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The pesticide chlordecone is trapped in the tortuous

mesoporosity of allophane clays

Thierry Woignier ' - Florence Clostre® - Paula Fernandes®* - Alain Soler” -
Luc Rangon'? . Maria Isabel Sastre-Conde® - Magalie Lesueur Jannoyer>*

Abstract Some volcanic soils like andosols contain short-
range order nanoclays (allophane) which build aggregates
with a tortuous and fractal microstructure. The aim of the work
was to study the influence of the microstructure and
mesoporosity of the allophane aggregates on the pesticide
chlordecone retention in soils. Our study shows that the allo-
phane microstructure favors pollutants accumulation and se-
questration in soils. We put forth the importance of the meso-
porous microstructure of the allophane aggregates for pollut-
ant trapping in andosols. We show that the soil contamination
increases with the allophane content but also with the
mesopore volume, the tortuosity, and the size of the fractal
aggregate. Moreover, the pore structure of the allophane ag-
gregates at nanoscale favors the pesticide retention. The fractal
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and tortuous aggregates of nanoparticles play the role of
nanolabyrinths. It is suggested that chlordecone storage in
allophanic soils could be the result of the low transport prop-
erties (permeability and diffusion) in the allophane aggregates.
The poor accessibility to the pesticide trapped in the mesopore
of allophane aggregates could explain the lower pollutant re-
lease in the environment.

Keywords Chlordecone - Soil contamination - Allophane -
Mesoporosity - Tortuosity - Fractal microstructure

Introduction

Andosols contain clay (allophane) that presents unique struc-
tures and physical properties compared to crystalline clays.
Allophane is a short-range order aluminosilicate, the unit cell
of which appears as spheroids with a diameter between 3 and
5 nm (Wada 1985) forming aggregates with a fractal structure
(Adachi and Karube 1999; Chevallier et al. 2008; Wada 1985;
Woignier et al. 2008). The original properties of allophane
have been used in various fields for trapping purpose.
Recently allophane has been found to be effective in the sta-
bilization of C in soil and composts, offering perspectives for
carbon sequestration technology (Bolan et al. 2012; Calabi-
Floody et al. 2011). Synthetic allophane has also been studied
as adsorbents for organic pollutants (Espinoza et al. 2009).
Chlordecone (CLD) is an organochlorine pesticide. It is a
highly hydrophobic organochlorine pesticide (K., between
4.9 and 5.4) and poorly soluble (0.35-3 mg L") (Soler et al.
2014; U.S. Environmental Protection Agency 2012). It is gen-
erally admitted that chlordecone is poorly biodegradable es-
pecially in environmental conditions explaining its persistence
in soils (Cabidoche et al. 2009; Epstein 1978; UNEP 2007).
The CLD poor biodegradability is attributed to its peculiar



chemical structure (bishomocubane “cage”) and the high ste-
ric hindrance caused by the ten chlorine atoms. However,
Dolfing et al. (2012) showed that there were no thermodynam-
ic reasons why chlordecone-respiring or chlordecone-
fermenting organisms should not exist. Previous work studied
variations in the ratio of CLD-5b-hydro to CLD in soils
(Clostre et al. 2015a). The mean ratio was lower in andosols
than in nitisols. The differences in ratios between andosols and
nitisols could be due to a lower biodegradation of CLD to
CLD-5b-hydro, because of a lower availability in andosols.
Chlordecone biodegradation is not impossible but at least very
restricted in these clays.

This neurotoxic and carcinogenic molecule (Dallaire et al.
2012; Epstein 1978) still persists in the soil for centuries and
contaminates foodstuffs and water resources (Coat et al. 2011;
Fung et al. 2005; Clostre et al. 2015b; Jondreville et al. 2014;
Della Rossa et al. 2017) thus leading to human exposure
through food (Dubuisson et al. 2007; Gimou et al. 2008).
The bioaccumulation process leads to the contamination of
the entire food web. Recently, a book provides a presentation
of various aspects of chlordecone pollution (Lesueur et al.
2016).

Water is the main vehicle of pesticides transport; so, water
flow is an important point to consider. However, few studies
have focused on pesticide transfers in andosols. When com-
paring cadusafos leaching in andosols and nitisols, it appeared
that cumulated water pollution by cadusafos stemming from
nitisol percolation was much greater than that from andosols
(Cabidoche et al. 2009). In the case of CLD, Cabidoche et al.
(2009) collected samples from lysimeters installed on an
andosol and a nitisol. They observed that the concentrations
of CLD in similar volumes of drainage water were 3 to 4-fold
higher in the nitisol than in the andosol. This finding sug-
gested that the desorption capacity of nitisol was higher than
that of andosol.

