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Abstract 

Many recent reviews and meta-analyses of N2O emissions do not include data from Mediterranean studies. In 

this paper we present a meta-analysis of the N2O emissions from Mediterranean cropping systems, and 

propose a more robust and reliable regional emission factor (EF) for N2O, distinguishing the effects of water 

management, crop type, and fertilizer management. The average overall EF for Mediterranean agriculture 

(EFMed) was 0.5%, which is substantially lower than the IPCC default value of 1%. Soil properties had no 

significant effect on EFs for N2O. Increasing the N fertilizer rate led to higher EFs; when N was applied at rates 

greater than 400 kg N ha-1, the EF did not significantly differ from the 1% default value (EF: 0.82%). Liquid 

slurries led to emissions that did not significantly differ from 1%; the other fertilizer types were lower but did 

not significantly differ from each other. Rain-fed crops in Mediterranean regions have lower EFs (EF: 0.27%) 

than irrigated crops (EF: 0.63%). Drip irrigation systems (EF: 0.51%) had 44% lower EF than sprinkler irrigation 

methods (EF: 0.91%). Extensive crops, such as winter cereals (wheat, oat and barley), had lower EFs (EF: 0.26%) 

than intensive crops such as maize (EF: 0.83%). For flooded rice, anaerobic conditions likely led to complete 

denitrification and low EFs (EF: 0.19%). Our results indicate that N2O emissions from Mediterranean agriculture 

are overestimated in current national greenhouse gas inventories and that, with the new EF determined from 

this study, the effect of mitigation strategies such as drip irrigation or the use of nitrification inhibitors, even if 

highly significant, may be smaller in absolute terms. 

Keywords: N2O, Greenhouse gases, Field studies, Mitigation, Systematic review 

 

1. Introduction 

More than half of the global Mediterranean climate zone is located on the Mediterranean Sea Basin 

(Aschmann, 1973); the remainder is on the Pacific coast of North America, south-western Australia, the Cape 

region of South Africa and the central coast of Chile (Olson et al., 2001). One of the most distinctive features of 

Mediterranean climates is the summer drought and relatively mild temperatures in winter. However, annual 

precipitation is variable, between 275 and 1000 mm, such that Mediterranean climate regions range from 

semi-arid to humid. 

In Mediterranean climates, precipitation and temperatures are suitable in winter for cultivating a variety of 

rain-fed crops including cereals, grain legumes, oilseeds and horticulture (Andrews et al., 2002). Cultivation of 

perennial crops is common in Mediterranean climate areas. Some of these crops are resistant to summer 

droughts, including olives, almonds, and grapes, while others are cultivated under irrigation, such as citrus and 

other fruit trees. Agriculture in Mediterranean climates regions, therefore, provides a high diversity of crops. 
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Agricultural soils are regarded as the primary source of anthropogenic N2O emissions (Smith et al., 2008). 

Despite the cultural and economic importance of Mediterranean agriculture (Grigg, 1974), the number of field 

studies analyzing N2O emissions from Mediterranean agricultural lands is much smaller than from other 

temperate areas (Stehfest and Bouwman, 2006). Recent reviews and meta-analyses of N2O emissions do not 

include data from Mediterranean studies (e.g. Kim et al., 2013; Lesschen et al., 2011; Shcherbak et al., 2014). 

Estimating N2O emissions and N2O emission factors (EF, the percentage of fertilizer N applied that is 

transformed and emitted on site as N2O) is essential for assessing the impact of agriculture on greenhouse gas 

(GHG) emissions for a particular area. Current national emission inventory methods use a direct EF for N2O, 

with a default value of 1% or 1.25% (depending on the country) of the N input from manure and mineral 

fertilizer (IPCC, 2006). However, many studies have concluded that the response of direct N2O emissions to N 

input is non-linear (Kim et al., 2013; Philibert et al., 2012; Shcherbak et al., 2014), and other recent studies 

highlighted the important role of environmental and management factors in determining N2O emissions and 

EFs, such as climate, soil characteristics, type of fertilizer and time of application, crop type, and irrigation 

system (Aguilera et al., 2013a; Bouwman et al., 2002; Gerber et al., 2016; Leip et al., 2011; Lesschen et al., 

2011). For example, Aguilera et al. (2013a) suggested using a lower EF for Mediterranean areas than for other 

temperate regions, especially in rain-fed systems. 

There are three characteristics of Mediterranean regions that are fundamental to understanding why soil N2O 

emissions from these regions are idiosyncratic and in-turn why the adoption of EFs which differ from other 

climate regions should be considered. Firstly, due to limited availability of water, irrigation is a prerequisite for 

the cultivation of many annual crops during summer, whereas mild, humid winters enable annual crops to be 

rain-fed. Different EFs are therefore needed for irrigated and rain-fed crops. Secondly, soils in the 

Mediterranean zone generally have a neutral to alkaline soil pH and very low concentrations of organic C 

(Aguilera et al., 2013b; Verheye and de la Rosa, 2005). These conditions influence denitrification rates and 

N2O/N2 ratios (Li et al., 2005; Šimek and Cooper, 2002). Thirdly, soils in Mediterranean regions are rarely 

exposed to freeze–thaw cycles, which cause high N2O emissions, especially in fertilized soils (Schouten et al., 

2012; Tenuta and Sparling, 2011), which lead to high EFs. 

