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Abstract

In lateral interception tasks balls converging onto the same interception location via different trajectories give rise to
systematic differences in the kinematics of hand movement. While it is generally accepted that this angle-of-approach effect
reflects the prospective (on-line) control of movement, controversy exists with respect to the information used to guide the
hand to the future interception location. Based on the pattern of errors observed in a task requiring visual extrapolation of
line segments to their intersection with a second line, angle-of-approach effects in lateral interception have been argued to
result from perceptual biases in the detection of information about the ball’s future passing distance along the axis of hand
movement. Here we demonstrate that this account does not hold under experimental scrutiny: The angle-of-approach
effect still emerged when participants intercepted balls moving along trajectories characterized by a zero perceptual bias
with respect to the ball’s future arrival position (Experiment 4). Designing and validating such bias-controlled trajectories
were done using the line-intersection extrapolation task (Experiments 2 and 3). The experimental set-up used in the present
series of experiments was first validated for the lateral interception and the line-intersection extrapolation tasks: In
Experiment 1 we used rectilinear ball trajectories to replicate the angle-of-approach effect in lateral interception of virtual
balls. Using line segments extracted from these rectilinear ball trajectories, in Experiment 2 we replicated the reported
pattern of errors in the estimated locus of intersection with the axis of hand movement. We used these errors to develop a
set of bias-free trajectories. Experiment 3 confirmed that the perceptual biases had been corrected for successfully. We
discuss the implications on the information-based regulation of hand movement of our finding that the angle-of-approach
effect in lateral interception cannot not explained by perceptual biases in information about the ball’s future passing
distance.
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Introduction

Success in interceptive actions requires getting to the right place

at the right time [1]. Although the organization of interception

movements may be based on accurate perceptual estimates of the

future place and time of contact, a large body of work provides

convincing evidence for a more robust alternative, based on a

continuous, functional coupling between information and move-

ment. Here we will refer to the former type of organization as

predictive control and to the latter as prospective control [1–4]. Consensus

has emerged over the last two decades limiting the operation of

predictive control to explosive movements of short duration [5–

11]. For interceptive movements of sufficiently long duration,

actions are characterized by the pursuit of particular states of the

agent-environment interaction that guarantee (i.e., are lawfully

related to) the future achievement of the goal. Thus, in a

prospective control scheme the unfolding movement is based on

time-evolving information with respect to what the agent must do

so as to ensure interception, without requiring precise knowledge

of when and where this will occur. While prospective strategies

have been documented for locomotor (whole-body displacement)

interception tasks, both in humans [12–19] and animals [20–23],

here we concentrate on manual (lateral) interception.

Peper et al. [1] were the first to demonstrate systematic

differences in the kinematic patterns of hand movement when

participants caught balls following different trajectories converging

onto the same interception location and arriving there after the

same flight duration. This angle-of-approach effect is incompatible

with a movement control strategy based on accurately predicted

place and time of contact because these were invariant over the

different trajectories. Although the influence of the ball’s motion

trajectory on the kinematics of interception movements has been

replicated on several occasions [24–30], the nature of the

information underlying the prospective control of lateral intercep-

tion is still subject of debate. While differing in dynamical

structure, all existing models of prospective control of lateral

interception [1,2,25,27,30,31] are based on the idea that the hand

is continuously attracted toward an informationally-specified,

time-evolving position along the interception axis. A first

controversy exists as to whether this hand-attractor position is

based on the projection of the current lateral position of the ball

onto the interception axis [1,2,25,31] (informationally-specified

zero-order variable XB0, see Fig. 1) or on the lateral position
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where the ball will cross the interception axis if its current direction

of motion is maintained [27,28,30] (informationally-specified first-

order variable XB1, see Fig. 1).

As can be seen from Fig. 1, for a rectilinear ball trajectory the

ball’s current projected position XB0 continuously varies during

the approach to the interception point. Moreover for different

rectilinear ball trajectories converging onto the same position on

the interception axis, XB0 evolves in a different way. On the other

hand, the future passing position XB1 is the same and remains

invariant throughout the approach for all rectilinear ball

trajectories converging onto the same interception position. Thus,

the kinematic patterns of hand movement produced when

participants intercept balls following different rectilinear trajecto-

ries converging onto the same interception position was hypoth-

esized to allow experimental discrimination between these two

candidate information sources [1,2]. Finding an angle-of-approach

effect under these conditions would challenge accounts based on

the use of XB1-based information.

In a study using rectilinear ball trajectories, Montagne et al. [24]

did find a systematic angle-of-approach effect on the kinematics of

lateral catching movements. This finding led them to reject the use

of XB1-based information and to conclude in favour of the use of

XB0-based information. However, Arzamarski et al. [28] recently

questioned this interpretation, thereby initiating a second contro-

versy. They suggested that participants would in fact use XB1-

based information but that perceptual biases herein were

responsible for the angle-of-approach effect. To provide evidence

for the existence of such biases in perceived future ball crossing

position, they examined participants’ performance on a line-

intersection extrapolation task. In this task, line segments

(conceived as static representations of segments of rectilinear ball

trajectories) were to be extrapolated to the intersection with a

second line (corresponding to the axis of hand movement).

