Philippe Jégou
email: philippe.jegou@lsis.org

Hélène Kanso

Cyril Terrioux
email: cyril.terrioux@lsis.org

Adaptive and Opportunistic Exploitation of Tree-decompositions for Weighted CSPs

Keywords: Weighted CSP, solving, decomposition

When solving weighted constraint satisfaction problems, methods based on tree-decompositions constitute an interesting approach depending on the nature of the considered instances. The exploited decompositions often aim to reduce the maximal size of the clusters, which is known as the width of the decomposition. Indeed, the interest of this parameter is related to its importance with respect to the theoretical complexity of these methods. However, its practical interest for the solving of instances remains limited if we consider its multiple drawbacks, notably due to the restrictions imposed on the freedom of the variable ordering heuristic.

So, we first propose to exploit new decompositions for solving the constraint optimization problem. These decompositions aim to take into account criteria allowing to increase the solving efficiency. Secondly, we propose to use these decompositions in a more dynamic manner in the sense that the solving of a subproblem would be based on the decomposition, totally or locally, only when it seems to be useful. The performed experiments show the practical interest of these new decompositions and the benefit of their dynamic exploitation.

I. PRELIMINARIES

The Weighted Constraint Satisfaction Problem (WCSP) offers a general framework that permits to model and solve efficiently many real problems like, for example, the frequency allocation problem [START_REF] Cabon | Radio Link Frequency Assignment[END_REF] or some problems related to bioinformatics [START_REF] Sanchez | Mendelian error detection in complex pedigrees using weighted constraint satisfaction techniques[END_REF]. In this paper, our main goal is to improve the efficiency of the structural solving methods, namely those based on tree-decompositions. First, we recall the definition of a WCSP instance: Definition 1: A WCSP instance is defined as a triplet (X, D, W) with:

• X = {x 1 , . . . , x n } is a set of n variables,

• D = {D x1 , . . . , D xn } is a set of finite domains of values where each domain D xi is related to the variable x i , • W is a set of e cost functions. A cost function that involves the set {x i1 , x i2 , . . . , x i k } of variables is a function that associates to each tuple of D xi 1 × D xi 2 × . . . × D xi k a given integer between 0 and k with k the maximal cost corresponding to a completely forbidden tuple (expressing hard constraints). For the sake of simplicity, our presentation is restricted to binary instances, that is the instances for which each cost function involves at most two variables. However, our work can be easily extended to non-binary instances. In particular, we use both binary and non-binary instances in the experimentations. In the following, w ij denotes the cost function involving the variables x i and x j , w i denotes the unary cost function corresponding to x i and w ∅ denotes the zero arity constraint which represents a constant cost paid by any assignment. The cost of a complete assignment (v 1 , . . . , v n) ∈ D x1 ×. . .×D xn is defined by w ∅ + xi∈X w i (v i) + wij ∈W w ij (v i , v j). Given an instance, the weighted constraint satisfaction problem is to find a complete assignment with minimum cost. This problem is well-known to be NP-hard. Its solving is usually performed thanks to branch and bound algorithms. These algorithms traditionally exploit two bounds, denoted by clb and cub, which represent respectively a lower bound and an upper bound of the optimum. While the lower bound clb is less than the upper bound cub, they extend progressively the current assignment. When the assignment is fully extended, they update the current upper bound cub with the cost of the current complete assignment. This upper bound cub can be initialized by the value k or using an incomplete method. The efficiency of such approaches depends on the quality of the lower bound which is used at each node of the search tree. At this level, many efforts have been made recently like in particular the definition of various local consistency properties [START_REF] Cooper | Arc consistency for soft constraints[END_REF]- [START_REF] Cooper | Soft arc consistency revisited[END_REF]. Most of the accomplished works around the WCSP problem rely on branch and bound algorithms based on a depth-first search. Recently, a hybrid approach, called HBFS, that combines a best-first search (BFS) and a depth-first search (DFS) was proposed [START_REF] Allouche | Anytime hybrid best-first search with tree decomposition for weighted CSP[END_REF]. HBFS is able to provide an anytime global lower bound on the optimum like BFS and an anytime upper bound like DFS. In practice, it seems that HBFS usually outperforms other existing methods.

Another alternative for solving WCSPs is to exploit the structure of the instances via the notion of tree-decompositions [START_REF] Robertson | Graph minors II: Algorithmic aspects of treewidth[END_REF]. This point is discussed in Section II. Then, Section III deals with the computation of relevant tree-decompositions, while Section IV explains how to exploit dynamically a treedecomposition for solving WCSP instances. Finally, in Section V, we assess the practical interest of our propositions before concluding in Section VI.