The aim of this study was to improve our understanding of soil N2O emissions from Mediterranean cropping 

systems by (i) summarizing available field data of soil N2O emissions; (ii) proposing a more robust and reliable 

regional EF; and (iii) identifying controlling factors of N2O EFs (soil type, climate variability, irrigation and N 

fertilizer management) as a basis for developing soil N2O mitigation strategies for regions with Mediterranean 

climates. 
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Fig. 1. Location of the study sites included in the dataset. The dark gray area delimits the Mediterranean biome from the 
collection of ecoregions mapped by the World Wildlife Fund (Olson et al., 2001). 

 

2. Methods 

2.1. Selection of studies and data extraction 

There are varying definitions to demarcate Mediterranean climate regions worldwide, which are typically 

based on climate and plant associations. We chose the widely used delineation of the Mediterranean biome 

from the collection of ecoregions mapped by the World Wildlife Fund (Fig. 1). We selected studies in this area 

and in marginal areas defined as ‘Mediterranean’ by the authors of the original papers. Soil N2O emission data 

from field-based studies investigating fertilizer-induced soil N2O emissions were collected from these 

Mediterranean regions, including the Mediterranean Sea Basin, California, Australia and Chile (Fig. 1). We are 

not aware of any field study reporting N2O emissions in the Mediterranean region of South Africa (Mary 

Scholes, Wits University, personal communication). 

The criteria for inclusion of a study in the dataset were: (i) area-scaled N2O emissions were reported for N 

fertilizer treatments, (ii) the number of replicates was reported unambiguously with a minimum of three 

replicates per treatment, (iii) only field studies were considered and (iv) only when N2O emissions were 

reported for at least an entire growing season. 

The cumulative N2O emissions for each N fertilizer treatment were extracted from published papers and 

reports, together with a measure of variance, the number of replicates and the N application rate (kg N ha-1) 

during the observational period. Key characteristics (location, climate data, soil type, soil management, 
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irrigation, type of fertilizers, etc.) were collected when available (Supplementary material 1). When data were 

presented graphically, WebPlot Digitizer was used to extract data points (http:// 

arohatgi.info/WebPlotDigitizer/). If cumulative N2O emissions or other information were not reported, the 

authors of the field study were contacted to supply missing information. In some cases, cumulative emissions 

were estimated by integrating the average daily fluxes over the measurement period (Alluvione et al., 2010; 

Castaldi et al., 2011; Kong et al., 2009; Ranucci et al., 2011; Vitale et al., 2013). Experiments assessing the 

effect of nitrification/ urease inhibitors were studied as a separate group (when evaluating the influence of the 

type of fertilization), but were not included to obtain the mean EF for Mediterranean crops(EFMed) because 

they were not considered representative of current management practices. Fifty-three studies and 223 data-

sets were included in the meta-analyses (Table 1, Supplementary material 1). 

Since most of the field studies in our database focus on assessing the performance of specific crop 

management practices over both emissions and crop yields, they often do not include post-harvest season 

emissions. While full year emissions are desirable for determining EFs (IPCC, 2016), in the systems we are 

studying, we assume that the inclusion of growing season only emissions will have minimal influence on our 

calculated EFs, since emissions in the intercrop period will be a) low in summer (fallow of winter crops), when 

the soil is dry, due to decreased microbiological activity, and b) very low in winter (fallow of summer crops) 

under cold conditions without freeze–thaw cycles (Aguilera et al., 2013a). In the few studies where emissions 

were measured over an entire year, those during the fallow period were 10% or less of the total (e.g. Sanz-

Cobena et al., 2012). 

Table 1 Studies included in the meta-analyses. 

Mediterranean-
type climate area 

Country Studies 

Mediterranean 
Basin 

Spain Abalos et al. (2012, 2013, 2014); Huérfano et al. (2015); López-Fernández et 
al. (2007); Maris et al. (2015a, 2015b); Meijide et al. (2007, 2009); Plaza-
Bonilla et al. (2014); Sánchez-García et al. (2016); Sánchez-Martín et al. (2008, 
2010a, 2010b); Sanz-Cobena et al. (2012, 2014a); Tellez-Rio et al. (2015); 
Vallejo et al. (2005, 2006, 2014) 

 Italy Alluvione et al. (2010); Bosco et al. (2015); Castaldi et al. (2011); Ranucci et al. 
(2011); Rees et al. (2013); Vitale et al. (2013) 

