscuous,

phosphotriesterase activity.

Results: Here, we present a comprehensive and broad enzymatic characterization of the natural lactonase and
promiscuous organophosphorus hydrolase activities of SacPox, as well as a structural analysis using a model.
Conclusion: Kinetic experiments show that SacPox is a proficient lactonase, including at room temperature.
Moreover, we discuss the observed differences in substrate specificity between SacPox and its closest homologues
SsoPox and SisLac together with the possible structural causes for these observations.
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Background

Phosphotriesterase-Like Lactonases (PLLs) are natural
lactonases (EC 3.1.1.25) (Figure 1C, D, E) with promis-
cuous phosphotriesterase activity (EC 3.1.8.1) (Figure 1A)
[1,2]. They are structurally closely related to bacterial
phosphotriesterases (PTEs) [3-6], such as Brevundimo-
nas diminuta PTE (BAPTE; ~30% sequence identity) [7].
PTEs naturally hydrolyze neurotoxic organophosphorus
(OPs) compounds (Figure 1A) such as paraoxon (the ac-
tive metabolite of the insecticide parathion) with cata-
lytic constants that approach the diffusion limit (i.e. kea/
Ky ~ 108 M7 s71) [7]. Because OPs have been massively
used as pesticides since the 50's [8], PTEs are believed
to have emerged in few decades from a PLL progenitor
[2], providing a new source of phosphorus to bacteria,
and consequently a selective advantage [8].

Both enzyme families exhibit the same (B/a)g-barrel
topology [9,10] and belong to the amidohydrolase super-
family [11,12]. Their structure consists of 8 p-strands
forming a central barrel surrounded by 8 a-helixes. The
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active site is constituted by a bimetallic center (two metal
cations) localized at the C-terminus of the barrel. Metal
cations are coordinated by four histidines, an aspartic acid
and a carboxylated lysine residue [9]. While the nature of
the bimetallic center can vary depending on the enzyme
nature and the purification procedure [3,5,13,14], the cata-
lytic mechanism is presumed to be identical. The bimetal-
lic center activates a water molecule into a hydroxide ion
which performs a nucleophilic attack onto the electro-
philic center [9,15].

The difference in substrate specificities of PLLs and
PTEs seems mainly governed by variation in the con-
necting loops of the barrel [2,16]. Major differences be-
tween PTEs and PLLs reside in the active site loop size
and conformation [1,2]. Indeed, loop 7 is shorter in PLLs
than in PTEs whereas the loop 8 is larger, forming a
hydrophobic channel that accommodates lactones ali-
phatic chain [9]. Loop 7/8 length and sequence also differ
within the PLL family and led to the identification of two
different subfamilies: PLLs-A and PLLs-B [2]. Both sub-
families exhibit different substrate specificities: PLLs-B are
exclusively oxo-lactonases (Figure 1DE) whereas PLLs-A
hydrolyze efficiently oxo-lactones and Acyl-Homoserine
Lactones (AHLs, Figure 1C) [2]. AHLs are messenger
molecules involved in a bacterial communication system
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Figure 1 Chemical structure of SacPox substrates. Chemical structures of (A) phosphotriesters, (B) esters, (C) Acyl-Homoserine Lactones,

(D) y-lactones and (E) &-lactones are presented. For phosphotriesters, R corresponds to different nature of substituents; LG corresponds to the leaving
group. The terminal substituent could be S atom if the molecule is a thionophosphotriester or an O atom if the molecule is an oxonophosphotriester.
For esters, R corresponds to different nature of substituent. For AHLs and y/&-lactones, R corresponds to different size of acyl chain.
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dubbed quorum sensing (QS) [17]. QS regulates the ex-
pression of numerous genes, and enables bacterial popula-
tion to adopt a “group” behavior, including the expression
of virulence factors of some pathogens [18,19]. The in-
volvement of PLLs-A in quorum sensing has not yet been
demonstrated, and these enzymes are often found with no
other AHL components, including in archaeal species
[20]. However, the fact that they hydrolyze specifically the
natural enantiomer of AHL indicates that it may be their
native substrate [16].