These results are consistent with results on soil to crops
contamination found in the literature. Contamination of crops
by soil CLD depended on the type of soil: andosols were less
contaminating than nitisols (Cabidoche and Lesueur-Jannoyer
2012; Woignier et al. 2015). Studies on chlordecone transfer
to water and crops led to the general assessment that andosol
tends to retain the pesticide more than other soils.

So, the literature shows that andosols are generally more
polluted by CLD than the other kinds of tropical soils (nitisols,
ferralsols) but they release less pesticide to the environment
(Cabidoche et al. 2009; Cabidoche and Lesueur-Jannoyer
2012; Woignier et al. 2012). Organic matter and mineral sur-
face (Pignatello 1998; VIckova and Hofman 2012) are well
known to influence pesticide retention in soils but physical
properties of soil porous structure are seldom studied.

In its natural state, the clay consists of aggregations of
spherical allophane particles (Wada 1985; Wells and Theng
1985; Lindner et al. 1998). Transmission electron microscopy

shows allophane nano-spheres with a diameter of about 5 nm
(Wada 1985; Calabi-Floody et al. 2011; Chevallier et al.
2008). The allophane spherule aggregates (average diameter
100 nm) and organo-mineral complexes form small aggre-
gates with pores in the mesopore scale (2-50 nm) and with
high organic matter loadings. Seventy-five to 90% of the soil
organic matter found in the pores is in the 10-1000 nm size
range (McCarthy et al. 2008).

The present study hypothesizes that the peculiar properties
of allophane and specially the porous and tortuous microstruc-
ture of allophane aggregates favor pollutant accumulation in
soils and hinder the transfer to the environment. We thus focus
on the physical properties of the allophane clay to explain the
pollutant trapping.

For that, we propose to do the following:

1) Measure the water chlordecone contamination from
andosols having different allophane content.

2) Show the influence of allophane concentration on porous
features of soils. We measure the porous properties (spe-
cific surface area, pore volume, fractal features) of several
andosols by small angles X-ray scattering and nitrogen
adsorption techniques.

3) Finally, we put forth the importance of the clay micro-
structure (fractal range, mesoporous volume, and tortuos-
ity) for pollutant trapping.

Experimental
Soil samples

We sampled 31 soils, andosols (allophane clay) and nitisols
(halloysite clay), in Martinique (14°40 N, 61°00 W) in the
vicinity of the “Montagne Pelée” volcano. These two kinds
of soils are representative of the main polluted soils found in
French West Indies (Brunet et al. 2009; Cabidoche et al.
2009). The soils we selected were known to be historically
polluted by CLD. The soils samples were retained in closed
containers to avoid moisture evaporation and associated struc-
tural changes of allophanes. Samples were stored during
7 days at 4 °C.

The allophanic content was measured by the method of
Mizota and van Reewijk (1989) using Al and Si content ex-
tracted by oxalate and pyrophosphate and measured by induc-
tively coupled plasma atomic emission spectroscopy (ICP-
AES ICAP 6500, Thermo Scientific, France). The soils sam-
ples covered the allophane range 0 to 26% (w/w basis).

The crystalline and amorphous structure was studied by X-
ray diffraction (Cu Ko) with a Philips PW 1830. Before X-ray
diffraction, the samples are dried at 90 °C and the powder is
ground at 40 pm.



The presence of allophane was characterized by infrared
spectroscopy. The apparatus used was an IR-FT Nicolet
510P spectrometer and the samples were diluted in KBr pel-
lets with a 5 10> mass ratio.

Physical fractionation of soil organic matter by sieving in
water (Bruckert et al. 1978; Feller 1979) as previously de-
scribed (Clostre et al. 2014b). It was carried out after leaving
20 g of soil to stand overnight at 4 °C in 300 cm® of water
added with 0.5 g of hexametaphosphate, followed by shaking
for 6 h at 50 rpm with five glass balls 1 ¢cm in diameter. This
method separates the different organo-mineral soil fractions
according to their particle size. In our case, we separated three
fractions: (1) 0—-50 um, corresponding to the soil organic mat-
ter associated with clay and silt (fine fraction), this fraction
contained stable allophane microaggregates; (2) 50-200 pm,
corresponding to pre-humified or partially mineralized organ-
ic debris of plant or animal origin and fecal pellets; and (3)
200-2000 pum, corresponding to coarse sand and plant
residues.