II. SOLVING WCSPS USING TREE-DECOMPOSITIONS

The structure of a WCSP instance can be represented by a graph, called the constraint graph, where each vertex corresponds to a variable of the instance and an edge links two vertices if the two corresponding variables are involved in a binary cost function of W . To exploit this structure, some

x 1 x 2 x 3 x 4
x 5 x 6

x 7 x 8

x 9

x 10

x 11

x 1 x 3 x 4 E 0 x 3 x 4 x 5 x 6 E 2 x 5 x 6 x 7 E 3 x 5 x 6 x 8 E 4 x 2 x 3 E 1 x 4 x 9 x 10 E 5 x 10 x 11 E 6 (a) (b)
Fig. 1. A graph (a) and one possible optimal tree-decomposition (b).

methods [START_REF] Allouche | Anytime hybrid best-first search with tree decomposition for weighted CSP[END_REF], [START_REF] Koster | Frequency Assignment -Models and Algorithms[END_REF]- [START_REF] De Givry | Exploiting Tree Decomposition and Soft Local Consistency in Weighted CSP[END_REF] use the notion of tree-decomposition [START_REF] Robertson | Graph minors II: Algorithmic aspects of treewidth[END_REF] in order to identify independent subproblems. Definition 2: A tree-decomposition of a graph G = (X, C) is a pair (E, T) with T = (I, F) a tree (I is the set of nodes and F the set of edges of T) and E = {E i : i ∈ I} a family of subsets of X, such that each subset (called cluster) E i is a node of T and satisfies: (i) ∪ i∈I E i = X, (ii) for each edge {x, y} ∈ C, there exists i ∈ I with {x, y} ⊆ E i , and (iii) for all i, j, ∈ I, if is on a path from i to j in T , then

E i ∩ E j ⊆ E . The width of a tree-decomposition (E, T) is equal to max i∈I |E i |-1.
The tree-width w of G is the minimal width over all the tree-decompositions of G.

Figure 1 represents a graph and a possible treedecomposition of width 3 (since the largest cluster has 4 vertices).

BTD-like algorithms [START_REF] Allouche | Anytime hybrid best-first search with tree decomposition for weighted CSP[END_REF], [START_REF] Terrioux | Bounded backtracking for the valued constraint satisfaction problems[END_REF], [START_REF] De Givry | Exploiting Tree Decomposition and Soft Local Consistency in Weighted CSP[END_REF] exploit a treedecomposition rooted in a given cluster (we denote E r the root cluster of the decomposition) which permits to decompose the original problem into many subproblems (one subproblem per cluster). Given a WCSP instance (X, D, W), the subproblem related to the cluster E i corresponds to the descent of E i in the considered tree-decomposition (E, T). More precisely, its variable set Desc(E i) is the union of the clusters E j belonging to the subtree of T rooted in E i (E i included) while its cost functions are ones whose scope is included in Desc(E i) but not in the separator of E i with its parent cluster E p(i) (i.e. the intersection E i ∩ E p(i) , under the assumption that E p(r) = ∅). As these subproblems rooted in E i are also related to the current assignment A i on the separator E i ∩ E p(i) , we denote them P i |A i . For the root cluster, the subproblem P r |∅ rooted in E r corresponds to the initial problem.

These algorithms solve the initial problem by assigning the variables in such a way that the variables of a cluster E i are always assigned before ones of its child clusters. By so doing, they can benefit from the independence between the subproblems induced by the used tree-decomposition. Notably, they exploit a lower bound and an upper bound per subproblem P i |A i whose recording often leads to a more powerful pruning and many redundancy saving. These algorithms may rely on DFS (BTD-DFS [START_REF] Allouche | Anytime hybrid best-first search with tree decomposition for weighted CSP[END_REF], [START_REF] De Givry | Exploiting Tree Decomposition and Soft Local Consistency in Weighted CSP[END_REF]) or HBFS (BTD-HBFS [START_REF] Allouche | Anytime hybrid best-first search with tree decomposition for weighted CSP[END_REF]). To this end, from a theoretical viewpoint, the advantage of using such methods can be justified by the time complexity which is generally in O(n.e.d w + +1) (with w + the width of the exploited tree-decomposition and d the size of the largest domain) whereas classical methods have a complexity in O(n.e.d n). These methods have a space complexity in O(n.s.d s) where s is the size of the largest intersection between two clusters in the considered tree-decomposition. In the same time, from a practical viewpoint, BTD-like algorithms maintaining local consistencies make it possible to obtain very efficient methods outperforming classical methods, notably when the instances have nice structural properties [START_REF] Allouche | Anytime hybrid best-first search with tree decomposition for weighted CSP[END_REF], [START_REF] De Givry | Exploiting Tree Decomposition and Soft Local Consistency in Weighted CSP[END_REF]. Of course, this efficiency depends on the used decompositions. Minimizing w + can be interesting from a theoretical viewpoint. However, in practice, two elements are often considered as crucial:

• controlling the value of s since this value is directly related to the amount of memory used during the solving. Using a tree-decomposition with a large value of s may lead the method to run out of memory.

• exploiting a relevant variable ordering. It is well known that the best variable ordering heuristics (e.g. [START_REF] Boussemart | Boosting systematic search by weighting constraints[END_REF], [START_REF] Refalo | Impact-based search strategies for constraint programming[END_REF]) require a certain freedom in the choice of the next variable, what may be in contradiction with the restrictions imposed on the variable ordering by the use of a treedecomposition. We address these two points in Sections III and IV.