PLLs are promiscuous enzymes that catalyze two chem-
ical reactions of potential biotechnological interest. Indeed,
the inhibition or “quenching” of the QS is seen as a pos-
sibly promising strategy to develop innovative therapies
[21-25]. Indeed, lactonases such as PLLs can inhibit QS
(known as quorum quenching, i.e. QQ) [26,27] and thereby
annihilate the virulence of micro-organisms possessing an
AHL-based QS system [28]. Moreover, PLLs are endowed
with relatively low phosphotriesterase activity, but might
be optimized against OPs and subsequently used for de-
grading organophosphorus pesticides [3,5,6,9,29] and nerve

agents [30], for which no satisfactory remediation methods
are currently available [31].

In addition, several PLLs members are thermostable
[3,4,6,32-34]; e.g. PLLs from extremophilic crenarchaeaon
sources [3,4,16,34]. These counterparts exhibit industry-
compatible properties (e.g. thermal and detergent resist-
ance) [35-37]; making them good starting point for in vitro
improvement protocols [37,38]. Several studies report
the engineering of thermostable PLLs and improvement
of catalytic efficiency against OPs, including for SsoPox
[16,39], DrOPH (Deinococcus radiodurans organophos-
phorus hydrolase) [6,40] and GkKL (Geobacillus kaustro-
pilus lactonase) [41] but also for the lactonase activity of
SsoPox [16], MCP (Mycobacterium avium subsp. Para-
tuberculosis K-10 lactonase) [42] and GKL [43].

Here we focus on SacPox, the PLL from the thermoa-
cidophilic crenarchaeon Sulfolobus acidocaldarius (liv-
ing conditions: 55-85°C, pH 2-3) [44]. SacPox was
originally isolated and studied for its ability to hydrolyze
OP compounds at high temperature [4]. The enzyme
shares about 30% of sequence identity with BAPTE and
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about 70% with its closest homologues, i.e. SsoPox from
Sulfolobus solfataricus [3] and SisLac from Sulfolobus
islandicus [33,45]. Being an enzyme from a hyperther-
mophile, SacPox is however less stable than SsoPox
(half-life of 5 min at 90°C [4] and of 4 h at 95°C [3,46],
respectively). The kinetic characterizations performed
on SacPox revealed that it hydrolyzes OP, ester and lactone
molecules at high temperature [4,13]. However, only few
substrates have been tested, and no natural lactones were
assayed as substrate. In this study, we performed a broad
kinetic characterization of SacPox at room temperature
(25°C) for several OPs, esters (Figure 1B) and lactone
molecules including AHLs, y-lactones and &8-lactones in
the aim to evaluate the biotechnological potentialities of
this enzyme.

Methods

Sequence alignment

The sequence alignment was performed based on the pre-
viously published PLL sequence alignment [2], using the
T-coffee server (expresso) [47,48] and manually improved
with the seaview software [49]. It contains 29 different se-
quences (Additional file 1: Table S1). The sequence align-
ment was represented using the BioEdit 7.1.3 software
[50]. Protein sequence identities were computed using
ClustalW server [51]. The phylogenetic tree was per-
formed using PhyML [49] and default parameters.

Protein production and purification

The protein production and subsequent purification
steps were performed analogously to previously de-
scribed [16,33,34,45,52-54]. In brief, the protein was
heterologously produced in Escherichia coli strain BL21
(DE3)-pGro7/GroEL (TaKaRa) at 37°C in ZYP medium
[55]. When ODgggnm reaches 0.8, protein production
was induced with addition of arabinose (0.2%, w/v) and
CoCl, (2 mM) and temperature transition to 25°C for
20 hours. Cells were harvested by centrifugation, and pel-
leted cells were suspended in lysis buffer (50 mM HEPES
pH 8, 150 mM NaCl, 0.2 mM CoCl,, lysozyme 25 mg/ml,
PMSF 0.1 mM, DNase I 10 mg/ml), stored at -80°C dur-
ing 2 hours; then sonicated 3 times during 30 seconds
(Branson Sonifier 450, 80% intensity and microtype limit
of 8) and centrifuged. Taking advantage of the high stabil-
ity of SacPox, the supernatant was heated at 70°C during
30 minutes and centrifuged before proceeding a STREP-
TRAP affinity chromatography step (GE Healthcare,
Uppsala, Sweden). The sample was then cleaved by the
Tobacco Etch Virus protease (TEV, ratio 1:20, w/w [56])
during 20 hours at 30°C prior to be loaded a second
time on STREP-TRAP affinity chromatography. The
flow through containing the cleaved protein was then
concentrated and loaded on a size exclusion column
(S75-16-60; GE Healthcare, Uppsala, Sweden). The protein
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purity and identity were checked by SDS-PAGE and mass
spectrometry analysis (MS platform Timone, Marseille,
France). The protein concentration was determined using
a nanospectrophotometer (Nanodrop, Thermofisher Sci-
entific, France) using its molar extinction coefficient
(SacPox €50 nm =35 307.7 M~ cm™) calculated by the
PROT-PARAM server [57].