Three replicates of each fraction were prepared and
CLD and organic carbon contents were analyzed in each
replicate.

The carbon contents are measured with a CHN
(Thermofinnigan) chromatograph analyzer.

Transfer experiments

The leaching experiment was performed through water extrac-
tion such as evaluating soil solution contamination by CLD.
Micro-columns containing 5 g of soil were prepared with at
least four replicates for each soil. Leaching with 12.5 mL of
nanopure water was slightly forced by gentle centrifugation
(500%g) directly in the micro-columns. Nanopure water was
used to avoid CLD contamination by tap water as described in
Clostre et al. (2014b). Pure water was produced using a water
purification system (Barnstead Nanopure Diamond) and an
activated carbon filter (Bioblock Scientific ORC-83005).
One important parameter in the leaching experiments is the
S/V ratio, where S is the contact area and V the liquid volume.
In this study, the S/V ratio was around 200 cm ', which is
comparable to the leaching test used for porous materials
and nuclear waste glasses (Rebiscoul 2004; Woignier et al.
1998). The system was designed to preserve the soil structure
as much as possible. After water passed through the soil col-
umns, water CLD concentrations were determined by solid-
phase microextraction and gas chromatography mass spec-
trometry (GC450/MS240, Varian, Palo Alto, CA, USA) ac-
cording to the procedure detailed in Soler et al. (2014). The
soil to water transfer coefficient (WTC) is the ratio of the
pesticide concentration in lixiviates to the pesticide concentra-
tion in soil expressed in microgram per liter/milligram per
kilogram of dry soil.

CLD concentration in soils samples was analyzed by the
LDA26 (Valence, France) as described in Cabidoche and
Lesueur-Jannoyer (2012).

Soils porous properties

Porous and structural measurements generally require dried
solid samples. A preliminary study (Woignier et al. 2005)
has shown that the CO, supercritical drying is necessary to
preserve the porosity and microstructure of andosols. A criti-
cal point dryer (CPD 010, Balzers, Liechtenstein) was used in
a procedure such as previously described (Woignier et al.
2005).

The specific surface area (SSA) of the sample was calcu-
lated from the adsorption curve at P/PO = 0.3 and the BET
equation (Brunauer et al. 1938) by N, adsorption-desorption
curves (Micromeritics ASAP 20120, France). The soil powder
was placed in a test tube to degas for 24 h at 50 °C in a vacuum
of 2-4 um Hg.

The pore volume was calculated from the bulk density and
the solid density measured by He pycnometry for the different
kinds of soils. The solid density is closed to 2.5 g.cm* for the
allophanic soils and 2.66 g.cm * for the halloysite soils (Dorel
et al. 2000).

Physical features of clay aggregates

The morphology of allophane and halloysite clays was char-
acterized by electron microscopy. The transmission electron
micrographs were obtained with a Transmission Electron
Microscope JEOL Type 1200 EX (100 kV). The scanning
electron micrographs were obtained with a Cambridge stereo
scan 360 scanning electron microscope.

The fractal features of the allophane aggregates were char-
acterized by small angle X-ray scattering experiments (SAXS)
in transmission mode. A copper rotating anode X-ray source
(operating at 4 kW), with a multilayer focusing “Osmic”
monochromator giving high flux (10* photons.s') and punc-
tual collimation, was employed. The data from the SAXS
experiments provided three types of information on the fractal
geometry: the maximum size of the fractal clusters (L), the
size of the primary particles (@) which built the clusters, and
the fractal dimension (Df) which characterized the spatial ar-
rangement in the cluster (Marliére et al. 2001; Teixeira 1988).
These experiments which characterize the clay microstructure
between 1 to 100 nm cover the range of the allophane
mesoporosity.

Mesopore volumes (the pore volume of clay aggregates)
were determined as cumulative values in the range between 2
and 50 nm (Rouquerol et al. 1994) with a Barrett-Joyner—
Halenda method (BJH) (Barrett et al. 1951) using desorption
branches of the N, adsorption—desorption isotherms.



Tortuosity (7) inside the allophane aggregates is calculated
from the fractal features; ¢ is a power law function of the length
scale: £ o« N} (Jullien and Botet 1987; Stanley et al. 1985). A is
the tortuosity exponent and can be derived from the fractal
dimension (Df) and the spreading dimension (D) A = Df/DI.