 Israel/Portugal/
Greece 

Heller et al. (2010); Kontopoulou et al. (2015); Pereira et al. (2013) 

Australia Australia Barton et al. (2008, 2010, 2013); Li et al. (2011) 

California USA Alsina et al. (2013); Angst et al. (2014); Garland et al. (2011, 2014); Kallenbach 
et al. (2010); Kennedy et al. (2013); Kong et al. (2009); Lee et al. (2009); 
Pittelkow et al. (2013); Schellenberg et al. (2012); Simmonds et al. (2015); 
Suddick and Six (2013); Townsend-Small et al. (2011); Verhoeven and Six 
(2014); Zhu-Barker et al. (2015) 

Chile Chile Hube et al. (2017); Vistoso et al. (2012) 



6 
 

2.2. Soil and land management data compilation 

Soil and land management data was grouped into categories based on: 

- soil pHH2O: (i) pH < 7.5 and (ii) pH > 7.5 (The soil pH values measured with CaCl2 were converted to 

values measured in distilled water using a method described by Minasny et al. (2011)); 

- soil texture: (i) coarse (sandy loam, sandy clay loam, loamy sand), (ii) medium (clay loam, loam, silty 

clay loam, silt, silt loam), and (iii) fine (clay, silt clay, sandy clay) (USDA, 1999); 

- topsoil organic C concentration: low (<10 g C kg-1 soil), medium (10–20 g C kg-1 soil), and high (>20 g C 

kg-1 soil); 

- water input and management: (i) rain-fed and annual precipitation <450 mm, (ii) rain-fed and annual 

precipitation >450 mm, (iii) sprinklers, (iv) flooded, (v) furrow or surface irrigation, and (vi) drip 

irrigation; 

- type of N fertilizer: (i) synthetic (including all types of mineral fertilizers), (ii) organic-solid (compost, 

solid fraction of manures, solid organic residues), (iii) organic-liquid (pig/cattle slurries, liquid fraction 

of slurries, digestates), (iv) organic-synthetic mixture, and (v) inhibitors (nitrification and/or urease 

inhibitors: DCD, DMPP,NBPT); 

- N fertilizer rate: (i) <100 kg N ha-1, (ii) 100–400 kg N ha-1, and (iii) >400 kg N ha-1; 

- type of crop: (i) winter cereals (hereafter: ‘cereals’), (ii) horticulture, (iii) maize, (iv) rice, (v) perennials, 

and (vi) other. 

2.3. Calculation of emission factors 

Most studies included in the meta-analysis did not explicitly report EFs since they were designed with different 

aims. We calculated EFs as the difference between N2O emissions from a fertilized treatment (kg N2O N ha-1) 

and the non-fertilized (control) treatment (kg N2O N-N ha-1) divided by applied N fertilizer (kg N ha-1). In 39% of 

cases, there was no control treatment and these missing data were obtained through multiple imputation by 

chained equations (Azur et al., 2011) with IBM SPSS Statistics 24 (for a detailed description of missing data 

treatment and sensitivity tests see Supplementary material 2). 

2.4. Data analysis 

We performed a standard pair-wise meta-analysis using emission factors (EFs) as effect sizes with MetaWin 

version 2 (Rosenberg et al., 2000). Mean effect sizes for each grouping and the 95% confidence intervals (CI) 

generated by bootstrapping (999 iterations) were calculated using a categorical random effects model (Adams 

et al., 1997). For a detailed description of the statistical procedure see Supplementary material 2. Mean effect 

sizes were considered significantly different from each other if their 95% CI did not overlap; they were 
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considered significantly different from the default IPCC Tier I value (1%) if the 95% CIs did not overlap with 1%. 

To test the possibility of publication bias (studies showing no significant effects might not be published), the 

Rosenthal's fail-safe N test was used (Rosenthal, 1979). 

2.5. Case study: effect of EF choice on Spanish N2O emissions estimation 

We chose Spain to examine the effect of applying the EFs found in this study because Spain includes both rain-

fed and irrigated crops, and has one of the largest agricultural land uses within Europe. In addition, nutrient 

budgets at the regional scale have been well developed for Spain (Lassaletta et al., 2014; Sanz-Cobena et al., 

2014b). We processed the information provided by MMARM (2010) on N fertilizer use (organic and synthetic) 

for rain-fed and irrigated crops (by surface) in Spanish NUTS3 (Nomenclature of territorial Units for statistics, 

level 3) regions to estimate the total input of fertilizer per climatic region (temperate and Mediterranean) and 

water management type. We then compared two methods to calculate the Spanish national N2O emissions: 1) 

‘Current EF’, we applied an EF = 1.0% (IPCC, 2006) on the N inputs; 2) ‘New EFs’, the EFs obtained in this study 

for rain-fed, furrow, sprinkler and drip-irrigated systems in Mediterranean areas, and the IPCC (2006) EF for 

temperate areas in the cropping systems of northern Spain. 