Kinetic characterization

General procedures

Catalytic parameters were evaluated at 25°C and recorded
with a microplate reader (Synergy HT, BioTek, USA) and
the Gen5.1 software as previously explained [16,33,52,54].
The reaction was performed in a 200 pL volume using a
96-well plate with a 6.2 mm path length as previously de-
scribed [33]. The collected data were subsequently fitted to
the Michaelis-Menten (MM) equation [58] using Graph-
Pad Prism 5.00 (GraphPad Software, San Diego California
USA, www.graphpad.com). In cases where V ., could not
be reached, the catalytic efficiency was obtained by fitting
the linear part of MM plot to a linear regression using
Graph-Pad Prism 5.00 software.

OP hydrolase and esterase kinetics

Standard assays for organophosphates (Figure 1A) and
esters (Figure 1B) were performed in activity buffer
(50 mM HEPES pH 8, 150 mM NaCl, 0.2 mM CoCl,) by
measuring the p-nitrophenolate release over time at
405 nm (€405 nm = 17 000 Mt ecm™). For ethyl-paraoxon
(Additional file 1: Figure S1I), the activity buffer has also
been supplemented with SDS (w/v) at 0.01% or 0.1% for
detergent essays. Malathion (Additional file 1: Figure
S1V) hydrolysis was followed at 412 nm in activity buffer
added of 2 mM DTNB to follow the release of free thiols
(€419 nm = 13 700 M™! cm™). The time course hydrolysis
of dihydrocoumarin (Additional file 1: Figure S1X), CMP-
coumarin (Additional file 1: Figure S1VI) and phenyl-
acetate (Additional file 1: Figure S1VII) were respectively
monitored at 270 nm (£y70 nm =1 400 M! ¢cm™), 412 nm
(€412 nm=37 000 M™" cm™) and 270 nm (€370 nm=1
400 M cm™).

Lactonase kinetics

Kinetics monitoring the lactone hydrolysis were per-
formed according to a previously described protocol
[33]. The lactone hydrolysis was monitored in the lacto-
nase buffer (2.5 mM Bicine pH 8.3, 150 mM NaCl,
0.2 mM CoCl,, 0.25 mM Cresol purple and 0.5%
DMSO) with different AHLs (Figure 1C) [i.e. C4-AHL
(r), C6-AHL (r), C8-AHL (r), 3-oxo-C8-AHL (), 3-
0x0-C10-AHL (/)] (Additional file 1: Figure S1XI-XVI)
and oxo-lactones (Figure 1D,E) [i.e. e-caprolactone,
y-heptanolide (r), Nonanoic-y-lactone (r), Nonanoic-6-
lactone (r), Undecanoic-y-lactone (r), Undecanoic-8-
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(See figure on previous page.)

Figure 2 Phylogenetic analysis of the PLL family. A. Phylogenetic tree of PLLs, PTEs, and close homologues. Members of PLL-B are colored in
green while within the PLL-As, mesophilic and archaeal PLLs are respectively colored in red and orange. The clades of PHPs, PTEs and RTXs were
collapsed for clarity. All the sequences used for this tree are listed in Additional file 1: Table S1. B. Sequence alignment of BAPTE from B. diminuta,
SsoPox from S. solfataricus, SacPox from S. acidocaldarius and DrOPH from D. radiodurans. Conserved amino acid residues are highlighted in black
and similar residues in grey. Conserved active site residues involved in metals coordination are highlighted by red stars. Secondary structures are
represented according to SsoPox structure (with pink arrows depicting 3-sheets and red cylinders depicting a-helixes).

lactone (r), Dodecanoic-y-lactone () and Dodecanoic-
O-lactone (r)] (Additional file 1: Figure S1IXVII-XXIV).
Cresol purple (pK, 8.3 at 25°C) is a pH indicator
(577 nm) used to monitor the acidification of the
medium following lactone ring hydrolysis (€577,m =5
500 M ecm™).