(Jullien and Botet 1987).
Thus, t = LP/PH1 4 @IDHT

Statistical analysis

All statistical analyses were performed using XL STAT
2012.6.08 (Addinsoft 1995-2013). ANOVA and Tukey
Honestly Significant Difference tests (P < 0.05) were used
to compare means of transfer (WTC) for the different soil
types and to assess the difference of CLD content in the dif-
ferent soil fractions for each soil type. The linear regressions
and ANOVA were used to assess the equation of the linear
models, their goodness of fit, and the significance of the ex-
planatory variable.

Results and discussion
Allophanic soils

To confirm the presence of allophanes in the studied andosols,
we used X-ray diffraction and infrared techniques.

X-ray patterns of studied andosols showed bulges of the
baseline between 2 and 7 A, according to the literature (Barois
et al. 1998; Woignier et al. 2005), these bulges can be attrib-
uted to non-crystalline solids, allophane, and/or imogolite.
While the X-ray diffraction patterns for nitisols showed peaks
at 4.45 and 7.4 A that can be attributed to the clay halloysite
(Dubroeucq et al. 1998; Onodera et al. 2001). The infrared
spectroscopy confirmed the presence of allophane (character-
istic bands like 506, 577 and a shoulder at 970 cm_l).
Moreover, the IR spectra of the different studied andosols do
not present doublets of the band at 577 and 967 cm™ ' charac-
teristic of the imogolite structure (Denaix et al. 1999;
Gustafsson et al. 1995; Levard et al. 2012).

Andosols are derived from volcanic materials (Colmet-
Daage et al. 1965; Dubroeucq et al. 1998). These volcanic
soils comprise weathering products such as allophane origi-
nating from the lixiviation of volcanic ash and glasses (Barois
et al. 1998; Basile-Doelsch et al. 2005; Quantin et al. 1991).
The literature shows that the clay consists of aggregations of
spherical allophane particles (Wada 1985; Wells and Theng
1985; Lindner et al. 1998). Allophane spherules tend to form
porous nanosized aggregates (Calabi-Floody et al. 2011;
Garrido-Ramirez et al. 2012), whose average diameter is
around 100 nm and there is a clear analogy between allophane
aggregates and synthetic silica gels (Adachi and Karube 1999;
Clark and McBride 1984; Chevallier et al. 2008).

We compare the structure of halloysite clay with that of
allophane clay isolated from the studied nitisols and andosols
(Fig. 1). The plate-like particles of phyllosilicate clay like
halloysite are 3001000 nm in size (Fig. la). In comparison,
the scanning electron micrograph confirms the spongy structure
of allophane clay with aggregates around 100 nm (Fig. 1b). The
allophane aggregates are highly porous in the range of the
mesoporosity (Calabi-Floody et al. 2011; Maeda et al. 2009).

From the transmission electron microscopy (Fig. 1¢), we
see that the morphology of the allophane aggregates is pecu-
liar. Allophane has a very open structure made up of aggre-
gated small particles that form clusters of around 10-20 nm.
The clusters can stick together and form larger and larger
aggregates up to L ~ 100-300 nm in size (Fig. 1c). This hier-
archical aggregation is characteristic of a fractal microstruc-
ture. The fractal features of the studied samples will be mea-
sured in “Influence of allophane content on soil pore
properties” section.

Transfer experiments

The literature suggested that the desorption capacity of nitisol
was higher than that of andosol (Cabidoche et al. 2009).
Through the leaching experiment, we evaluated the contami-
nation of the soil solution by chlordecone. The transfer of
chlordecone to water (WTC, Table 1) was twice lower in
allophane clay (andosol) than halloysite clay (nitisol) despite
similar organic carbon content. The WTC were significantly
different for the two soils (P < 0.0001).

It is generally admitted that the pesticide retention is soils is
related to the organic matter content (Pignatello 1998) and to
the sorption capacity of the mineral surface (Vickova and
Hofman 2012; Fushiwaki and Urano 2001). It has already been
shown that organic carbon content could not account for CLD
intra-field variability (Clostre et al. 2014a) and could only par-
tially explain the lower uptake observed for plants growing in
andosol compared to ferralsol and nitisol (Clostre et al. 2015b).

In this study, we showed that the higher the allophane con-
tent, the lower the WTC (Fig. 2, WTC = —0.2548 allophane
(%) + 4.5096, P < 0.0001 and /* = 0.7378) despite similar
organic carbon content. In Fig. 2, the carbon content is
2.1 wt% for the nitisols (0% allophane weight), and 2.9, 2.3,
and 3.1 wt% for the andosols with 5.9, 10.2, and 11.8 allo-
phane weight %, respectively (organic carbon was not mea-
sured for the 2.5 allophane weight %).