III. COMPUTING TREE-DECOMPOSITIONS

Computing an optimal tree-decomposition (i.e. a treedecomposition having a minimum width) is well known to be a NP-hard problem [START_REF] Arnborg | Complexity of finding embeddings in a k-tree[END_REF]. Hence, computing tree-decompositions is usually achieved by heuristic methods. In this context, the heuristic Min-Fill [START_REF] Rose | Triangulated Graphs and the Elimination Process[END_REF] is considered as the reference method by the CP community. Thanks to its use, tree-decompositions have been already exploited successfully for solving WCSP instances [START_REF] Allouche | Anytime hybrid best-first search with tree decomposition for weighted CSP[END_REF]. Nevertheless, they have not shown their full potential because of the quality of the computed decompositions. In fact, Min-Fill aims to minimize the width of the computed tree-decompositions. However, nothing guarantees that the obtained tree-decomposition is suitable for an efficient solving of WCSP instances. Notably, Min-Fill tends to produce decompositions whose clusters have few proper variables (i.e. variables belonging to a cluster but not to its parent) and whose largest separators have frequently a size close to w + . As evoked above, such a large value of s may be problematic due to the amount of memory required for storing the local bounds for each subproblem P i |A i . Hence, in [START_REF] Allouche | Anytime hybrid best-first search with tree decomposition for weighted CSP[END_REF], Allouche et al. address this problem by considering a variant of Min-Fill denoted Min-Fill r4 . Min-Fill r4 computes a tree-decomposition as Min-Fill does and then each cluster sharing more than 4 variables with its parent is merged with it. By so doing, BTDlike algorithm may exploit larger clusters (which may increase the freedom of the variable heuristic) while consuming a reasonable amount of memory.

Here, we address this question in a different way. More precisely, we consider a general framework, called H-TD-WT (for Heuristic Tree-Decomposition Without Triangulation), which has been recently introduced in [START_REF] Jégou | An Algorithmic Framework for Decomposing Constraint Networks[END_REF]. Unlike Min-Fill, this framework aims to produce decompositions without computing a triangulation of the constraint graph. However, it exploits some topological features (via the connected components) and the construction of each cluster is guided by a heuristic depending on the criteria we want to fulfill. Its time complexity is reasonable, generally in O(n(n + e)) whereas, in practice, it is often faster than Min-Fill (or Min-Fill r4). Different parameterizations are conceivable in order to produce tree-decompositions suitable for an efficient solving. For example, these last years, three possible parameterizations of H-TD-WT have been proposed in the frame of the decision problem CSP:

• H 2 [START_REF] Jégou | Combining Restarts, Nogoods and Decompositions for Solving CSPs[END_REF] which guarantees that the clusters of the decomposition are connected,

• H 3 [START_REF] Jégou | An Algorithmic Framework for Decomposing Constraint Networks[END_REF] which identifies independent parts of the graph and separates them as soon as possible by doing a breadth-first search.

• H 5 [START_REF] Jégou | Towards a Dynamic Decomposition of CSPs with Separators of Bounded Size[END_REF] which aims to compute tree-decompositions having separators of bounded size, with S as an upper bound on the size of the separators. These heuristics have shown their practical interest for solving CSP instances [START_REF] Jégou | An Algorithmic Framework for Decomposing Constraint Networks[END_REF], [START_REF] Jégou | Towards a Dynamic Decomposition of CSPs with Separators of Bounded Size[END_REF], [START_REF] Jégou | Tree-decompositions with connected clusters for solving constraint networks[END_REF], but have never been considered for the treatment of WCSP instances. Beyond, once the decomposition computed, it can be exploited statically like in [START_REF] Allouche | Anytime hybrid best-first search with tree decomposition for weighted CSP[END_REF], [START_REF] Terrioux | Bounded backtracking for the valued constraint satisfaction problems[END_REF], [START_REF] De Givry | Exploiting Tree Decomposition and Soft Local Consistency in Weighted CSP[END_REF] or dynamically as described in the next section.

IV. DYNAMIC EXPLOITATION OF THE DECOMPOSITION

BTD-like methods have shown their practical interest when solving WCSP instances having nice topological features [START_REF] Allouche | Anytime hybrid best-first search with tree decomposition for weighted CSP[END_REF], [START_REF] De Givry | Exploiting Tree Decomposition and Soft Local Consistency in Weighted CSP[END_REF]. Nonetheless, they may turn to be inefficient if the instance has no particular topological feature. One possible reason is related to the variable orderings they consider. These orderings have a freedom restricted by the use of the treedecomposition since all the variables of a given cluster must be assigned before ones of their child clusters. In particular, these restrictions may prevent from taking benefits from adaptive techniques [START_REF] Boussemart | Boosting systematic search by weighting constraints[END_REF], [START_REF] Refalo | Impact-based search strategies for constraint programming[END_REF] which, nowadays, contribute significantly to the practical efficiency of classical Branch and Bound methods. In this section, our goal is to exploit cleverly the tree-decomposition by avoiding using it systematically. More precisely, in the same spirit as adaptive techniques, whose choices rely both on the current state of the search and its previous ones, we add to BTD-like algorithms the ability to choose to exploit globally, partially or not the treedecomposition depending on whether its exploitation seems to be beneficial or not. By so doing, we increase the freedom of the variable ordering while adapting the solving depending on the context and the nature of the instance.