Structural modeling and structural analysis

The SacPox structure was modelled using the ESyPred3D
server using SacPox protein sequence as query and SsoPox
structure (2VC5) as template [59]. Structures were ana-
lyzed and figure made using PyMol [60].

Results

First classified within the bacterial PTEs, SacPox shares in
fact only 33.8% sequence identity with BAPTE (Additional
file 1: Table S2). SacPox indeed belongs to the PLLs-A
(Figure 2A) [2]: it shares 76.1% of sequence identity with
its closest homologues SsoPox and SisLac, and only 30.6%
identity with the PLL-B DrOPH. Together with SisLac
and SsoPox, SacPox comprises the creanarcheal clade of
the PLLs-A (Figure 2A). The sequence alignment high-
lights the strict conservation of essential active site resi-
dues between the different clades (Figure 2B).

Enzymatic characterization

Phosphotriesterase activity

SacPox ability to hydrolyze insecticides ethyl/methyl-para-
oxon, ethyl/methyl-parathion and malathion has been
evaluated (Table 1). The best SacPox phosphotriester sub-
strate, methyl-paraoxon is processed with moderate cata-
Iytic efficiency (Keao/ K= 1.10(x0.17)x10®> M Ls™h), low

Table 1 Phosphotriesterase kinetic parameters

Keat (s7) Km (UM)  Kear/Km (M7'571)
Paraoxon 012+£001  434£54 281 (x038)x 10’
Paraoxon 0.01% SDS 0.28 £0.01 537 +48 522 (+051)x 107
Paraoxon 0.1% SDS 0.25+0.01 405+ 21 6.10 (£0.34) x 10
Methyl Paraoxon 0.31+0.02 278 +40 1.10 (£0.17) x 10>
Parathion ND ND ND
Methyl Parathion ND ND 431+0.20
Malathion ND ND ND
CMP-Coumarin 0.28 £0.02 642 + 89 438 (+068) x 10°

ND correspond to Not Detected hydrolysis. Results have been obtained with
cobalt as cofactor.

rate (K., = 0.307 s71) and low Ky (278.3 uM). Very similar
catalytic efficiencies were recorded for SsoPox and SisLac:
Keat/ Kt of 1.27x10° M 1s™ and 4.26x10° M ts7%, re-
spectively [33,52]. Ethyl-paraoxon comprise a slower
substrate, (Ke,/Ky = 2.81x10> M~ 1s™1), highlighting the
enzyme preference for OP substrates with small substitu-
ents. No hydrolysis could be measured for ethyl-parathion
and malathion, whereas a low catalytic efficiency was
recorded for methyl-parathion (k./Ky =431 M 's™).
This specificity profile illustrates the clear preference of
SacPox for oxono-phosphotriesters rather than thiono-
phosphotriesters; as previously observed for SsoPox [52]
and SisLac [33]. Moreover, whereas anionic detergents like
SDS can significantly stimulate SsoPox phosphotriesterase
activity [52], the same treatment on SacPox yields only a
2-fold increase in catalytic efficiency with ethyl-paraoxon
as substrate. Finally, we show that SacPox hydrolyzes
CMP-coumarin (Ke,/Ky = 4.38 x 10> M~1.s71), albeit with
20-fold lower catalytic efficiency than SsoPox [52].

Esterase activity

The ability of SacPox to hydrolyze phenyl-acetate, pNP-
acetate and pNP-decanoate (Additional file 1: Figure
SIVII-IX) has been evaluated (Table 2). While no activity
could be detected against pNP-decanoate, SacPox exhibits
low catalytic efficiencies against both phenyl-acetate and
pNP-acetate (Keo/Kpni~50 M 's™). This weak activity
against classical esters differs from previous studies on the
close homologues SsoPox and SisLac, for which activity
has only been recorded on pNP-acetate [33].