Likewise, andosols show higher sorption capacity for a
range of pesticides, such as atrazine, parathion, and cadusafos
compared to other soils (Prado et al. 2014; Olvera-Velona
et al. 2008; Miiller et al. 2003). And, due to its adsorption
capacity, allophane clay has been studied for use in water
purification for benzene derivatives (Nishikiori et al. 2009),
fluoride (Kaufhold et al. 2010), and boron (Reinert et al.
2011).



micrographs of allophane clay

The structural properties of the mineral matrix with which
pollutants are associated may influence pollutant bioavailabil-
ity and retention in soils (Peters et al. 2007; Chung and
Alexander 2002; Liu et al. 2009; Rana et al. 2009).
Allophane is short-range order clay, whose porous structure
and physical properties strongly differ from those of the crys-
talline clays as halloysite found in nitisols.

It is likely that the propensity of andosols for pollutant
retention is related to the allophane microstructure and
nanopore features. Data show that physical protection and
adsorption of persistent pesticide are both higher in nanosized
structures (Pignatello 1998; Calabi-Floody et al. 2012;
Baldock and Skjemstad 2000). The combination of pore size
and network tortuosity may play a key role in controlling
pesticide inaccessibility to microorganisms and water. The
decrease in bioavailability has often been explained by slow
diffusion in small pores and can be physically explained as the
result of entrapment of molecules (Arias-Estévez et al. 2008;
Puglisi et al. 2007; Reid et al. 2000). It is necessary to explore
the physical processes that explain these differences.

Influence of allophane content on soil pore properties

The data show that the pore volume Vp and the specific surface
area S were well correlated to the allophane contents (Fig. 3a,
b). We found that S (m®.g™") = 43.39 + 4.99 allophane (%)
(P < 0.0001 and * = 0.87) and Vp (em>.g ") = 0.58 + 0.059
allophane (%) (P < 0.0001 and #* = 0.79). The specific surface
area could be as high as 200 m”.g ' and Vp close to 2 cm’.g "

Large specific surface area is generally the signature of an
important mesoporosity contribution (Gregg and Sing 1982).
The literature (Adachi and Karube 1999; Wada 1985;
Woignier et al. 2008) describes the allophane aggregates struc-
ture as fractal in the range of a few nanometer up to almost
100 nm. This new study confirms that the fractal dimension is
close to 2.6 + 0.1 and the particles size (@) extracted from the
scattering spectra (SAXS) is constant (in the range 45 nm).
The Df constant means that the aggregation mechanism is
quite the same, whatever the allophane concentration. The
measured Df is rather close to the fractal dimension (2.2) cor-
responding to the “Reaction limited cluster aggregation”

(Kolb et al. 1983) and the higher measured value (2.6 com-
pared to 2.2) is likely the result of a restructuring with time
(Jullien and Botet 1987).

We show that the size of the fractal aggregate (L) increases
with the allophane concentration (Fig. 3¢, L (nm) = 6.65 + 1.95
allophane (%), P < 0.0001 and #* =0.89). When particles stick
together to form clusters, they also create voids, i.e., pores,
inside the clusters. These clusters stick together to form larger
porous clusters with larger pores and so on, up to L the max-
imum size of the fractal aggregates. Another important feature
of fractal aggregates is their internal porosity (mesoporous vol-
ume Vmeso). Figure 3d shows a strong increase in the meso-
porous volume Vmeso with the allophane Vmeso = 0.0008 +
0.0197 allophane (%) (P < 0.0001 and * = 0.8018).

This kind of aggregation process leads to a porous structure
with a high tortuosity () which is another important property
of fractal aggregates. ¢ can be derived from the fractal dimen-
sion (Df) and the spreading dimension (D), the fractal dimen-
sion of the minimum path (Jullien and Botet 1987): r = L
Dh-1  @FDhH-1

For nanoporous microstructure close to allophane (silica
gels), the spreading dimension D/ has been found experimen-
tally to be close to 1.7 (Vacher et al. 1990) and thus the expo-
nent \ should be in the range 1.47 to 1.55 with Df'in the range
2.6. These A values are in a good agreement with the data
found experimentally to be between 1.4 and 1.8 (Vacher
et al. 1990; Courtens et al. 1987) and with the predictions of