In practice, the decomposition initially computed will never be exploited for a subproblem unless the solving without a decomposition seems to be inefficient. We consider, for example, the decomposition shown in Figure 2(a) represented by the set of clusters

E = {E i , E j , E k , E l , E m , E n }.
Let E i be the current cluster and A the current assignment on E j ∩E i . We are interested by the subproblem P j |A rooted in E j and induced by the assignment A of the separator

E j ∩ E i with E i E j E n E k E l E m E i E j E i E j E n E k (a) (b) (c)
Fig. 2. The set of the clusters of the decomposition: initial (a) when E j is merged with its descent (cluster E j) (b) when E j is exploited (c).

E i the parent cluster of E j . The solving of the subproblem P j |A does not necessarily use the decomposition, that is to say the set of the clusters

{E j , E k , E l , E m , E n }.
In fact, in the beginning, the solving is based on the cluster E j resulting from the merging of the cluster E j with its descendants E k , E l , E m and E n . Merging a cluster with its descendants consists in putting together all the variables of the descent of E j (see Figure 2(b)). Hence, E j contains all the variables of the descent of E j . Concerning the variable ordering heuristic, it benefits from a total freedom with respect to the choice of the next variable among the variables of the descent of E j . At this level, there are two possible cases:

• The subproblem P j |A can be easily solved when using E j . In this case, the exploitation of the decomposition does not seem useful.

• The solving of P j |A is on the contrary inefficient. In this case, the exploitation of the decomposition seems wise.

The cluster E j is then re-used and the same reasoning is repeated for the cluster E k which will be first considered as merged with its descent resulting in the cluster E k as shown in Figure 2(c). Note that the reasoning is repeated for every new assignment of E i ∩ E j . This choice is motivated by the fact that the assignment A of the separator E i ∩ E j induces a different subproblem from the one induced by an assignment A . Note also that, at the level of the root cluster E r , the algorithm behaves like a classical Branch and Bound algorithm having total freedom with regard to the choice of the next variable among all the variables of the problem. Finally, the initial decomposition is fully exploited (all its clusters are exploited) when at all the levels, our algorithm decides to exploit the cluster itself rather than its descent.

For sake of simplicity, we describe now the new algorithm by exploiting DFS for solving clusters, resulting in the algorithm BTD-DFS+DYN (see Algorithm 1). Of course, we can also derive BTD-HBFS+DYN (which will be used for the experiments) in the same manner as Allouche et al. produce BTD-HBFS from BTD-DFS [START_REF] Allouche | Anytime hybrid best-first search with tree decomposition for weighted CSP[END_REF].

Like BTD-DFS, BTD-DFS+DYN is based on a treedecomposition (E, T) which is computed before the solving and rooted in a cluster E r . It takes as parameters the current assignment A, the current cluster E i , the set V of unassigned

Algorithm 1: BTD-DFS+DYN (A, Ei, V, V desc , clb, cub)
Input: The current assignment A, the current cluster E i , the lower bound clb Input/output: The set V of unassigned variables of E i , the set V desc of unassigned variables of Desc(E i), the current upper bound cub

1 if M erge(E i) then V ← V desc 2 else V ← V 3 if V' = ∅ then
P i |A ∪ {(x = a)} 8 clb ← max(clb, lb(P i |A ∪ {(x = a)})) 9 if clb < cub then cub ← BTD-DFS+DYN(A ∪ {(x = a)}, E i , V, V desc , clb , cub) 10 if max(clb, lb(P i |A)) < cub then 11
Maintain local consistency on subproblem

P i |A ∪ {(x = a)} 12 clb ← max(clb, lb(P i |A ∪ {(x = a)})) 13 if clb < cub then cub ← BTD-DFS+DYN (A ∪ {(x = a)}, E i , V, V desc ,
21 cub ← BTD-DFS+DYN (A, E j , E j \(E i ∩ E j), Desc(E j)\(E i ∩ E j), lb(P j |A), cub) 22 Update LB P f |A and UB P f |A using cub 23 cub ← min(cub, w i ∅ + E j ∈Children(E i) UB P j |A)
24 else cub ← min(cub,

E j ⊆Desc(E i) w j ∅)
25 return cub variables of E i , the set V desc of unassigned variables of the descent Desc(E i) of E i , the current lower bound clb and the current upper bound cub. It aims to compute the optimum of the problem rooted in E i and induced by the assignment A.

There are two possible cases:

• If the returned value of cub is strictly less than the input value of cub, then cub is the optimum of the subproblem.