Participants’ estimates of the intersection position revealed

systematic errors across line-segment orientations to and distances

from the axis of hand movement. These perceptual biases

identified in the static line-intersection extrapolation task were

interpreted as providing evidence in favour of perceptual biases in

the detection of XB1-based information in the dynamic intercep-

tion task [28].

In the present contribution we experimentally tested whether

perceptual biases observed in a line-intersection extrapolation task

can really explain the angle-of-approach effects observed in lateral

interception. To this end, we set out to experimentally construct a

set of ball-motion trajectories for which the perceptual bias with

respect to the ball’s future arrival position was controlled to be

effectively zero at each point of each trajectory. If a systematic

angle-of-approach effect were still to be observed when intercept-

ing balls moving along these bias-controlled trajectories, this would

disqualify the perceptual bias explanation proposed by Arzamarski

et al. [28]. As a consequence, the existing body of results would not

be compatible with the exclusive use of XB1-related information in

the prospective control of lateral interception [27,28,30].

Because we used a new experimental interception setup with

virtual balls moving in a plane perpendicular to the participant’s

line of sight, we proceeded in four steps. In Experiment 1 we

sought to replicate the angle-of-approach effect on interception

movements, generally observed for balls moving in the partic-

ipants’ transverse plane [1,24–28]. Rectilinear ball trajectories

converging onto the same interception locations gave rise to

reliably different, trajectory-dependent patterns of interceptive

hand movement. The angle-of-approach effects observed in

Experiment 1 were equivalent to those reported in the literature,

thereby validating our new experimental setup for the interception

task. In Experiment 2 we sought to replicate the perceptual biases

reported by Arzamarski et al. [28]. We had participants perform

the line-intersection extrapolation task used by Arzamarski et al.

[28] in our new experimental setup. To this end, we replaced the

moving balls of Experiment 1 with static line segments,

corresponding to segments of the rectilinear ball trajectories that

these balls had followed. Participants’ estimations of the intersec-

tion locus of these line segments with the axis of hand movement

revealed systematic errors: Biases varied with the orientation of the

line segments to and their distance from the axis of hand

movement. The pattern of result was equivalent to that reported

by Arzamarski et al. [28], thereby also validating our experimental

setup for the line-intersection extrapolation task.

In Experiment 3 we tested whether the systematic nature of

biases identified in Experiment 2 could be used to control

participants’ estimates of the intersection locus in the line-

intersection extrapolation task. Based on the relation of the biases

observed with segment orientation and distance, we generated a

new set of (slightly curved) trajectories that where all characterized

by a predicted zero-bias with respect to the future arrival position,

at each point in the trajectory. Estimates of the intersection locus

for line segments derived from these new trajectories no longer

revealed systematic errors, demonstrating that it was indeed

possible to control for bias in the line-intersection extrapolation

task. Finally, in Experiment 4, we had participant intercept balls

moving along these bias-controlled trajectories. The angle-of-

approach effect on the kinematics of interception movements

observed Experiment 1 for rectilinear ball trajectories still emerged

when participants intercepted balls moving along the bias-

Figure 1. Definition of variables. XB0 is the current lateral position
of the ball projected orthogonally on the interception axis (axis of hand
movement). XB1 is the future lateral position of the ball on the
interception axis if current heading is maintained. Balls (green and red
circles) moving along rectilinear trajectories (dashed blue lines) with
constant velocity (fat green and red arrows) will cross the axis of hand
movement at position XB1 (blue circle). For balls moving in the
observer’s transverse plane [1,24–28] with the point of observation
located on the axis of hand movement, optical specification is defined
in angles of ball eccentricity (h) and ball size (Q) In this case, XB0 and XB1

are optically specified, in units of ball size, by sinh/tanQ and
dh=dtð Þ= dQ=dtð Þ, respectively [27,36,37]. For balls moving in a plane

perpendicular to the observer’s line of sight (present study) with the
point of observation located at an orthogonal distance D from the axis
of hand movement, optical specification is defined in angles of ball
azimuth (a) and ball elevation (e). For small angles, distances XB0 and
XB1 are optically specified, in units of distance D, by a and
aze da=dtð Þ= de=dtð Þ, respectively.
doi:10.1371/journal.pone.0080827.g001

Angle-of-Approach Effects in Lateral Interception
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controlled trajectories. The present series of experiments thereby

provides compelling evidence against the perceptual bias expla-

nation for angle-of-approach effects in lateral interception.

Experiment 1: Intercepting balls moving along
rectilinear trajectories

The goal of this first experiment was to validate a new

experimental setup for lateral interception of virtual balls moving

in a plane perpendicular to the participant’s line of sight. To this

end we sought to replicate the angle-of-approach effect on

interception movements, generally observed for balls moving in

the participants’ transverse plane [1,24–28].

Ethics Statement
For this, as for the subsequent experiments reported in the

present contribution participants provided written consent prior to

participation. The study was approved by the local institutional

review board (IRB) of the Institute of Movement Sciences (Comité

Ethique de l’Institut des Sciences du Mouvement d’Aix-Marseille Université)

and conducted according to University regulations and the

Declaration of Helsinki.

Materials and Methods
Participants. Five right-handed participants (2 men and 3

women, mean age 26.665.5 yrs) voluntarily took part in the

experiment.