 

3. Results 

3.1. Cumulative N2O emissions and EF for Mediterranean regions 

A total of 53 field studies analyzing N2O emissions in Mediterranean areas have been published in the last 10 

years from four of the five Mediterranean regions worldwide (see Supplementary material 2 for regional 

description). The cumulative emissions compiled here ranged from 0.15 kg N2O N ha-1 in a rice crop in 

California (Simmonds et al., 2015) to 43.3 kg N2O N ha-1 in a maize field in Israel (Heller et al., 2010), with a 

mean value of 2.8 kg N2O N ha-1. N2O emissions were on average largest for drip irrigation (4.6 kg N2O N ha-1) 

and smallest for flooded irrigation (0.5 kg N2O N ha-1) systems (Table 2). Synthetic fertilizers were the 

dominant type of fertilizer in all irrigation systems (Fig. S2) with drip irrigation systems receiving the most N 

fertilizer (295 kg N ha-1), with some cases of extremely high (1500 kg N ha-1) application rates (Heller et al., 

2010). Treatments with a mixture of organic-synthetic fertilizers emitted the most N2O (9.8 kg N2O N ha-1), 

which is related to the high average N application rate in this group (535 kg N ha-1). Organic-liquid fertilizers 

were applied at similar rates as synthetic fertilizers, but their emissions were on average higher (4.8 vs. 1.7 kg 

N2O N ha-1). The use of organic-solid fertilizers or the addition of inhibitors led to the lowest average 

cumulative emissions (1.8 and 1.2 kg N2O N ha-1, respectively) (Table 2). Maize and horticulture crops had the 
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highest N2O emissions (4.7 and 3.4 kg N2O N ha-1), while rice and cereal crops had the lowest (0.5 and 0.7 kg 

N2O N ha-1) (Table 2). 

Table 2 The number of observations (N), mean and standard deviation (SD) of cumulative N2O emissions, N application 
rate and experiment duration for some of the factors with a significant influence on N2O emissions from agricultural 
fields. 

Water Cumulative N2O emissions (kg N2O 
N ha-1)   

N application rate (kg N 
ha-1)  

Experiment duration 
(days)  

 N Mean SD  Mean SD  Mean SD 
           

Water           
Drip 55 4.6 9.5 295 387 299 110  
Flooded 14 0.5 0.8 161 59 277 106  
Furrow 29 2.9 4.7 205 94 254 92  
Sprinkler 55 3.7 3.3 226 75 186 99  
Rain-fed <450 mm 39 0.4 0.3 117 58 269 66  
Rain-fed >450 mm 40 2.3 4.8 153 125 253 131  

Fertilizer type           
Organic-liquid 30 4.8 5.4 172 95 251 71  
Organic-solid 26 1.8 2.3 238 155 227 114  
Mixture 22 9.8 13.5 535 523 327 73  
Synthetic 131 1.7 3.1 157 77 260 108  
Inhibitora 23 1.2 1.7 167 78 167 129  

Crop type           
Maize 56 4.7 7.0 323 298 223 129  
Horticulture 36 3.4 4.6 182 67 231 125  
Perennial 22 1.2 1.5 104 73 297 100  
Cereal 61 0.7 0.6 138 62 277 68  
Rice 14 0.5 0.8 161 59 277 106  
Others 43 4.5 8.8 230 290 243 112  
           

ainhibitor refers to treatments with synthetic and/or organic fertilizers where nitrification or urease inhibitors were 

applied. 

The mean EF for Mediterranean crops (EFMed)—covering rain-fed and irrigated systems, arable and permanent 

crops, organically and synthetically fertilized systems (treatments with inhibitors excluded) for all 

Mediterranean-type climate areas was 0.50% 0.12 (EFMed 95%CI, N = 200; Rosenthal’s fail-safe test: 4830). 

Grouping into different categories allowed us to identify which factors (soil, crop, irrigation system, type of 

fertilizer and application rate) had a significant impact on averaged EFs, providing key information when 

proposing N2O mitigation strategies. 

3.2. Influence of soil characteristics on EF 

Soil pH, soil organic C or soil texture did not significantly affect EFs. Soil pHs ranged from 4.8 in a rice 

experimental station field site in California (Simmonds et al., 2015) to 8.5 in a cereal crop in north-eastern 

Spain (Plaza-Bonilla et al., 2014), with most soils having a neutral to alkaline pH (in 83% of the cases, pH > 7). 
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The concentration of organic C in soils ranged from 4 g C kg-1 soil in California (Schellenberg et al., 2012) to 133 

g C kg-1 soil in Chile (Vistoso et al., 2012), and the average soil organic C concentration was 15.9 g C kg-1 soil. 