• Otherwise, cub defines a lower bound on the optimum. The initial call is BTD-DFS+DYN(∅, E r , V r , V r desc , lb(P r |∅), k) with V r desc the set of variables of the descent of E r , lb(P r |∅) the initial lower bound obtained by exploiting a local consistency on the initial problem and k the maximal cost. Note that throughout the algorithm, w i ∅ denotes the cluster-localized lower bound for the cluster E i . Like BTD-DFS, BTD-DFS+DYN assumes that the input problem is consistent according to the exploited local consistency and returns its optimum. Lines 3-13 of BTD-DFS+DYN aim to assign the variables of V as BTD-DFS does for the variables of V . A pair (variable, value), (x, a), is selected according to the variable and value ordering heuristics. Given that binary branching is exploited, this choice results in either assigning the variable x to a (left branch, positive decision, line 7), or removing the value a from the domain of x (right branch, negative decision, line 11). For each branch, local consistency is maintained on the subproblem rooted in E i and induced by the current assignment so that a lower bound lb is computed. If the maximum clb of the lower bound lb, deduced via the application of the local consistency, and the current lower bound clb, is strictly less than cub, the search continues; otherwise, the corresponding subtree is pruned. Lines 15-23 of BTD-DFS+DYN solve the subproblems rooted in each child cluster E j of E i , similarly to BTD-DFS. The subproblem P j |A is explored unless its optimum is already known. Anyway, BTD-DFS and BTD-DFS+DYN record, for each subproblem P j |A, two values denoted by LB Pj |A and UB Pj |A . They represent respectively the best known lower and upper bounds for P j |A. If LB Pj |A = UB Pj |A , the optimum of P j is already computed. The recursive call corresponding to the child cluster E j (line 21) exploits an initial non-trivial upper bound computed at line 20, as explained in [START_REF] De Givry | Exploiting Tree Decomposition and Soft Local Consistency in Weighted CSP[END_REF]. It is followed by an update of both LB Pj |A and UB Pj |A with the value of cub (line 22). The exploitation of all the child clusters ends finally by updating cub.

Now that the similarities between BTD-DFS and BTD-DFS+DYN are recalled, we describe the modifications made to BTD-DFS. The function M erge represents the heuristic responsible for choosing whether the cluster E i is exploited or its descent E i . The call to M erge with the cluster E i as an input returns true if and only if E i is exploited. Otherwise, the cluster E i is exploited and the freedom of the next variable choice is limited to the variables of V . One of the two parameters V or V desc is effectively used depending on whether E i or E i is exploited. The choice between V and V desc is done on lines 1-2 and is memorized in V . Both are suitably updated on line 5. If V = ∅ and E i is not merged with its descent, BTD-DFS+DYN behaves like BTD-DFS (lines 3-13). If V = ∅ and E i is merged with its descent, BTD-DFS+DYN has no more variables to be assigned given that all the variables of the descent of E i have been already assigned. In this case, BTD-DFS+DYN updates cub (line 24) at the basis of the local lower bound w j ∅ of each cluster E j belonging to Desc(E i). If V = ∅ (lines 3-13), BTD-DFS+DYN behaves the same way whether E i or its descent E i is exploited, by trying to assign the variables of V .

The algorithm BTD-DFS+DYN can be parameterized by the heuristic M erge which decides when to stop exploiting the cluster E i and to exploit instead the current cluster E i (we propose one heuristic in the next section). Certainly, the choice of a relevant heuristic is essential to improve the solving.

The dynamic exploitation of the decomposition changes both the time and the space complexity. In fact, the behavior of BTD-DFS+DYN can constantly evolve. It first acts like almost a classical DFS and then, if it decides at each level to exploit the original cluster instead of its descent, it finally acts like a standard BTD-DFS.

Theorem 1: The time complexity of BTD-DFS+DYN ranges from O(exp(w + +1)) to O(exp(n)) with w + the width of the tree-decomposition computed before the solving. Its space complexity is in O(n.s .d s) where s is the size of the largest exploited separator of the decomposition (s ≤ s).

V. EXPERIMENTS

In this section, we assess the practical interest of the framework H-TD-WT for solving WCSP instances and we evaluate the relevancy of exploiting dynamic decompositions. But first, we describe the used experimental protocol.

A. Experimental protocol

We consider the solving algorithms HBFS and BTD-HBFS(+DYN) with tree-decompositions produced by Min-Fill and Min-Fill r4 . Note that, until now, HBFS and BTD-HBFS with Min-Fill r4 are considered as the reference algorithms for solving WCSP instances respectively without and with the exploitation of the structure [START_REF] Allouche | Anytime hybrid best-first search with tree decomposition for weighted CSP[END_REF], while Min-Fill is often used as the reference method for computing tree-decompositions by the CP community. Concerning H-TD-WT, we exploit the heuristic H 2 , which guarantees the connectivity of the clusters, H 3 , which computes decompositions having many child clusters and H 5 which controls the size of the separators. The heuristic H 5 is available in two variants, denoted by H 25 5 and H 5% 5 . For H 25 5 , the size of the separators is bounded by 25. Regarding H 5% 5 , the limit of the maximum size of separators depends on the instance and is fixed to 5% of the number of variables of the instance, normalized to a minimum upper bound of 4 (S = 4) and a maximal upper bound of 50 (S = 50).

Like [START_REF] Allouche | Anytime hybrid best-first search with tree decomposition for weighted CSP[END_REF], we exploit the implementations of HBFS, BTD-HBFS, Min-Fill and Min-Fill r4 provided in the open-source WCSP solver Toulbar21 . In order to guarantee a fair comparison, we have also implemented BTD-HBFS+DYN in Toul-bar2. The H i decompositions are computed by our own library and transmitted to Toulbar2 by means of a file.