Task and Procedure. The experiment took place in a

darkened room without windows. The participant stood in front of

an interactive Cintiq 21UX WacomH tablet (screen size

43.2632.4 cm, 160061200 pixel resolution) positioned at a height

of 1.20 m and oriented at a 45u angle, providing a plane of motion

perpendicular to the participant’s line of sight (see Fig. 2). The task

was to intercept simulated balls moving downward (top-to-bottom)

across the tablet’s screen by laterally displacing a hand-held stylus.

To this end, participants moved the stylus along the top edge of a

transparent, 5-cm wide plastic ruler, horizontally fixed to the tablet

at the level of the bottom of the screen.

The interception axis was represented on the screen by a

horizontal, 0.05-cm wide, blue line. Stylus position, sampled at a

frequency of 100 Hz, was indicated by a vertical, 0.1-cm wide,

white line cursor centred on the interception axis.

Before the onset of a trial the participant positioned the stylus

cursor on the designated starting point, located at the centre of the

interception axis. This point was used to define the X-Y origin of

the screen, X increasing negatively to the left and positively to the

right of the starting position and Y increasing positively to the top

of the screen. When the stylus cursor was correctly positioned at

the starting position, a ball, represented by a 0.8-cm diameter

white circle against a black background, appeared at one of the

five possible departure positions (Y = +32 cm; X = 214, 27, 0, +7,

or +14 cm). After remaining stationary for 3 s, the ball moved at

constant velocity across the screen towards one of five possible

arrival positions along the interception axis (Y = 0 cm; X = 214,

27, 0, +7, or +14 cm). Combining the five departure positions and

the five arrival positions gave rise to 25 different rectilinear ball

trajectories. Balls could move at vertical (Y) speeds of 20 or

32 cm/s, for motion durations of 1.6 or 1.0 s. Participants

performed 5 blocks of 50 trials, with the order of the 50 conditions

(25 trajectories62 ball speeds) randomized over trials within each

block. Feedback with respect to interception (yes/no) was

automatically provided at the end of each trial, with successful

interception requiring that the distance between stylus and ball

was less than 0.45 cm (half the sum of ball diameter and cursor

width).

During the experiment, ball and stylus positions were sampled

at a frequency of 100 Hz and stored on disk for each individual

trial. Before data analysis the stylus position time-series were

filtered using a second-order Butterworth filter with a cut-off

frequency of 5 Hz [1,24,28,32].

Data analysis. Interception performance was assessed using

constant error, defined as the distance between ball and stylus

position at the moment the ball crossed the interception axis.

General trends in movement kinematics were captured in

ensemble averages of the time series of position and velocity of

stylus displacement. In order to statistically test differences in

Figure 2. Representation of the experimental set-up. Starting from a fixed initial position (represented here by a vertical light blue line
segment positioned at BAP = 0 cm) participants moved the hand-held stylus along the (horizontal) interception axis to intercept virtual balls moving
from one of five Ball Departure Positions (BDP) to one of five Ball Arrival Positions (BAP).
doi:10.1371/journal.pone.0080827.g002

Angle-of-Approach Effects in Lateral Interception
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movement kinematics, we analysed (i) the position of the stylus at

400 ms before the ball crossed the interception axis and (ii) peak

velocity of the stylus movement. The effect of approach trajectory

on the pattern of interceptive movement was visible almost

immediately after the start of the movement. The same qualitative

pattern of results was found for stylus position at time-to-contacts

(TTC) of 600, 400, and 200 ms.

All dependent variables–Constant Error, Stylus Position at

TTC = 400 ms, and Peak Velocity–were submitted to repeated-

measures Analyses of Variance (ANOVA) with factors Ball Speed

(2 levels), Ball Departure Position (5 levels), and Ball Arrival

Position (5 levels). Where appropriate significant (p,.05) main

effects and interactions were further analysed using Newman-

Keuls post-hoc tests.

Results
For each ball arrival position the five different ball departure

positions corresponded to five different angles of approach (five

different trajectories) to the same interception point. As can be

seen from the ensemble averages of stylus position and velocity

over time (Fig. 3), participants hardly moved the stylus when the

ball would arrive at the stylus starting position (X = 0 cm). For all

other ball arrival positions (X = 214, 27, +7, +14 cm) systematic

effects of ball departure position (and hence angle of approach)

were observed. These angle-of-approach effects were corroborated

by the statistical analyses of kinematic characteristics of the

movement patterns described below.
Performance. Interception performance was quite good,

with 84.3% of the balls being intercepted. Overall, Constant

Error was 20.0260.57 cm. The ANOVA on Constant Error

revealed significant main effects of Ball Speed (F(1, 4) = 177.56,

p,.001), Ball Departure Position (F(4, 16) = 10.36, p,.001) and

Ball Arrival Position (F(4, 16) = 13.78, p,.001). Inspection of the

data revealed that the effects were mainly due to a larger (negative)

Constant Error for the Ball Arrival Position = 214 cm (Ball

Departure Positions = +14, +7, 0 cm) conditions with lower ball

speed. As can be seen from Fig. 3, these effects were quite modest.