Lactonase activity

The catalytic parameters of SacPox for various lactone
substrates have been measured, including against oxo-
lactones (lipophilic aroma), AHLs and dihydrocoumarin
(Table 3). Our results indicate a preference of SacPox for
oxo-lactone substrates; i.e. y-heptanolide and nonanoic-y-
lactone (Kq./Ky =~ 2.5x10* MLs71), while AHLs are about
10 times worse substrates (i.e.; C8 AHLs, k.u/Ky ~ 5x10°
M.s7Y). Furthermore, it seems that SacPox prefers AHLs
vs 3-oxo-AHLs since the Ky, for C8 aliphatic chains is 5-
fold lower than that for 3-oxo-C8 AHLs. Overall, long ali-
phatic chain substrates AHLs are better substrates for the
enzyme. Indeed, short aliphatic chain AHLs are not hy-
drolyzed by SacPox. Interestingly, this preference is not
retained for oxo-lactones, for which molecules with short
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Table 2 Esterase kinetic parameters

Keat (s™") Km (UM) Keat/Kn (M~"s7")
Phenyl-acetate 0.35+0.05 8 181 +1750 423+111
pNP-acetate 0.13£0.01 2107 +£313 60.1£9.9
pNP-decanoate ND ND ND

ND correspond to Not Detected hydrolysis. Results have been obtained with
cobalt as cofactor.

or without aliphatic chain are efficiently hydrolyzed (kc./
Ky~ 10* M~Ls™). As previously observed for SsoPox and
SisLac [16,33], this feature may reveal a potential alterna-
tive binding mode of these compounds in SacPox active
site. Finally, contrary to SsoPox and SisLac [16,33], SacPox
does not hydrolyze dihydrocoumarin.

Structural analysis

Numerous attempts to crystallize SacPox were made, with
no success (Elias, Hiblot, Gotthard & Chabriere, unpub-
lished). A previous structural model was generated by hom-
ology modeling based on BAPTE structure [4] (~33.8%
sequence identity with SacPox), but yielded little insights
given the moderate sequence identity with the template
and the very significant differences in the active site loops
between these two representatives of distinct enzyme fam-
ilies [1,9,16]. Here we generated a homology-based model
using the structure of SsoPox as template (76.1% of se-
quence identity; Additional file 1: Table S2).

As expected, the SacPox model structure almost
perfectly superimposes to the SsoPox crystal structure
(Figure 3A). Residues forming the active site are all con-
served and residues involved in loops 7 and 8 occupy
nearly identical conformation in SacPox and SsoPox but

Table 3 Lactonase kinetic parameters

Keat (s7) Kw (M) kea/Km (M7'is77)
C4 AHL ND ND ND
C6 AHL ND ND ND
C8 AHL 0.94 £0.02 178+ 26 528 (£0.77) X 10°
3-oxo C6 AHL ND ND ND
3-oxo C8 AHL 0.89+£0.07 836+178  1.07 (£0.25)x 10°
3-oxo C10 AHL 1.03+0.04 213+33 488 (+0.77) x 10°
y heptanolide 1025+050  388+62 264 (x044)x 10"
Nonanoic-y-lactone 264 +007 109+ 19 44 (+0.44) x 10*
Undecanoic-y-lactone 0.34+0.01 578+78 5.89 (+0.84) x 10°
dodecanoic-y-lactone  0.53+0.03 242 +60 1(+057)x 10°
Nonanoic-6-lactone 455+021 348+ 53 1(021)x10*
Undecanoic-8-lactone 1.05+0.05 168 +37 6.22 (+1.40)x 10°
Dodecanoic-6-lactone 334 +0.07 185+ 27 1 (+027) x 10
€ caprolactone 1504+047 1031483 146 (+0.13)x 10*

Dihydrocoumarine ND ND ND

ND correspond to Not Detected hydrolysis. Results have been obtained with
cobalt as cofactor.
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also in SisLac structures (Figure 3B). Noteworthy, loop
8 is partially structured into an a-helix, as seen in X-ray
structures of SsoPox and SisLac. A substitution (1266 in
SacPox; T265 in SsoPox and SisLac) in loop 8 may
slightly alter the shape of the aliphatic channel. But
overall, the active site of SacPox and SsoPox are nearly
identical (Figure 2B). Furthermore, four other substitu-
tions between SacPox and its close homologues can be
seen in loop 8: SacPox exhibits a K at position 268, in-
stead of an R residue (R267 in SisLac), Y271 instead of L
(L270 in SisLac), K278 instead of R (R277 in both SisLac
and SsoPox), and M281 instead of I (1280 in SsoPox)
(Additional file 1: Figure S2). While the structural model
suggests that these substitutions are not affecting directly
the binding cleft of SacPox, they might modulate loop 8
conformation and its dynamics. Indeed, it was shown in
the close homologue SsoPox that a single substitution in
loop 8 (W263 in SsoPox, equivalent to W264 in SacPox)
increases the conformational flexibility of loop 8, thereby
conferring higher promiscuity to the enzyme [16]. The ef-
fect is in fact so dramatic that the substitution in SsoPox
of W263 by any of the 19 other natural amino acids yields
a variant with improved phosphotriesterase activity [16].
Additionally, loop 8 being involved in the accommoda-
tion of the aliphatic substituent of lactones substrates
[9], mutations in this loop can also affect the lactonase
activity [16].