The dynamic exploitation of the decomposition is based on a heuristic (F) that is responsible for deciding to exploit the cluster E i or its descent E i . The heuristic F uses the feedback given by BTD-HBFS. In fact, each call to BTD-HBFS on a subproblem P i |A takes as input both the known lower and upper bounds, clb and cub. If within the allowed number of backtracks, BTD-HBFS does not succeed in improving any bounds, F considers that the solving of P i |A is not progressing and increments a counter related to it. We start henceforth exploiting E i instead of E i , when the counter corresponding to P i |A attains a given limit. In the reported results, we have exploited the value 5 for this limit. This value seems to lead to the best trade-off between BTD-HBFS and HBFS among the extensive experiments we performed.

Regarding the configuration of Toulbar2, a preprocessing step is performed by enforcing VAC (for Virtual Arc-Consistency [START_REF] Cooper | Virtual arc consistency for weighted csp[END_REF]) and applying the MSD (for Min Sum Diffusion) algorithm with 1,000 iterations. Then, EDAC (for Existential Directional Arc-Consistency [START_REF] De Givry | Existential arc consistency: Getting closer to full arc consistency in weighted csps[END_REF] is enforced, at each node, during the solving. The variable ordering includes both weighted-degree [START_REF] Boussemart | Boosting systematic search by weighting constraints[END_REF] and last conflict [START_REF] Lecoutre | Reasoning from last conflict (s) in constraint programming[END_REF]. Regarding the algorithms based on BTD, the chosen root cluster is the largest cluster (for Min-Fill) or the cluster which maximizes the ratio of the number of constraints of the cluster to its size (for the other decompositions). For the solving algorithms based on HBFS, the other parameters (e.g. α, β or N) are set with the same values as in [START_REF] Allouche | Anytime hybrid best-first search with tree decomposition for weighted CSP[END_REF]. The experiments were performed on blade servers running Linux Ubuntu 14.04 each with two Intel Xeon processors E5-2609 v2 2.4 GHz and 32 GB of memory. We use the benchmark instances available at http://genoweb.toulouse.inra.fr/ ∼ degivry/evalgm. It includes more than 3,000 instances containing stochastic graphical models from the UAI evaluation 2008 and 2010, instances from the MiniZinc Challenge 2012 and 2013 and instances from the Probabilistic Inference Challenge 2011. Compared to [START_REF] Allouche | Anytime hybrid best-first search with tree decomposition for weighted CSP[END_REF], we have discarded instances solved during the preprocessing, resulting in a benchmark of 2,444 instances. For each instance, the solving is performed with a timeout of 20 minutes (including when applicable, the computation of the decomposition) and 16 GB of memory.

Before giving in details the experimental results, it seems necessary to give additional comments on the comparisons between the respective runtimes of the different approaches. Indeed, one method could be considered as more efficient if its runtime is better. However, we must also take into account the number of solved instances. For example, when we report in Figures 3 (a) and (b) that BTD-HBFS using Min-Fill solves 1,712 instances in 26,291 s, while BTD-HBFS+DYN using H 25 5 solves 2,039 instances in 52,304 s, we can be interested by the bench solved by at least one of both methods which involves 2,049 instances. We can see that BTD-HBFS using Min-Fill have solved only 1,712 instances among the 2,049 instances while consuming 430,691 seconds. Here, we add the cost of the 337 unsolved instances in 20 minutes, that is 404,400 seconds which must be added to the 26,291 s used to solve the 1,712 instances. Concerning BTD-HBFS+DYN using H 25 5 , after adding the cost of the 10 instances unsolved among the 2,049 instances, we obtain a total of 64,304 s. By this way, we see that finally, BTD-HBFS+DYN (using H 25 5) runs 6 times faster than BTD-HBFS (using Min-Fill) while it solves 327 additional instances.

B. H-TD-WT vs. Min-Fill / Min-Fill r4

In this part, we compare the behavior of BTD-HBFS depending on the different exploited decompositions. Regarding the computation of decompositions, we notice that the computation of H i decompositions (with i ∈ {2, 3, 5}) is much faster than Min-Fill. More precisely, any H i is able to decompose 2,431 instances in less than 1,200 s whereas Min-Fill requires 19,044 s to decompose 2,415 instances.