Table 1  Transfer of chlordecone to water: the soil to water transfer
coefficient (WTC) is the ratio of the pesticide concentration in lixiviates
to the pesticide concentration in soil expressed in microgram per liter/
milligram per kilogram of dry soil. Differences between clay types were
tested by ANOVA (P = 0.05) with seven replicates for andosol and eight
for nitisol. The mean carbon content is 2.3 and 2.1 wt% for the andosol
and nitisol, respectively

Soil and clay type Soil contamination WTC
range (in mg CLD
kg ' dry soil) Mean Standard
deviation
Andosol (allophane) 3.4-6.7 233 0.66
Nitisol (halloysite) 0.5-0.91 4.68 1.07
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aggregation models (Herrmann and Stanley 1988; Meakin
etal. 1984). We have no D/ value for the allophane aggregates,
but we can assume that the D/ value is not very different from
the D/ of nanoporous silica DI = 1.7.

Figure 3e shows the increase of the aggregates tortuosity
with the allophane content (calculated with D/ = 1.7 and the
data found from the SAXS experiments: Df = 2.6, a = 5 nm
and the L values from Fig. 3c). Figure 3e shows the strong
positive correlation of the allophane content with the aggre-
gates tortuosity (#): ¢+ = 1.3628 + 0.082 allophane (%)
(P <0.0001 and * = 0.8593). The allophane aggregate micro-
structure resembles a labyrinth at the nanometer scale. This
description suggests that the accessibility in the allophane mi-
crostructure decreases when the size of the labyrinth, the in-
ternal porosity, and tortuosity increase. This hypothesis is
discussed thereafter.

Influence of allophane features on the CLD retention

A previous work (Woignier et al. 2012) has demonstrated the
strong influence of the allophane content on the soil contam-
ination. The new data confirm that the soil chlordecone con-
tent increases with the allophane content: CLD = 0.6223 +
0.8951 allophane (%) (P < 0.0001 and = 0.8257). 1t is
reasonable to hypothesize that the ability for a soil to retain
chemical species could be related to the soil structure and pore
features (size of the cluster, mesopore volume, and tortuosity).

For pesticides, there is a need to establish the relationship
between the retention mechanism and such physical parameters
in allophanic soils. Figure 3f, g shows that the CLD concentra-
tion increases with the soil specific surface area S:
CLD =0.13 § — 4.36 (P < 0.0001 and * = 0.80) and with the
pore volume CLD = 9.56 Vp —4.11 (P <0.0001 and /* = 0.78).

Figure 3h, i, j shows that the CLD soil concentration in-
creases with the features of the clay fractal structure, i.e., the
size of the fractal allophane aggregates L (CLD = 0.47 L — 6.40,
P < 0.0001 and #* = 0.71), the internal porosity of the

aggregates Vmeso (CLD = 37.3 Vmeso — 0.40, P < 0.001 and
7 = 0.72), and the tortuosity ¢ (CLD = 4.6 ¢ — 2.36, with
P < 0.0001 and 7* = 0.61). This confirms the effect of the
allophane microstructure on the pesticide trapping.

Trapping mechanism in allophane microstructure

The observed characteristics of allophane, high specific sur-
face area and pore volume, and fractal features correspond to a
highly tortuous microstructure and small mesopores. The frac-
tal structure of allophane aggregates is typically in the range
5-100 nm and we may hypothesize that the accessibility in-
side the aggregates is reduced. Indeed, for example, the trap-
ping inside allophane aggregates is sought to contribute to the
protective effect of allophane on biodegradation of soil organ-
ic matter, the later becoming inaccessible to microorganisms
and enzymes (Boudot 1992; Mayer 1994; Mayer et al. 2004;
McCarthy et al. 2008; Zimmerman et al. 2004; Dahlgren et al.
2004).

Data show that the soil to water transfer coefficient
(WTC) decreases with L, Vmeso, and ¢, respectively:
WTC = —0.0966 L + 4.5798 (with P < 0.0001 and
? = 0.75), WIC = —1.3752 ¢ + 4.90 (with P < 0.0001 and
#*=0.82), and WTC =—15.12 Vmeso + 4.65 (with P < 0.0001
and * = 0.65) (Fig. 4a—c).

These results emphasize the role of the clay fractal features
(L, Vmeso, and f) in entrapment of pesticides. The retention
mechanism is developed in the following.

To put forth the importance of the allophanic microstruc-
ture, we fractionated an andosol (allophane) and a nitisol
(halloysite) and analyzed the CLD content in the three size
classes obtained: >200 um (class a), 50 to 200 wm (class b),
and <50 pum (class c).