EFs did not significantly differ among soils with low (EF: 0.56, N = 59), medium (EF: 0.51, N = 94) or high (EF: 

0.37, N = 5) organic C concentrations. Finally, soil texture had no significant effect on average EFs, although 

trends suggested that larger EFs could be expected from coarse (EF: 0.58%, N = 77) and medium-textured soils 

(EF: 0.48%, N = 100), than from fine-textured soils (EF: 0.27%, N = 22). 

3.3. Influence of water management on EF 

Rain-fed systems had an average EF of 0.27% 0.21 (N = 62) which was significantly lower than 1% (Fig. 2). 

Studies under dry Mediterranean conditions (average annual precipitation <450 mm) had lower EFs (EF: 0.21% 

0.26, N = 38) than studies in areas with an average annual precipitation >450 mm (EF: 0.32% 0.33, N = 24). 

There was high variability in EFs between types of irrigation management (Fig. 2). Drip-irrigated (including both 

surface and subsurface) and furrow systems had lower EFs (EF: 0.51% 0.26, N = 52 and EF: 0.47% 0.36, N = 27, 

respectively) than sprinklers (EF: 0.91% 0.24, N = 45), which was close and not significantly differ from the IPCC 

default EF. 

It is important to note that drip-irrigated systems had the highest level of N fertilization (Table 2), which could 

have biased the results of the meta-analysis, increasing the EF for this group. Flooded systems (rice fields) had 

the lowest EF (0.19% 0.50, N = 14), in line with IPCC (2006) guidelines. 

3.4. Influence of fertilizer type and application rate on EF 

The highest EFs corresponded with organic-liquid fertilizers (EF: 0.85% 0.30, N = 30), which were mostly pig or 

cattle slurries, or the liquid fraction of their digestates (Fig. 3); this EF did not significantly differ from 1%. The 

rest of the fertilizer types had an EF significantly lower than 1% but were statistically similar to each other. The 

use of nitrification/urease inhibitors decreased the average EFs (EF: 0.14% 0.32, N = 23) when compared with 

synthetic, organic-liquid, and mixtures of organic and synthetic fertilizers, but was similar to EFs from organic-

solid fertilizers (EF: 0.19% 0.33, N = 24). Crops fertilized with organic-solid fertilizers received, on average, 

almost double the amount of N than those with synthetic or liquid fertilizers (Table 2), which reinforces 

organic-solid fertilization as a strategy to decrease EFs. Although not statistically significant, higher N 

application rates increased EFs. Low N application rates (<100 kg N ha-1) had the lowest EFs (EF: 0.27%, N = 40), 

whereas high N application rates (>400 kg N ha-1) resulted in EFs that did not significantly differ from the 1% 

IPCC value (EF: 0.82%, N = 15). 
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Fig. 2. The influence of different irrigation options on changes in N2O emission factors (EFs) in Mediterranean-type climate 
areas. Symbols represent mean effect sizes [EFs (%)] with 95% confidence intervals. The numbers shown in parentheses 
correspond to observations in each class upon which the statistical analysis was based. For this analysis, treatments with 
nitrification inhibitors were excluded (see Methods). 

 

 

Fig. 3. The impact of the type of N fertilizer and application rate on changes in N2O emission factors (EFs) in 
Mediterranean-type climate areas. Symbols represent mean effect sizes [EFs (%)] with 95% confidence intervals. The 
numbers shown in parentheses correspond to observations in each class upon which the statistical analysis was based. 
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3.5. Influence of crop types on EF 

Five out of the six considered crops presented EFs significantly lower than 1% (Fig. 4). Rice and cereals (wheat, 

barley, and oat) had the smallest EFs (EF: 0.19% 0.51, N = 14 for rice and 0.26% 0.22, N = 53 for cereals). 

Perennials (including vineyards, almonds, and olive orchards) and others (including pasture, legumes, 

rapeseed, crop rotations and bare soil) had intermediate EFs (EF: 0.54%, N = 19 for perennials and EF: 0.47%, N 

= 33 for others). Horticultural crops (melons, onions, tomatoes, and potatoes) showed a slightly higher than 

average EF (EF: 0.63% 0.31, N = 34). Finally, maize had a relatively high average EF (EF: 0.83% 0.26, N = 47) 

which did not significantly differ from the 1% default. 

3.6. Case study: effect of EF choice on Spanish N2O emissions estimation 

Table 3 shows ‘current EF’ used by national inventories (IPCC, 2006) and the ‘New EFs’ determined from this 

study for rain-fed, furrow, sprinkler and drip-irrigated systems in Mediterranean crops. Nitrous oxide emissions 

from Spanish agriculture vary considerably depending on the calculation method. The emissions from 

Mediterranean Spanish agriculture calculated with the current EF (12.5 Gg N2O N yr-1) exceeded the value 

using the new EFs (5.5 Gg N2O N yr-1) by a factor of two and this had a substantial impact on the estimates of 

total national emissions from cropping systems (Table 4). 