Figure 3(a) shows the cumulative number of solved instances w.r.t. the runtime for HBFS and BTD-HBFS with Min-Fill and the decompositions computed thanks to H-TD-WT. First, we note that Min-Fill solves the weakest number of instances within 20 minutes (only 1,712 instances). It shows that, despite the difficulty of the WCSP problem, the heuristics that aim only to minimize the size of clusters are not the more efficient. In fact, in order to minimize the width of the produced tree-decomposition, Min-Fill tends to produce clusters which have few proper variables. So the variable ordering heuristic is almost useless and the exploited variable ordering is nearly static. The results also show that the others parameters have more impact on the solving than the width of the decomposition, like the connectivity of the clusters (H 2), the number of child clusters (H 3) or the size of the separators (Min-Fill r4 and H 5). Limiting the size of the separators seems to increase significantly the efficiency of the solving. In fact, if BTD-HBFS with H 2 and H 3 solves respectively 1,945 and 1,989 instances, the decompositions having bounded separators size lead to solve more than 2,000 instances. However, comparing Min-Fill r4 to H 5 shows that BTD-HBFS associated to H 5 permits to solve more instances especially with H 5% 5 , which allows to solve 2,029 instances against 2,000 instances solved by BTD-HBFS with Min-Fill r4 . Furthermore, BTD-HBFS exploiting Min-Fill r4 requires 98,861 s to solve these instances whereas BTD-HBFS exploiting H 5% 5 requires only 58,792 s. Finally, note that these results are consistent with those obtained for the decision problem CSP in [START_REF] Jégou | An Algorithmic Framework for Decomposing Constraint Networks[END_REF].

C. Dynamic decomposition assessment

We evaluate now BTD-HBFS+DYN. Both Figures 3 (a) and (b) show that, regardless of the exploited decomposition, BTD-HBFS+DYN solves more instances than BTD-HBFS. The increase of the number of solved instances can be remarkable like in the case of Min-Fill that permits to solve now 1,905 instances instead of 1,712 instances. The exploitation of H 2 and H 3 with BTD-HBFS+DYN allows to solve 2,023 instances against respectively 1,945 and 1 989 solved by BTD-HBFS. The exploitation of Min-Fill r4 and H 5 with BTD-HBFS+DYN is also improved with regard to their utilization with BTD-HBFS. In particular, H 25 5 allows to solve 2,039 instances, which constitutes the largest number of solved instances among all the possible combinations of a solving algorithm and a decomposition we consider. Beyond the increase in the number of solved instances, the cumulative runtime decreases. For instance, BTD-HBFS+DYN requires 74,159 s for solving 2,019 instances with Min-Fill r4 (resp. 52,304 s for 2,039 instances with H 25 5), while BTD-HBFS solves 2,000 instances in 98,861 s (resp. 2,006 instances in 56,553 s).

We now focus on comparing H 25 5 and Min-Fill r4 with BTD-HBFS+DYN. Figures 3(b) and 4 show clearly that BTD-HBFS+DYN is globally more efficient with H 25 5 than with Min-Fill r4 . This trend still holds when we consider the benchmark of instances solved by both BTD-HBFS+DYN with Min-Fill r4 and BTD-HBFS+DYN with H 25 5 , in order to fairly compare their respective runtime. Indeed, this benchmark includes 2,013 instances solved by BTD-HBFS+DYN with Min-Fill r4 in 71,249 s against only 41,372 s by BTD-HBFS+DYN with H 25 5 .

D. BTD-HBFS(+DYN) vs. the best known methods

At now, BTD-HBFS with Min-Fill r4 and HBFS are considered as the best known methods for solving WCSPs respectively with and without exploiting the structure. So, it is quite natural to compare them to BTD-HBFS(+DYN) with H 5 . Figures 3(a We now compare BTD-HBFS(+DYN) with H 5 to HBFS. First we can note that BTD-HBFS with H 5% 5 is more efficient than HBFS. Notably, it solves more instances than HBFS, namely 2,029 instances against 2,017 instances by HBFS and, in addition, it has a better cumulative runtime with 58,792 s against 84,555 s for HBFS. This can be essentially explained by the recordings achieved by BTD-HBFS via the separators, that is to say a lower bound and an upper bound on the optimum of the corresponding subproblem. Furthermore, BTD-HBFS distinguishes independent subproblems, which is not the case of HBFS.

Then a similar trend can be observed if we compare BTD-HBFS+DYN associated to H 25 5 to HBFS (see Figure 5(b)). Indeed, BTD-HBFS+DYN with H 25 5 turns to solve more instances and faster than HBFS. Moreover, if we consider the 2,008 instances solved by both algorithms, HBFS solves them in 79,020 s against only 43,914 s for BTD-HBFS+DYN with H 25 5 .

We now focus our comparison to the hardest instances. More precisely, we discard easy instances, which are even trivial sometimes (that is to say instances being solved in less than 10 s by HBFS). Note that these instances are also easily solved by BTD-HBFS+DYN provided that at the level of the root cluster BTD-HBFS+DYN behaves as HBFS (when the descent of the root cluster is exploited). Among the 794 remaining instances, at least one leaf cluster of the decomposition is exploited for 279 instances. In other words, there exists at least one branch of the decomposition that is entirely exploited (in the sense of the set of the clusters of the original decomposition). For 423 instances, the decomposition is never exploited which means that BTD-HBFS+DYN behaves as HBFS. Regarding the remaining instances, the decomposition is exploited till a particular depth without reaching a leaf cluster of the decomposition. Hence, in practice, BTD-HBFS+DYN can simply behave like HBFS or progressively decide to exploit the original clusters of the decomposition (instead of their descent) until reaching the behavior of BTD-HBFS.