Movement kinematics. The ANOVA on the stylus position

at TTC = 400 ms (Pos-400) revealed significant main effects of

Ball Departure Position (F(4, 16) = 61.34, p,.001) and Ball Arrival

Position (F(4, 16) = 1018.91, p,.001), as well as significant first-

order interactions for Ball Speed 6 Ball Arrival Position (F(4,

16) = 183.96, p,.001) and Ball Departure Position 6Ball Arrival

Position (F(16, 64) = 6.18, p,.001). Post-hoc analysis of these

effects brought out the following points (see Fig. 4). Overall, Pos-

400 was further away from the starting position for (a) balls moving

at the lower speed (all ps,.05) and (b) balls moving towards farther

arrival positions (all ps,.05). The Ball Departure Position 6Ball

Arrival Position interaction indicated that for each arrival position

Pos-400 varied systematically with the ball’s angle of approach (at

least two significant (p,.05) Ball Departure Position comparisons

at each Ball Arrival Position, except for Ball Arrival Position

= 0 cm). The larger the (absolute) angle of approach, the further

the stylus was from the future ball arrival position. The effect of

angle of approach was observed for both ball speeds.

The ANOVA on Peak Velocity revealed significant main effects

of Ball Departure Position (F(4, 16) = 34.57, p,.001) and Ball

Arrival Position (F(4, 16) = 373.58, p,.001) as well as significant

first-order interactions for Ball Speed 6Ball Arrival Position (F(4,

16) = 182.19, p,.001) and Ball Departure Position 6Ball Arrival

Position (F(16, 64) = 2.85, p,.001). Post-hoc analysis of the

interactions revealed several points (see Fig. 5). First, Peak Velocity

was systematically larger when the distance between the initial

stylus position and the Ball Arrival Position was larger (all ps,.05).

Second, for each combination of Ball Departure Position and Ball

Arrival Position, Peak Velocity was systematically larger when the

ball moved faster (all ps,.05). Finally, for each Ball Arrival

Position, Peak Velocity systematically varied with Ball Departure

Position (at least one significant Ball Departure Position compar-

ison at each Ball Arrival Position, except for Ball Arrival Position

Figure 3. Ensemble averages of stylus position and velocity as a function of time (Exp. 1). The ball started moving 3 s after its appearance
(t0) on the screen. BDP: Ball Departure Position. Panel A: lower ball speed. Panel B: higher ball speed.
doi:10.1371/journal.pone.0080827.g003

Angle-of-Approach Effects in Lateral Interception
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= 0 cm), with smaller Peak Velocities being attained for ball

trajectories with larger (absolute) angles of approach. This angle-

of-approach effect was observed for both ball speeds.

Discussion
The general characteristics of the movement patterns observed,

such as higher peak velocities when larger distances were to be

covered and higher peak velocities when balls moved faster,

correspond to those reported in earlier studies of interception

[1,5,24,25,27,28,33,34]. Moreover, as in the earlier lateral

interception studies [1,24–28], systematic effects of the angle of

approach of the ball’s trajectory to the interception point were

observed. Finally, the absence of hand movement when balls

moved rectilinearly towards the initial hand position replicated the

results reported by Arzamarski et al. [28]. Overall, these results

thus validate our new experimental set-up for lateral interception

of virtual balls moving in a plane perpendicular to the participant’s

line of sight.

Experiment 2: Line-intersection extrapolation for
rectilinear trajectories

Studying lateral interception of balls rolling–along rectilinear

trajectories–across a table top, Arzamarski et al. [28] reported a

pattern of results that, on all points, closely resembles the results of

our Experiment 1. They argued that the observed angle-of-

approach effect need not be interpreted as revealing the influence

of information with respect to current lateral ball position (XB0).

Rather, they suggested that this effect would stem from perceptual

biases in establishing XB1. To demonstrate the existence of such

perceptual biases in perceived future ball crossing position

Arzamarski et al. [28] evaluated performance on a line-intersec-

tion extrapolation task. Using our new experimental setup, in

Experiment 2 we adopted the same methodology in order to

replicate their findings and to identify the characteristics of such

biases.

Materials and Methods
Participants. Ten right-handed participants (6 men and 4

women, mean age 21.761.7 yrs) voluntarily took part in the

experiment. None of them had participated in Experiment 1.

Task and Procedure. The experimental set-up was the same

as in Experiment 1, with the exception of one characteristic.

Instead of laterally intercepting balls moving across the screen,

participants were now asked to point to the position on the

interception axis that corresponded to its intersection with a static

line segment presented on the screen. Stylus position was recorded

when participants marked the intersection position by pushing

down the stylus. The line segments corresponded to parts of the 25

rectilinear trajectories used in Experiment 1. Four segments with a

standardized 6-cm vertical (Y) extent were extracted from each

trajectory, with the centre point of the segment corresponding to

vertical (Y) distances from the interception axis of 3.0, 11.7, 20.3,

or 29.0 cm. The segments centred on a vertical distance of 3.0 cm

in fact touched the interception axis with their lowest points. They

were used to ascertain that the pointing task itself did not

introduce any supplementary biases.