Discussion
Here we show that SacPox is a proficient lactonase
(~10* M~s™) and can hydrolyze both oxo-lactones and
AHLs. Nevertheless, SacPox have a slightly different sub-
strate specificity than its close homologues [16,33]. In-
deed, SacPox exhibits slightly lower catalytic efficiencies,
prefers AHLs over 3-oxo-AHLs and does not show any
activity against dihydrocoumarin. Interestingly, as noted
for SisLac and SsoPox [16,33], SacPox clearly prefers long
chain AHLs, but can efficiently hydrolyze short chain or
oxo-lactones without aliphatic substituents. This feature
could reflect a putatively different binding mode of AHLs
and oxo-lactones into PLLs active sites. We note that the
biological role of lactonases such as PLLs is yet unclear,
especially in extremophilic archaea where no AHL-based
quorum sensing systems have been identified so far.
SacPox also exhibits promiscuous esterase and phospho-
triesterase activities, a common feature of PLLs. Similarly
to SsoPox and SisLac [33,52], SacPox prefers OPs with
small substituents. Moreover, SacPox also shows a clear
preference for oxono-phosphotriesters, rather than thiono-
phosphotriesters, a feature previously dubbed thiono-effect
[52]. Interestingly, SsoPox, SisLac and SacPox exhibit
similar catalytic efficiencies against OPs (107> M 1s7Y) at
25°C, efficiencies that are close to those measured at much
higher temperatures [4].
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Figure 3 Structural model of SacPox. A. Structural superposition of SsoPox structure (2VC5; grey) and the SacPox model (green). Cobalt, iron
and the catalytic water molecule are respectively represented by pink, orange and red spheres. Bimetallic center coordinating residues are
represented as sticks. B. Active site view of superimposed SsoPox structure (grey) and the SacPox model (green). Several active site residues are
represented as sticks. Numbering is made according to SacPox sequence.

The structural model shows that SacPox structure is
very close to that of SsoPox (Figure 2A). Most critically,
the active sites of both enzymes are essentially identical
(Figure 2B), with the exception of position 266 (I in
SacPox, T in SsoPox and SisLac). This substitution might
partly account for the observed differences in substrates
specificity between these enzymes, and would thereby
represent an interesting target for future mutagenesis
studies. But four other substitutions in loop 8 between

these close homologues might be involved as well, and
comprise also interesting options for mutagenesis studies
(K268R, Y27IL, K278R and M281I). A recent study on
SsoPox highlighted how profound the effect on catalysis
of a single substitution on loop 8 (W263) can be [16].
Therefore, substitution T2661, and/or the four others on
loop 8, might contribute to the observed differences
between SacPox and SsoPox in substrate specificity, in
combination with other factors that cannot be assessed
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by a structural model such as subtle changes in active site
loops conformation and dynamics [16,33]. Indeed, the ob-
served differences in the detergent stimulation between
both enzymes (SacPox is only weakly stimulated by SDS,
as compared to SsoPox) could well be a manifestation of
different dynamics of their respective active site loops.

Conclusions

To conclude, we here demonstrate that albeit being ini-
tially isolated, characterized, and named after its ability to
degrade the insecticide paraoxon (pox; [4]), SacPox is pu-
tatively a native lactonase, capable of hydrolyzing these
compounds with significant catalytic efficiencies at 25°C
(up to 10* M~*.s71). The extensive kinetic characterization
reveals some substrate specificity differences between Sac-
Pox and its close homologues SisLac and SsoPox, and the
proposed structural model of SacPox suggests putative
candidates (e.g 1266) that could account for these obser-
vations. Such positions might constitute interesting targets
for future engineering studies, with the aim of improving
or altering the catalytic properties of SacPox.
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