Table 2 shows the CLD concentration in milligram CLD
per kilogram DS (dry soil) for the different soils samples. For
halloysite soil samples, the CLD concentrations are close, be-
tween 0.66 and 0.99 mg kg ' dry soil, for a, b, and ¢ fractions.
However, in the case of the allophanic soils samples, the CLD
concentration strongly increases for the class ¢, CLD concen-
tration being 8.8-fold higher than the a fraction, these differ-
ences being highly significant (P = 0.007). This higher CLD
content in the ¢ class is due to its richness in allophane aggre-
gates (Filimonova et al. 2016). We observe that the CLD rel-
ative to C % is systematically higher in andosol than in nitisols
which comforts the assumption that the CLD retention cannot
be explained only by the OC content.

Pesticide availability and allophane microstructure

The fate and behavior of organic pollutants in soils is
governed by many different factors including soils character-
istics and chemicals properties. The behavior of organic pes-
ticides in soils has been reviewed by several excellent papers
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(Pignatello 1998; Pan et al. 2008; Cornelissen et al. 2005;
Weber et al. 1999). It has been well documented that soil
organic matter controls the behavior of pesticides, such as
sorption, mobility, extractability, solubility, and bioavailability
(Pan et al. 2008; Chiou et al. 1979). Adsorption—desorption
behavior is one of the key processes affecting the

bioavailability and the fate of agrochemicals. It is commonly
accepted that sorbed chemicals are less accessible to microor-
ganisms and that adsorption limits their transport (Arias-
Estévez et al. 2008). Adsorption—desorption hysteresis has
been explained as the result of non-attainment of equilibrium
(Huang and Weber 1997; Barriuso et al. 2004) and irreversible



= a
3 6
w
z
- 5
o
P u
g [ =
=3 (] [
- L
22 = 1 1
o
s .
0 T T T ]
0 10 20 30 40
Size of the fractall cluster (L) ( hm)
7 b
= *
6
3 .
Es{ ¢
-
Pal b
» . *
£
=31 ¢ ¢
- *
o 2 ¢ 3
£
0 T T T T ]
0 0.05 0.1 0.15 0.2 0.25

Mesoporous volume (Vmeso) ( cm3g™?)

= C

o 6

w

>

2

T 5

)

X a4 °

g o o

T3 s °

= °

22 * $ 9

o

-

2z’ J
04 . . .

1 1.5 2 25

Tortuosity (t)

Fig. 4 Decrease of the soil to water transfer coefficient WTC with the
size of the fractal allophane aggregates L (a), the mesopore volume
Vmeso (b), and the tortuosity 7 (c)

binding to soil constituents such as organic matrices or inor-
ganic structures (Huang et al. 2013).

Kleber et al. (2015) identify several factors that would fa-
cilitate binding of organic molecules in soils like the presence
of reactive mineral phases with large specific surface areas.

Table 2 CLD concentration in the different size class a, b, and ¢ for
andosol and nitisols. Values are means of three replicates + standard error
of the mean. Differences between fractions were tested by ANOVA.
Different letters in the same row indicate significant differences (Tukey

Very reactive with respect to organic molecules sorption are
weathering products such as the variably charged and usually
nanometer-sized Fe oxides and short-range ordered Al-
silicates like allophane. Kleber et al. (2005) explain that
hydroxyl-bearing charges such as Fe hydroxides and poorly
crystalline aluminosilicate protect the organic compounds by
ligand exchange between mineral surface hydroxyls and neg-
atively charged organic groups. Particle size controls the spe-
cific surface area and thus the amount of reactive surface
groups per unit mass of mineral. Due to their small size and
high specific surface area, nanoparticles are highly reactive
with contaminants (Kleber et al. 2015). Last but not least,
the soil porous features can limit the transport of chemicals
compounds in the soil pore system and control exchanges with
microorganisms. For example, the sequestration of organic
matter within mineral mesopores has been hypothesized to
protect organic matter from enzymatic degradation (Mayer
1994; Mayer et al. 2004; McCarthy et al. 2008; Zimmerman
et al. 2004; Boudot 1992).