 

Fig. 4. Average N2O emission factors (EFs) in Mediterranean-type climate areas depending on the type of crop. Symbols 
represent mean effect sizes [EFs (%)] with 95% confidence intervals. The numbers shown in parentheses correspond to 
observations in each class upon which the statistical analysis was based. For this analysis, treatments with nitrification 
inhibitors were excluded (see Methods). 
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Table 3 Emission factors (EFs) used to estimate total N2O emissions in the Spanish cropping systems: current EFs 
according to IPCC (2006) and the new values for Mediterranean areas developed in this work for different irrigation 
systems. The percentages in brackets show the proportion of the area under each irrigation system in Spain. 

 EFs Temperate climate Mediterranean climate 

Current Rain-fed crops 1.0% 1.0% 
 Irrigated crops 1.0% 1.0% 

New EFs Rain-fed crops 1.0% 0.27% 
 Irrigated furrow (27% surface) 1.0% 0.47% 
 Sprinkler (24% surface) 1.0% 0.91% 
 Drip (49% surface) 1.0% 0.51% 
    

Table 4 Comparison of total N2O emissions in Spanish cropping systems (MMARM, 2010) after the application of the 
current EFs and the new EFs obtained in this study, considering that all the irrigated crops are furrow, sprinkler or drip 
irrigated. The percentages in brackets show the proportion of the area under each irrigation system in Spain. 

   Temperate climate Mediterranean climate Total 
 Fertilizer N input (synth + org) Rain-fed crops 137 585 722  
 (Gg N yr-1) Irrigated crops 13 664 678  
  Total 151 1249 1400 

 Current EFs Rain-fed crops 1.4 5.8 7.2  
 Total N2O emissions Irrigated crops 0.1 6.6 6.8  
 (Gg N yr-1) Total 1.5 12.5 14.0 

  Rain-fed crops 1.4 1.6 3.0  
 New EFs Furrow (27%) 0.0 0.8 0.9  
 Total N2O emissions Sprinkler (24%) 0.0 1.5 1.5  
 (Gg N yr-1) Drip (49%) 0.1 1.7 1.7  
  Total 1.5 5.5 7.0  

 

4. Discussion 

In this paper, we derived an EF for N2O emissions from Mediterranean regions (EFMed: 0.5%) and 

demonstrated that EFs in Mediterranean-cultivated lands are significantly lower than the 1% IPCC Tier I 

default value (IPCC, 2006) or the 1.25% (IPCC, 1996) used to calculate N2O emissions in response to 

applying N fertilizer to land. We, therefore, recommend that Mediterranean countries, or regions, consider 

refining their national inventories to reflect the relatively small EF. Here, we show the implications of such a 

change by using the EFs obtained in this study to estimate total N2O emissions from cropping systems in 

Spain and compare them to estimates using the IPCC default value. 

To derive statistically robust estimates of EFs, we opted to retain studies without control measurements. 

We performed a sensitivity test (see Supplementary material 2) which demonstrated that including these 

studies had no impact on the mean EFMed (EF: 0.496% including all studies and EF: 0.463% excluding cases 

without control, see Supplementary material 2). We, therefore, conclude that the EFMed is robust, but due 

to the high heterogeneity of the studies included in the dataset, it was often difficult to find significant 

differences between different management strategies. Further field research, measuring emissions over 
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the whole year and including control treatments, is merited to better quantify EFs for the various 

management options in Mediterranean systems. 

4.1. Influence of soil characteristics on EF 

Soil characteristics show very limited impact of EFs. This finding seems to contradict previous studies where 

soil organic C concentration and pH had a clear impact on denitrification and therefore N2O emissions (Li et 

al., 2005; Šimek and Cooper, 2002). However, these relationships might be difficult to find in our dataset, 

where most soils had a neutral or slightly alkaline pH and similar (in general low) concentrations of organic 

C, with other variables having a stronger effect on N2O emissions (N application rate, soil water content, 

type of fertilizer applied, etc.). In addition, although denitrification is generally identified as the major 

process generating N2O in most cropping systems, this does not necessarily stand for studies under 

Mediterranean conditions, where the importance of nitrifier-nitrification and nitrifier-denitrification have 

been documented (Sánchez-García et al., 2014; Sánchez-Martín et al., 2008). Nitrification (contrarily to 

denitrification) does not need an additional source of C and therefore if nitrification pathways dominate, 

the soil C availability may not play an important role on N2O emissions. 

Although not significant, we found higher EFs in coarse/ medium-textured soils (EF: 0.58 and 0.48%) than in 

fine-textured soils (EF: 0.27%). Since denitrification needs anaerobic conditions, which are more likely to 

occur in fine-textured soils, this result seems contradictory. Our finding might be related to (i) complete 

denitrification (transformation to N2) in less-aerated fine-textured soils (Šimek and Cooper, 2002) or (ii) 

nitrification processes having an important role in N2O emissions, with higher nitrification rates in low 

water content, well-aerated soils (Thomsen et al., 2003). Also, previous studies found higher annual 

denitrification losses in loamy soils than sandy or clay-textured soils, which was interpreted as a limitation 

of C diffusion by adsorption to clays in fine-textured soils (Barton et al., 1999). 