Figure 4. Pos-400 as a function of BDP and BAP (Exp. 1). Pos-400: Stylus position at 400 ms before the ball reached the interception axis. BDP:
Ball Departure Position. BAP: Ball Arrival Position. Panel A: lower ball speed. Panel B: higher ball speed.
doi:10.1371/journal.pone.0080827.g004

Figure 5. PVel as a function of BDP and BAP (Exp. 1). PVel: Peak Velocity. BDP: Ball Departure Position. BAP: Ball Arrival Position. Panel A: lower
ball speed. Panel B: higher ball speed.
doi:10.1371/journal.pone.0080827.g005

Angle-of-Approach Effects in Lateral Interception
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A trial consisted of the presentation of a static line segment that

remained visible until the participant marked the perceived

intersection position. Participants performed 5 blocks of 100 trials,

with the order of the 100 conditions (4 distances 625 trajectories)

randomized over trials in each block. No feedback was provided.

Data analysis. Performance of intersection locus estimation

was assessed using Constant Error, defined as the distance between

the required position (corresponding to the ball arrival position of

the matching trajectory) and the marked stylus position. In order

to allow a comparison with the results of Experiment 3 the line

segments extracted from each of the 25 trajectories were

characterized by their orientation with respect to the axis of hand

movement. The 25 combinations of ball departure and arrival

positions gave rise to 9 Segment Orientations (241.2, 233.3,

223.6, 212.3, 0.0, 12.3, 23.6, 33.3, and 41.2u). Using a repeated-

measures ANOVA, we evaluated the effects on Constant Error of

the factors Segment Distance (4 levels) and Segment Orientation (9

levels).

Results and Discussion
The line-intersection extrapolation task revealed a systematic,

distance-dependent influence of segment orientation on the

perceived location of the intersection with the axis of hand

movement (Fig. 6). Perceptual biases were analysed using the

errors in intersection location estimation induced by segment

orientation at different distances from the axis of hand movement.

The ANOVA on Constant Error in estimated intersection locus

revealed a significant main effect of Segment Orientation (F(8,

72) = 11.59, p,.001) and a Segment Orientation 6 Segment

Distance interaction (F(24, 216) = 17.82, p,.001). As can be seen

from Fig. 6, the interaction indicated that Segment Orientation

gave rise to systematic effects on Constant Error for the segments

at larger distances from the interception axis. Post-hoc analysis of

the interaction indicated that Constant Error was not affected by

Segment Orientation for the 3.0 and 11.7-cm segment distances

(all ps..10). For these two segment distances Constant Error

remained close to zero with linear regression slopes of

+0.0013 cm/deg (r(23) = +.75, p,.001) and 20.0001 cm/deg

(r(23) = 2.02, ns), respectively. While the correlation between

Constant Error and Segment Orientation was significant for the

3.0-cm segment distance, the slope of the relation indicated that

this effect was negligible for the present purposes: a 45u-variation

in Segment Orientation was associated with a change in Constant

Error of less than 0.05 cm. For the 20.3 and 29.0-cm segment

distances, however, Constant Error considerably varied with

Segment Orientation, with the largest effect for the 29.0-cm

segment distance (all ps,.05). Linear regression of Constant Error

onto Segment Orientation demonstrated slopes of 20.0418 cm/

deg (r(23) = 2.98, p,.001) and 20.0661 cm/deg (r(23) = 2.98,

p,.001) for the 20.3-cm and 29.0-cm segment distances,

respectively. For these latter distances the slopes were important,

as a 45u-variation in Segment Orientation gave rise to changes in

Constant Error in intersection locus estimates of 1.88 and

2.98 cm, respectively.

Overall, Experiment 2 reliably replicated the pattern of results

reported by Arzamarski et al. [28]. The static line-intersection

extrapolation task revealed errors in the estimated intersection

locus that varied as a function of the distance from the axis of hand

movement and the orientation of the segment presented. The

systematic errors observed for the larger segment distances when

the segment’s orientation deviated from 0u (i.e., from perpendic-

ular to the participant’s movement axis) correspond to the

perceptual biases referred to by Arzamarski et al. [28]. Thus,

Experiment 2 validated our experimental setup for studying

perceptual biases in the line-intersection extrapolation task.

Experiment 3: Line-intersection extrapolation for
bias-controlled trajectories

The goal of Experiment 3 was to test whether the systematic

nature of the errors in estimated intersection locus observed in

Experiment 2 could be used to control such perceptual biases. In

Figure 6. CE for intersection extrapolation as a function of segment orientation for the 4 segment distances (Exp. 2). CE: Constant
Error. SegDist: Segment Distance.
doi:10.1371/journal.pone.0080827.g006
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other words, we sought to determine whether we could create a set

of trajectories with zero perceptual bias with respect to the future

ball arrival position at each point in each trajectory. To this end,

we mathematically characterized the constant error (CE) in

intersection locus estimates observed in Experiment 2 as a

continuous function of Segment Distance (SegDist) and Segment

Orientation (SO). For the two largest segment distances, we fitted

the equation CE = k1 + k2*SO + k3*SegDist + k4*SO*SegDist +
k5*SO2 + k6*SegDist2 + k7*SO2*SegDist + k8*SO*SegDist2. For

the two closest segment distances, we considered CE to be equal to

zero. The equation was not intended to provide any kind of

generic model; it simply served to capture the effects observed as

closely as possible. The fit accounted for 87.0% of the total

variance, for a mean error of estimation of 0.06 cm. The resulting

coefficients (CE in cm; SO in degrees) were 0.57346, 20.05680,

1.63140, 0.67885, 0.58676, 0.00134, 0.01601, and 0.00409 for k1

to k8, respectively.