Finally, we compare the lower and the upper bounds reported by HBFS and BTD-HBFS+DYN when a timeout occurs. Among the 375 instances not solved neither by HBFS nor by BTD-HBFS+DYN, for 252 instances, the upper bound computed by BTD-HBFS+DYN is strictly less than the one computed by HBFS against only 52 instances for HBFS. Also, for 229 instances, BTD-HBFS+DYN reports a higher lower bound than HBFS against 146 instances for HBFS. Figure 6 compares the gap between the lower and the upper bounds for both algorithms. Clearly, BTD-HBFS+DYN offers a reduced gap compared to HBFS. This shows that even when the instance is not solved, BTD-HBFS+DYN is able to give approximations of better quality than HBFS.

E. Summary

All of these results show that exploiting a decomposition dynamically seems to enhance the efficiency of the solving by enabling BTD-HBFS+DYN to adapt the solving to the nature of the instance and by avoiding using a decomposition when solving a problem (or a subproblem) without a decomposition is more efficient. It results than BTD-HBFS+DYN with H 25 5 is able to outperform the best known methods for solving WCSPs like BTD-HBFS with Min-Fill r4 or HBFS w.r.t. the number of solved instances and the cumulative runtime.

VI. CONCLUSION

The tree-decompositions have been already exploited with success to solve WCSP instances. At the same time, their potential was not fully revealed especially due to the quality of the used decompositions. In fact, like Min-Fill, the computed decompositions usually aim to minimize the size of the clusters (in order to minimize the theoretical time complexity bound) to the detriment of the practical efficiency of the solving. So, in order to take into account other relevant parameters (i.e. having additional impact on the solving efficiency w.r.t. the width), we have first exploited the framework H-TD-WT, which has been previously proposed to solve CSP instances. This framework aims to compute decompositions much faster than by classical heuristics. It also permits to take into consideration relevant properties with respect to the solving efficiency such as the maximal size of separators with the H 5 heuristic. Utilizing H 5 with BTD-HBFS has clearly proven the interest of H-TD-WT. Indeed, H 5 does not only improve the performance of BTD-HBFS compared to BTD-HBFS exploiting Min-Fill, but has permitted to outperform significantly HBFS. On the other hand, we have proposed an extension of BTD-HBFS, called BTD-HBFS+DYN, which exploits the decomposition dynamically. The idea consists in using the decomposition only for a subproblem whose solving without decomposition seems to be inefficient. It notably avoids to restrict unnecessarily the freedom of the variable ordering heuristic for "easy" subproblems. In practice, we have shown that BTD-HBFS+DYN improves BTD-HBFS, regardless of the exploited decomposition, with regard to both the number of solved instances and the cumulative runtime. Consequently, thanks to this extension, structural methods are henceforth highlighted versus non-structural methods.

Several extensions of this work seem relevant. For example, the computation of the decomposition made before the solving can also be achieved dynamically. In fact, the decomposition is often partially used, not to mention the case where the decomposition is not exploited at all by BTD-HBFS+DYN.

Moreover, it would also make it possible to calculate better and more adapted decompositions for the solving of WCSP instances than those calculated solely on the basis of structural criteria. Beyond that, other heuristics for the dynamic exploitation of decompositions may be assessed.

4 x 5 Update V and V desc 6 a

 456 ← pop(V) /* Choose a variable of V */ ← pop(Dx) /* Choose a value */ 7 Maintain local consistency on subproblem

Fig. 3 .

 3 Fig. 3. Cumulative number of solved instances w.r.t. the runtime in seconds for HBFS and BTD-HBFS (a) or BTD-HBFS+DYN (b) depending on the decompositions.

Fig. 4 .

 4 Fig. 4. Runtime comparison of BTD-HBFS+DYN with H 25 5 and Min-Fill r 4 .

Fig. 5 .

 5 Fig. 5. (a) Runtime comparison between BTD-HBFS+DYN with H 25 5 and BTD-HBFS with Min-Fill r 4 (a) and HBFS (b).

5 solves 2 ,

 52), 3(b) and 5(a) clearly show that BTD-HBFS and BTD-HBFS+DYN with H 5% 5 or H25 5 outperform significantly BTD-HBFS with Min-Fill r4 , w.r.t. both the number of solved instances and the cumulative runtime. For instance, BTD-HBFS+DYN with H 25 039 instances in 52,304 s while BTD-HBFS with Min-Fill r4 requires 98,861 s to solve 2,000 instances.

Fig. 6 .

 6 Fig.6. Gap between the lower and the upper bounds for both BTD-HBFS+DYN with H 25 5 and HBFS.

 clb , cub)

	14 else if ¬M erge(E i) then 15 /* Solve all child clusters with unknown optimum */

16 S ← Children(E i) 17 while S = ∅ and lb(P i |A) < cub do 18 E j ← pop(S) /* Choose a child cluster */ 19 if LB P j |A < U B P j |A then 20 cub ← min (UB P j |A , cub -[lb(P i |A) -lb(P j |A)])

Available at https://mulcyber.toulouse.inra.fr/projects/toulbar2/

ACKNOWLEDGMENT

This work has been funded by the french Agence nationale de la Recherche, reference ANR-16-C40-0028.