4.2. Influence of water management on EF 

Among the irrigation technologies used in Mediterranean cropping systems, furrows are still widespread in 

summer-irrigated crops and sprinkler irrigation systems are on the increase in Spain (MAGRAMA, 2014). 

However, since many Mediterranean regions suffer from water scarcity, water-saving irrigation systems 

such as drip irrigation (both surface and subsurface) are being developed. The area sown to maize under 

drip irrigation is expected to increase due to higher water use efficiency, maintained crop yields and 

technical viability (Couto et al., 2013). Despite these advantages, the impact of drip irrigation systems on 

N2O emissions is poorly documented. 
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Our analyses revealed that EFs for N2O from drip-irrigated systems are much lower than those in which 

water is applied through sprinklers, even when the average N application rate was higher with drip 

irrigation. This is consistent with other field-based research (Kallenbach et al., 2010; Sánchez-Martín et al., 

2008) and a previous review under Mediterranean conditions (Aguilera et al., 2013a). The reduction in N2O 

emissions with drip irrigation is probably caused by a reduction in the rate of water application compared 

with other conventional systems (Sharma-sarkar et al., 2001). This may decrease the soil-water-filled pore 

space (WFPS) below the optimum range for N2O production through denitrification, which is 60–90% 

depending on soil type (Barton et al., 1999,Sanz-Cobena et al., 2014a). WFPS levels below this threshold are 

common in many of the drip irrigation studies included in this review. For instance, in Abalos et al. (2014), 

the WFPS was below 65% for 84% of the experimental period; it never exceeded 50% in the study of 

Schellenberg et al. (2012), and it ranged from 20 to 30% and 40–60% in Kallenbach et al. (2010) and 

Kennedy et al. (2013), respectively. Therefore, our results suggest that drip irrigation represents an 

effective N2O mitigation practice in Mediterranean irrigated systems. These benefits, however, should be 

evaluated together with other effects on the GHG balance and further socioenvironmental consequences. 

For example, increased infrastructure material requirements and energy needs for pressurizing the 

irrigation water might offset drip irrigation N2O-related emission savings in certain situations, while 

reduced water use (and related energy consumption) might be the main component responsible for 

emission reduction in other situations (Sanz-Cobena et al., 2017). 

The lower EFs found under furrow irrigation compared to sprinkler irrigation might be related to a slightly 

lower average N application in the furrow systems included in our dataset and to a different soil wetting 

pattern, favoring complete denitrification to N2 after irrigation events in furrows (Sánchez-Martín et al., 

2008). 

Our results show that rain-fed crops with less than 450 mm rainfall and flooded systems have the lowest 

EFs of all systems (Fig. 2). In contrast, rain-fed crops in areas with annual precipitation greater than 450 mm 

have larger emissions. These findings show the strong effect of specific climatic conditions and soil 

moisture on the performance of Mediterranean cropping systems in terms of N2O emissions. The 

distribution of rain inputs also plays a relevant role. The first rainfall after long periods of drought (common 

in summers of Mediterranean areas) usually triggers N2O emissions. This pulsing effect, also observed in the 

dry areas of drip-irrigated crops, is due to the accumulation of mineral N in dry soils and the reactivation of 

water-stressed bacteria after rainfall events (Sánchez-Martín et al., 2010a; Skiba et al., 1997). 

Drip irrigation may have an adverse side-effect as its use has been associated with enhanced emissions of 

nitric oxide (NO) (Abalos et al., 2014). This is because the lower WFPS may favor NO production from 
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nitrification. Pilegaard (2013) reported maximum NO emissions at intermediate soil moisture (40–60% 

WFPS) since NO is highly reactive and will be consumed at higher soil moisture. 

4.3. Influence of fertilizer type and application rate on EF 

Our results suggest that the use of liquid manures and inorganic N fertilizers results in greater N2O 

emissions than organic-solid fertilizers such as composted manures and green wastes. Liquid and inorganic 

N fertilizers are likely to be more readily available to plants and microorganisms, whereas solid organically-

bound N requires decomposition and microbial mineralization to be used in N2O-producing processes 

(Poodle et al., 2002). Composted organic fertilizer N is thus released more slowly, ultimately increasing N 

uptake by crops (Ryals et al., 2015) and decreasing the potential for N2O emissions. It is notable that not all 

organic fertilizers are equivalent with regard to their potential effects on N2O emissions. For example, fresh 

manures and manure slurries can result in relatively large N2O emissions. A recent meta-analysis found the 

IPCC Tier II model underestimated N2O emissions from cattle manure in the United States by an order of 

magnitude (Owen and Silver, 2015). Davidson (2009) also suggested that manure management was a 

dominant source of atmospheric N2O concentrations, accounting for more than 40% of anthropogenic N2O 

emissions. Liquid manures are rich in both N and C, potentially facilitating N2O production in low C 

environments, mostly through denitrification. As already observed in Aguilera et al. (2013a), solid manure 

would result in lower N2O emissions, unlike in more humid areas with relatively high decomposition rates 

and N2O EFs (Owen et al., 2015). 