Trajectories with a model-predicted zero bias with respect to the

future ball arrival position at each point were constructed in the

following way. The first point on each trajectory was, of course,

the ball departure position. For this point we selected the segment

orientation that corresponded to a real intersection position shifted

away from the trajectory’s ball arrival position by a distance equal

to the perceptual bias predicted for this segment orientation at this

distance from the axis of hand movement. By matching the shift in

the real intersection location to the predicted error in its estimate,

the predicted error with respect to the future ball arrival position

was zero. Linear extrapolation of the bias-controlled trajectory

orientation over a Y-distance of 0.1 cm provided the X-Y

coordinates of the next point. The full trajectory was constructed

by iterating the procedure. Examples of bias-controlled trajectories

thus constructed are provided in Figure 7.

To test the validity of this bias-control logic, in Experiment 3 we

again used the line-intersection extrapolation task. Our specific

goal was to determine whether the newly constructed bias-

controlled trajectories gave rise to (sufficiently precise) estimations

of intersection locus that were no longer systematically biased.

Materials and Methods
Participants. Fifteen right-handed participants (9 men and 6

women, mean age 21.761.8 yrs) voluntarily took part in the

experiment. Six of them had participated in Experiment 2.

Task, Procedure, and Data Analysis. The experimental

set-up was the same as in Experiment 2, with the exception of one

characteristic. Instead of using segments from the rectilinear

trajectories, the segments’ position and orientation were extracted

at the same four vertical distances as in Experiment 2 from the

newly-created bias-controlled trajectories joining the same five ball

departure positions to the same five ball arrival positions.

Participants performed 5 blocks of 100 trials, with the order of

the 100 conditions (4 distances 625 trajectories) randomized over

trials in each block. No feedback was provided. Because segment

orientations (SO) were adapted for each trajectory they could no

longer be categorised into 9 levels, as was the case in Experiment

2. Therefore, as had already been done in Experiment 2, we

evaluated the slope of the linear CE-SO relation for each segment

distance.

Results and Discussion
As can be seen from Figure 8, the bias-control model allowed

removing the systematic effect of segment orientation observed in

Experiment 2. Constant Error in estimated intersection locus was

less than 0.5 cm in all conditions. Linear regression slopes of the

CE-SO relation were 20.0009, +0.0008, 20.0046, +0.0045 cm/

deg for segment distances of 3.0, 11.7, 20.3, and 29.0 cm,

respectively. Thus, notwithstanding the statistical significance of

the CE-SO correlations for three of the four segment distances

(r(23) = 2.50, +.18, 2.56, +.41, respectively), the variation in CE

over a 45u-range of SO was always less than 0.2 cm. Such very

small variations in CE were considered negligible for the present

purposes. Another argument for neglecting such small slopes is the

(difficult to explain) sign change of the (statistically significant)

slopes for the 3.0-cm segment distance observed in Experiments 2

and 3.

Thus, the bias-control model allowed us to considerably reduce

the pointing errors produced by the participants and, most

importantly, to remove the systematic effects of Segment

Orientation observed in Experiment 2 for the larger Segment

Distances. We conclude that the bias-controlled trajectories are

characterized by a (close to) zero perceptual bias at each point of

each trajectory.

Experiment 4: Intercepting balls moving along
bias-controlled trajectories

Having established that the new set of trajectories effectively

allowed controlling the perceptual bias, Experiment 4 tested

whether the angle-of-approach effects observed in Experiment 1

Figure 7. Examples of rectilinear and corresponding bias-
controlled trajectories. Rectilinear trajectories for interception (Exp.
1, thin blue lines) and line segments for intersection-extrapolation (Exp.
2, thick blue line segments). Bias-controlled trajectories for interception
(Exp. 4, thin red lines) and line segments for intersection-extrapolation
(Exp. 3, thick red line segments). The exemplary trajectories shown are
BDP = 214 cm to BAP = +14 cm and BDP = +7 cm to BAP = 27 cm.
doi:10.1371/journal.pone.0080827.g007
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would persist or vanish when intercepting balls moving along these

bias-controlled trajectories. In the latter case, the angle-of-

approach effect may indeed be ascribed to such biases [28]. In

the former case, it cannot.

Materials and Methods
Participants. Eight right-handed participants (5 men and 3

women, mean age 21.661.8 yrs) voluntarily took part in the

experiment. All had participated in Experiment 3.

Task, Procedure, and Data Analysis. The task, procedure,

and analyses of the data were identical to those of Experiment 1,

the only difference residing in the characteristics of the ball

trajectories used. The 25 rectilinear trajectories were replaced by

the 25 new, slightly curved trajectories, linking the same five ball

departure positions (Y = +32 cm; X = 214, 27, 0, +7, or +14 cm)

and the same five ball arrival positions (Y = 0 cm; X = 214, 27, 0,

+7, or +14 cm). Each of these 25 trajectories was constructed on

the basis of the bias-compensation model developed on the basis of

the results of Experiment 2 and tested in Experiment 3. Thus, the

line-intersection extrapolation error was controlled to be close to

zero at each point along all these trajectories.