To explain the high pollutant content in allophanic soils, we
can invoke the mesopore protection mechanism already pro-
posed for organic matter. In addition to the mesopore protec-
tion mechanism, we point out the role of the fractal and tortu-
ous porous microstructure. Organo-mineral complexes like
allophane form small aggregates with pores in the mesopore
scale (2-50 nm) and with high organic matter loadings: 75 to
90% of the soil organic matter found in the pores is in the 10—
1000-nm size range (McCarthy et al. 2008). Such aggregate
pore widths are far below the cutoff for accessibility by bac-
teria, which is considered to be 2 um. Furthermore, enzymes
can penetrate micropores and small mesopores but with
difficulty, Zimmerman et al. (2004) showed that the enzyme
activity was 3—40 times lower in mesoporous silica or alumina
than that observed for nonporous minerals. The fractal aggre-
gates in allophane clay likely sign tortuous diffusion path-
ways. In a previous work (Woignier et al. 2006), numerical
simulations on porous structures have shown that permeability
in allophane soils is strongly affected by the allophane con-
tent. The permeability at the scale of allophane aggregate has
been calculated to be low (40 nm?) in these tortuous pore
networks. These results are close to those measured in silica
gels (~10-20 nm?) (Reynes et al. 2001; Scherer 1992; Anez

test, P = 0.05). The carbon contents (weight %) are 0.99, 1.77, and 7.01
for the fractions a, b, and c, respectively (andosol), and 1.12, 1.76, and
2.34 for the fractions a, b, and c, respectively (nitisol)

CLD content (in mg CLD kg ' dry soil) ANOVA
Pr>F
Soil type Fraction a Fraction b Fraction ¢
Andosol (allophanic clay) 1.16 £0.39 a 2.14+0.26 a 10.25+4.2 b 0.007
Nitisol (halloysite clay) 0.66+0.11 a 0.99+0.17 b 0.95 +0.07 ab 0.031




et al. 2014). The value of the effective diffusion coefficient
(for Cs™ ion) in allophane was estimated to 10" m?%s™!, (Mon
et al. 2005), 6 orders of magnitude smaller than the diffusion
coefficient in aqueous solution. Thus, allophane aggregate
structure might be highly porous but has a low permeability
and diffusion coefficient; fluids and chemical species migrate
with difficulty inside the fractal structure (Woignier et al.
2015). In addition, the fractal pore structure imposes a range
of pore sizes including small as well as large ones. As an
allophane aggregate increases in size, the tortuous diffusion
pathway will become blocked by pore throats that prevent
chemical or biological species passage. The fractal structure
of the pore networks may, therefore, retard the enzyme diffu-
sion to the adsorbed CLD and affect the degradation by mi-
croorganisms. The high CLD retention capacity is the result of
different kinds of mechanism: (1) the high chemical affinity of
chlordecone for organic matter would stabilize the pesticide in
the mesoporosity. (2) Microorganisms supposed to be able to
degrade the pesticide have a size higher than the allophane
aggregates. (3) The low transport properties in allophane ag-
gregate could explain the lesser chlordecone release in the
environment, crops, and water resource. The synergy between
organic matter content in allophane and tortuous microstruc-
ture prevents chlordecone from degradation when trapped in-
side the mesopore network. This trapping may reduce consid-
erably the bioavailability of the pesticide and reinforce the
poor pesticide degradation observed in this type of soil.

In Situ Chemical Reduction (ISCR) was tested to reduce
the chlordecone soil content (Mouvet et al. 2016). ISCR treat-
ment showed a poorer efficiency in andosol compared to
nitisol and ferralsol. Due to the poor accessibility inside the
allophane clusters, the ISCR efficiency may be limited by
lower contaminant availability.

Conclusion

Allophanic clays are poorer secondary contaminant sources
than phyllosilicates thus reducing the pesticide diffusion in
the environment and food products. This study shows that
there are clear correlations between clay microstructure and
the soil pesticide content and retention:

1. The porous properties of clay aggregates strongly depends
on the allophane content,

2. The soil contamination increases with the allophane con-
tent but also with the mesopore volume, the tortuosity, and
the size of the fractal aggregate.

3. The pore structure of the allophane aggregates at nano-
scale also favors the pesticide retention. It is suggested
that chlordecone storage in allophanic soils could be the
result of the low transport properties (permeability and
diffusion) in the allophane aggregates.

The fractal and tortuous aggregates of nanoparticles play
the role of nanolabyrinths.

The high pesticide content in allophanic soils is likely the
result of a synergy between the high pesticide affinity with the
organic matter and the poor accessibility to the pesticide
trapped in the mesopore. Thus, these nanostructures both re-
duce the risk of a potential release of chlordecone and promote
a protection of degradation by soil microorganisms of the
organic matter.

Future research for chlordecone degrading microorganisms
and other bioremediation tools to clean up polluted soils
should take into account the reduced accessibility of
chlordecone in the confining structure of the allophane
nanolabyrinths.
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