As expected, nitrification/urease inhibitors effectively reduced EFs from Mediterranean systems (Mosier et 

al., 1996). In a recent review, Gilsanz et al. (2016) developed EFs of 0.42% 2.2 and 0.70% 3.3 for DCD and 

DMPP, respectively, two commonly used nitrification inhibitors. The lower EF found in our study (0.14% 

0.32) agrees with the low baseline EFs found in the studies included in our dataset. Thus, inhibitors seem to 

be a good strategy to mitigate direct N2O emissions under Mediterranean conditions, although the 

potential is lowered by the relatively small baseline emissions in Mediterranean systems. 

In agreement with previous studies (Kim et al., 2013; Shcherbak et al., 2014), increasing fertilizer 

application rates led to increased EFs. We found that applying N fertilizers over 400 kg N ha-1 resulted in EFs 

that did not significantly differ from the 1% IPCC Tier I default value. The lack of statistical significance 

between N doses is probably related to the fact that in our dataset most studies only considered one N 

application rate, with a limited number of cases with very low or high N fertilization rates. 
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4.4. Influence of crop types on EF 

In a previous quantitative review of Mediterranean cropping systems, Aguilera et al. (2013a) observed that 

the differences in cumulative N2O emissions among crop types clearly respond to the management 

characteristics of each crop type; our results confirm these conclusions. Generally, the crop types in which 

water and fertilizer applications are low (see Figs. S3 and S4 and Table 2), such as rain-fed crops (winter 

cereals), have the lowest N2O response to N applications. A low EF for rice is associated with flooding which 

generates anaerobic conditions favoring complete denitrification to N2, thereby reducing N2O release from 

the soil (Conrad, 1996). Maize has a high EF, possibly because it is irrigated without implementation of 

water-saving techniques and has on average higher N application rates. The wide confidence intervals 

observed for the EFs in perennials and rice are due to the lower number of observations within these crop 

categories. 

4.5. Case study: effect of EF choice on Spanish N2O emissions estimation 

In this work we have seen how the application of EFs adapted to Mediterranean conditions can significantly 

reduce the national estimates of total N2O emissions from cropping systems. Applying the new EFs has 

consequences for determining the effectiveness of N2O mitigation strategies in Mediterranean regions, as 

baseline emissions will be smaller than those suggested by Tier I emission estimates. The level of indirect 

emissions is, however, highly uncertain, and published information is scarce, and has thus not been 

assessed in this study. IPCC Tier I proposes an EF for indirect emissions of 0.75% while Garnier et al. (2009, 

2013) estimated that, for the Seine temperate basin, indirect emissions represented 13– 17% of total direct 

emissions. Due to the regulation of water in Mediterranean agricultural areas in Spain through a dense 

drainage network and reservoirs (Aguilera et al., 2015), the potential for denitrification could be high and 

could, therefore, generate high indirect emissions. The magnitude of indirect N2O emissions in 

Mediterranean areas is an interesting area for future research. 

 

5. Concluding remarks 

The average EF for nitrous oxide emissions in Mediterranean cropping systems was 50% lower than the 

IPCC Tier I default value (1%), which is largely based on values observed in temperate regions. The most 

important factors controlling the magnitude of soil N2O EFs from Mediterranean regions were water regime 

(irrigation technique or precipitation amount) and fertilizer type and application rate. In rain-fed systems 

with precipitation below 450 mm, the EF is much lower than the IPCC values. The EF for sprinkler-irrigated 

systems is similar to that for temperate cropping systems, whereas drip-irrigated systems have a high 
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potential for mitigation (EF: 0.51%). The N fertilizer rate altered EFs, suggesting a non-linear relationship 

between N2O emissions and N application rate. Intensive cropping systems, such as irrigated maize, tended 

to have higher EFs than less intensive systems such as cereals. 

Applying specific EFs would lower estimates of total N2O emissions in countries with large areas of 

agricultural soils in Mediterranean climates. For example, applying current Tier I EFs to Spanish cropping 

systems leads to a total N2O emission estimate that is a factor of two higher than when applying the new 

EFs from our analysis (14 Gg N2O N yr-1 vs. 7 Gg N2O N yr-1). Our results indicate that N2O emissions from 

Mediterranean agriculture are much lower than expected and that with the new EFs, the effect of 

mitigation strategies such as drip irrigation or using nitrification inhibitors, even if highly significant, may be 

smaller in absolute terms (since baseline emissions will be lower). 
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