Results and Discussion
The ensemble averages of stylus position and velocity over time

(Fig. 9) indicated systematic effects of ball departure position for all

ball arrival positions (with the exception of X = 0 cm). These

angle-of-approach effects were corroborated by the statistical

analyses of kinematic characteristics of the movement patterns

described below. Thus, the angle-of-approach effect observed in

Experiment 1 continued to emerge even when participants

intercepted ball moving along the bias-controlled trajectories.

Performance. Interception performance was again quite

good, with 90.1% of the balls being intercepted. Overall, Constant

Error was 20.0260.64 cm. The ANOVA on Constant Error

revealed a significant main effect of Ball Arrival Position (F(4,

28) = 4.46, p,.01) as well as a significant Ball Speed6Ball Arrival

Position interaction (F(4, 28) = 4.00, p,.05). Post-hoc analysis of

the interaction demonstrated that these effects were due to the

higher Constant Error observed in the high ball speed condition

for ball arrival position = +14 cm. As can be seen from Fig. 9,

these effects were again quite modest.

Movement kinematics. The ANOVA on Pos-400 revealed

significant main effects of Ball Departure Position (F4, 28) = 57.80,

p,.001) and Ball Arrival Position (F(4, 28) = 715.34, p,.001), as

well as significant first-order interactions for Ball Speed 6 Ball

Departure Position (F(4, 28) = 4.37, p,.01), Ball Speed 6 Ball

Arrival Position (F(4, 28) = 119.61, p,.001) and Ball Departure

Position 6 Ball Arrival Position (F(16, 112) = 8.61, p,.001).

Finally, the second-order interaction Ball Speed 6Ball Departure

Position 6 Ball Arrival Position was also significant (F(16,

112) = 3.97, p,.001). Post-hoc analysis of the overarching

interaction brought out the following points (see Fig. 10). Overall,

Pos-400 was further away from the starting position for (a) balls

moving at the lower speed (all ps,.05) and (b) balls moving

towards farther arrival positions (all ps,.05). For each arrival

position Pos-400 varied systematically with the ball’s angle of

approach (at least two significant Ball Departure Position

comparisons at each Ball Arrival Position, except for Ball Arrival

Position = 0 cm). The smaller the (absolute) angle of approach,

the closer the stylus was to the future ball arrival position. The

effect of angle of approach was observed for both ball speeds.

The ANOVA on Peak Velocity revealed significant main effects

of Ball Departure Position (F(4, 28) = 26.24, p,.01) and Ball

Arrival Position (F(4, 28) = 254.43, p,.001) as well as significant

first-order interactions for Ball Speed 6Ball Arrival Position (F(4,

28) = 100.95, p,.001) and Ball Departure Position 6Ball Arrival

Position (F(16, 112) = 3.79, p,.001). Post-hoc analysis of the

interactions revealed the same effects (see Fig. 11) as those

observed in Experiment 1. First, Peak Velocity was systematically

larger when the distance between the starting position and the ball

arrival position was larger (all ps,.05). Second, for each

Figure 8. CE for intersection extrapolation as a function of segment orientation for the 4 segment distances (Exp. 3). CE: Constant
Error. SegDist: Segment Distance.
doi:10.1371/journal.pone.0080827.g008
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combination of ball departure position and ball arrival position

Peak Velocity was systematically larger when the ball moved faster

(all ps,.05). Finally, for each ball arrival position, Peak Velocity

systematically varied with ball departure position (at least one

significant Ball Departure Position comparison at each Ball Arrival

Position, except for Ball Arrival Position = 0 cm), with smaller

Peak Velocities being attained for ball trajectories with larger

(absolute) angles of approach. This angle-of-approach effect was

observed for both ball speeds.

The angle-of-approach effects on the kinematics of interception

movements observed in Experiment 1 for rectilinear ball

trajectories were still present when participants intercepted balls

moving along the bias-controlled trajectories. We therefore

conclude that such angle-of-approach effects cannot be (fully)

ascribed to perceptual biases in detecting XB1-based information.

General Discussion

In the present series of experiments we addressed the control of

lateral interception movements. In line with the literature [1,24–

28], the pattern of interceptive hand movement varied when

participants intercepted balls converging onto the same intercep-

tion location, arriving there after the same ball motion duration

while following different trajectories. This persistent angle-of-

approach effect militates against a predictive control strategy and

provides compelling evidence in favour of the organization of

movement on the basis of prospective control.

In prospective-control models of lateral interception

[1,2,25,27,30,31] the hand is continuously attracted toward an

informationally-specified, time-evolving position along the inter-

ception axis. Controversy continues to exist with respect to the

characteristics of the spatial information used: The two most

prominent candidates are the current lateral ball position (XB0

Figure 9. Ensemble averages of stylus position and velocity as a function of time (Exp. 4). The ball started moving 3 s after its appearance
(t0) on the screen. BDP: Ball Departure Position. Panel A: lower ball speed. Panel B: higher ball speed.
doi:10.1371/journal.pone.0080827.g009

Figure 10. Pos-400 as a function of BDP and BAP (Exp. 4). Pos-400: Stylus position at 400 ms before the ball reached the interception axis.
BDP: Ball Departure Position. BAP: Ball Arrival Position. Panel A: lower ball speed. Panel B: higher ball speed.
doi:10.1371/journal.pone.0080827.g010
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[1,2,24,25,31]) and the ball’s future crossing position if the current

direction of ball motion is maintained (XB1 [27,28,30]). XB1 is

invariant over rectilinear ball trajectories while XB0 is not (see

Fig. 1). The finding of systematic angle-of-approach effects in a

study of lateral interception using rectilinear ball trajectories led

Montagne et al. [24] to conclude against the use of XB1-based

information. However, Arzamarski et al. [28] argued that the

observed angle-of-approach effect resulted from participants using

perceptually-biased XB1-based information.

The perceptual-bias explanation proposed by Arzamarski et al.

[28] was based on the inference that perceptual biases observed in

a static line-intersection extrapolation task would generalize to the

dynamic interception task. The present study was designed to test

this perceptual-bias account of the angle-of-approach effect in

lateral interception. To this end we developed a set of slightly

curvilinear trajectories that effectively removed the perceptual

biases that were held responsible for angle-of-approach effects by

Arzamarski and colleagues. To generate ball motion along these

bias-controlled trajectories we needed to rely on an interception

task using virtual balls. Thus, the first step of the present study was

to validate our experimental setup for the lateral interception of

virtual balls moving across the screen of a large-sized interactive

graphics tablet (see Fig. 2). This was achieved in Experiment 1

where participants intercepted balls moving along rectilinear

trajectories from one of five departure positions on the top of the

screen to one of five arrival positions at the bottom of the screen:

We found clear angle-of-approach effects, replicating those known

from previous studies [1,24–28]. Next, we needed to validate the

experimental setup for the line-intersection extrapolation task used

by Arzamarski et al. [28] to determine perceptual biases. This was

achieved in Experiment 2 where participants estimated the

(extrapolated) intersection locus of static line segments on the

lateral-interception line: We found estimation errors (i.e., percep-

tual biases) similar to the ones reported by Arzamarski et al. [28].

These first two experiments thus validated our experimental setup

for the present purposes.

The next step was to design and validate a new set of bias-

controlled trajectories. Using the systematic nature of the

perceptual biases observed on the line-intersection extrapolation

task of Experiment 2, we derived a set of slightly curvilinear

trajectories for which the estimated intersection locus continuously

coincided with the arrival positions of the original rectilinear ball

trajectories (see Fig. 7). Experiment 3 demonstrated that our

corrections for the perceptual biases had been successful: For line

segments tangential to these trajectories participants’ estimations

of intersection locus was consistently close to the future ball arrival

position. Thus, we were finally ready to test Arzarmarski et al.’s

[28] perceptual-biases account for angle-of approach effects in

lateral interception of balls traveling rectilinear trajectories. As in

Experiment 1, in Experiment 4 we had our participants intercept

balls moving from one of five departure positions to one of five

arrival positions. Now, instead of rectilinear trajectories we used

the bias-controlled trajectories. Our main finding was that the

angle-of-approach effect persisted, also with trajectories that had

been designed and tested to correct for perceptual biases. This

result shows that perceptual biases are not responsible for the

angle-of-approach effects reported here and in the literature

[1,24–28]. Because the perceptuomotor bias explanation [28] of

the angle-of-approach effect does not hold under experimental

scrutiny, the implication is that the on-line visual control of lateral

interception is not based on information about XB1 exclusively

[27,28,30]

We suggest that the present results indicate a combined use of

information about XB1 and XB0. That is to say, although a

control based only on information about XB1 was ruled out by the

current study, an account based completely on information about

XB0 also seems untenable. Prospective control models based on

information about XB0 [1,2,31] not only predict angle-of-

approach effects. They also predict that balls that will eventually

arrive at the hand’s starting position should give rise to an initial

hand movement away from the starting position, in the direction

of the time-evolving XB0 (see Fig. 1). As XB0 approaches the

future interception location during the course of ball motion, hand

movement should be reversed, with the ball finally being

intercepted at the hand’s initial position. Although Montagne et

al. [24] indeed reported such movement reversals, later studies,

including the present, have not replicated these. At present we

have no explanation for this discrepancy. The robust finding of

small but systematic angle-of-approach effects is nevertheless

compatible with the use of XB0-based information. However, the

absence of systematic reversal movements militates against an

exclusive use of XB0-based information. Thus, the control of

lateral interception appears to be based on an informational

quantity relating to both XB0 and XB1. Interestingly, for

participants placed in the role of a goalkeeper in football such a

composite informational quantity was recently found to explain

their judgements of whether a ball would enter the goalmouth or

not [35]. Models of prospective control based on such a composite

informational variable need to be developed and their predictions

tested in new experiments.

Figure 11. PVel as a function of BDP and BAP (Exp. 4). PVel: Peak Velocity. BDP: Ball Departure Position. BAP: Ball Arrival Position. Panel A:
lower ball speed. Panel B: higher ball speed.
doi:10.1371/journal.pone.0080827.g011
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