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The type VI secretion system (T6SS) is a multi-protein complex that catalyses toxin secretion through the bacterial cell envelope of various Gram-negative bacteria including important human pathogens. This machine uses a bacteriophage-like contractile tail to puncture the prey cell and inject armful toxins. The T6SS tail comprises an inner tube capped by the cell-puncturing spike and wrapped by the contractile sheath. This structure is built on an assembly platform, the baseplate, which is anchored to the bacterial cell envelope by the TssJLM membrane complex. This membrane complex serves both as tail docking station and channel for the passage of the inner tube. The TssM trans-membrane protein is a key component of the membrane complex as it connects the inner and outer membranes. In this study, we define the TssM topology, highlighting a large but poorly studied 35 kDacytoplasmic domain, TssM Cyto , located between two trans-membrane segments. Proteinprotein interaction assays further show that TssM Cyto oligomerizes and makes contacts with several baseplate components. Using computer predictions we delineate two sub-domains in TssM Cyto , including a nucleotide tri-phosphatase (NTPase) domain followed by a 110-aminoacid extension. Finally, site-directed mutagenesis coupled to functional assays reveal the contribution of these sub-domains and of conserved motifs to the interaction with T6SS partners and to the function of the secretion apparatus.

INTRODUCTION

The Type VI secretion system (T6SS) is a versatile multi-protein secretory machine that is implicated in both inter-bacterial competition and anti-eukaryotic host activities. The T6SS delivers a broad arsenal of toxins with peptidoglycan, phospholipid or DNA hydrolysis activities, or that induce cytoskeleton re-arrangements directly into the target cell. [START_REF] Russell | Type VI secretion system effectors: poisons with a purpose[END_REF][START_REF] Durand | Tle, and beyond: the versatile arsenal of Type VI secretion effectors[END_REF][START_REF] Alcoforado Diniz | Molecular weaponry: diverse effectors delivered by the Type VI secretion system[END_REF][START_REF] Hachani | Type VI secretion and anti-host effectors[END_REF] For toxin delivery, the T6SS uses a contractile mechanism that is comparable to that of Myoviridae phages or R-pyocins. [START_REF] Bönemann | Tubules and donuts: a type VI secretion story[END_REF][START_REF] Cascales | Structural biology of type VI secretion systems[END_REF][START_REF] Coulthurst | The Type VI secretion system -a widespread and versatile cell targeting system[END_REF][START_REF] Zoued | Architecture and assembly of the Type VI secretion system[END_REF][START_REF] Kube | Structural comparison of contractile nanomachines[END_REF][START_REF] Basler | Type VI secretion system: secretion by a contractile nanomachine[END_REF] This machine is composed of 13 core subunits, categorized in three sub-complexes [START_REF] Zoued | Architecture and assembly of the Type VI secretion system[END_REF][START_REF] Basler | Type VI secretion system: secretion by a contractile nanomachine[END_REF][START_REF] Ho | A view to a kill: the bacterial type VI secretion system[END_REF][START_REF] Cianfanelli | Aim, load, fire: the Type VI secretion system, a bacterial nanoweapon[END_REF] : a cytoplasmic tubular structure built on an assembly platform -or baseplate (BP) -that is evolutionarily, structurally and functionally related to bacteriophage contractile tails [START_REF] Bönemann | Tubules and donuts: a type VI secretion story[END_REF][START_REF] Leiman | Type VI secretion apparatus and phage tailassociated protein complexes share a common evolutionary origin[END_REF][START_REF] Basler | Type VI secretion requires a dynamic contractile phage tail-like structure[END_REF][START_REF] Brunet | The Type VI secretion TssEFGK-VgrG phage-like baseplate is recruited to the TssJLM membrane complex via multiple contacts and serves as assembly platform for tail tube/sheath polymerization[END_REF] , and anchored to the cell envelope by a membrane complex (MC). [START_REF] Durand | Biogenesis and structure of a type VI secretion membrane core complex[END_REF] The T6SS tail is composed of an inner tube made of stacked Hcp hexameric rings and wrapped into a sheath-like structure, formed by the polymerization of TssB-TssC heterodimeric complexes, and that is assembled in an extended conformation. [START_REF] Basler | Type VI secretion requires a dynamic contractile phage tail-like structure[END_REF][START_REF] Ballister | In vitro selfassembly of tailorable nanotubes from a simple protein building block[END_REF][START_REF] Brunet | Type VI secretion and bacteriophage tail tubes share a common assembly pathway[END_REF][START_REF] Kudryashev | Structure of the type VI secretion system contractile sheath[END_REF] Indeed, the assembly of the tail can be followed by time-lapse microscopy: fluorescent-labelled sheath components assemble a ∼ 600 nm-long tubular structure in tens of seconds, that then contracts in a few millisec. [START_REF] Basler | Type VI secretion requires a dynamic contractile phage tail-like structure[END_REF][START_REF] Brunet | Imaging type VI secretion-mediated bacterial killing[END_REF] The contraction of the sheath coincides with bacterial prey lysis, suggesting that, similarly to phages, sheath contraction propels the inner tube towards the target cell, allowing delivery of toxin effectors). [START_REF] Zoued | Architecture and assembly of the Type VI secretion system[END_REF][START_REF] Ho | A view to a kill: the bacterial type VI secretion system[END_REF][START_REF] Brunet | Imaging type VI secretion-mediated bacterial killing[END_REF][START_REF] Basler | Tit-for-tat: type VI secretion system counterattack during bacterial cell-cell interactions[END_REF] The assembly of the tube and the sheath is coordinated by TssA, a protein that controls the elongation of the tail at the distal end and that maintains the sheath under the extended conformation. [START_REF] Zoued | Priming and polymerization of a bacterial contractile tail structure[END_REF] The inner tube is tipped by a spike constituted of a trimer of the VgrG protein, which is proposed to puncture the target cell membrane. [START_REF] Leiman | Type VI secretion apparatus and phage tailassociated protein complexes share a common evolutionary origin[END_REF][START_REF] Pukatzki | Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin[END_REF] The VgrG trimer is also part of the BP that is used as an assembly plateform for the tail. Recently, the T6SS BP composition has been revealed. In addition to VgrG, it is composed of the TssE, -F and -G subunits, the homologues of the phage T4 gp25, gp6 and gp7 proteins, respectively, as well as of TssK a protein of unknown function with limited homologies to phage T4 gp8 or gp10 proteins that has been proposed to be a connector to the membrane complex. [START_REF] Brunet | The Type VI secretion TssEFGK-VgrG phage-like baseplate is recruited to the TssJLM membrane complex via multiple contacts and serves as assembly platform for tail tube/sheath polymerization[END_REF][START_REF] Zoued | TssK is a trimeric cytoplasmic protein interacting with components of both phage-like and membrane anchoring complexes of the type VI secretion system[END_REF][START_REF] English | Biochemical analysis of TssK, a core component of the bacterial Type VI secretion system, reveals distinct oligomeric states of TssK and identifies a TssK-TssFG subcomplex[END_REF][START_REF] Taylor | Structure of the T4 baseplate and its function in triggering sheath contraction[END_REF][START_REF] Planamente | TssA forms a gp6-like ring attached to the type VI secretion sheath[END_REF] This MC is composed of the two TssL and TssM inner membrane (IM) proteins and of the TssJ outer membrane (OM) lipoprotein. [START_REF] Aschtgen | SciN is an outer membrane lipoprotein required for type VI secretion in enteroaggregative Escherichia coli[END_REF][START_REF] Ma | An IcmF family protein, ImpLM, is an integral inner membrane protein interacting with ImpKL, and its walker a motif is required for type VI secretion system-mediated Hcp secretion in Agrobacterium tumefaciens[END_REF][START_REF] Aschtgen | The SciZ protein anchors the enteroaggregative Escherichia coli Type VI secretion system to the cell wall[END_REF][START_REF] Aschtgen | The C-tail anchored TssL subunit, an essential protein of the enteroaggregative Escherichia coli Sci-1 Type VI secretion system, is inserted by YidC[END_REF][START_REF] Durand | Structural characterization and oligomerization of the TssL protein, a component shared by bacterial type VI and type IVb secretion systems[END_REF] TssL and TssM interact in the IM whereas the C-terminal periplasmic domain of TssM contacts the TssJ lipoprotein close to the OM. [START_REF] Durand | Biogenesis and structure of a type VI secretion membrane core complex[END_REF][START_REF] Ma | An IcmF family protein, ImpLM, is an integral inner membrane protein interacting with ImpKL, and its walker a motif is required for type VI secretion system-mediated Hcp secretion in Agrobacterium tumefaciens[END_REF][START_REF] Aschtgen | The SciZ protein anchors the enteroaggregative Escherichia coli Type VI secretion system to the cell wall[END_REF][START_REF] Zheng | Dissection of a type VI secretion system in Edwardsiella tarda[END_REF][START_REF] Felisberto-Rodrigues | Towards a structural comprehension of bacterial type VI secretion systems: characterization of the TssJ-TssM complex of an Escherichia coli pathovar[END_REF][START_REF] Nguyen | Inhibition of type VI secretion by an anti-TssM llama nanobody[END_REF] The MC serves as a docking station for the BP and the tail, but has also been proposed to serve as channel for the passage of the inner tube during sheath contraction. [START_REF] Durand | Biogenesis and structure of a type VI secretion membrane core complex[END_REF] In the recent years, the assembly pathway of the T6SS has been well defined. T6SS biogenesis progresses from the outer membrane to the cytoplasm. It starts with the positioning of the TssJ lipoprotein and the successive recruitments of TssM and TssL. [START_REF] Durand | Biogenesis and structure of a type VI secretion membrane core complex[END_REF] Recruitment of TssA then positions the baseplate complex onto the MC and primes the polymerization of the tail tube/sheath. [START_REF] Brunet | The Type VI secretion TssEFGK-VgrG phage-like baseplate is recruited to the TssJLM membrane complex via multiple contacts and serves as assembly platform for tail tube/sheath polymerization[END_REF][START_REF] Zoued | Priming and polymerization of a bacterial contractile tail structure[END_REF][START_REF] Gerc | Visualization of the Serratia Type VI secretion system reveals unprovoked attacks and dynamic assembly[END_REF] This ordered assembly pathway requires tight contacts between the different subunits. Indeed, docking of the BP onto the MC requires multiple contacts including interactions of TssE and TssK with TssL, and of TssG and TssK with TssM. [START_REF] Brunet | The Type VI secretion TssEFGK-VgrG phage-like baseplate is recruited to the TssJLM membrane complex via multiple contacts and serves as assembly platform for tail tube/sheath polymerization[END_REF][START_REF] Zoued | TssK is a trimeric cytoplasmic protein interacting with components of both phage-like and membrane anchoring complexes of the type VI secretion system[END_REF] TssM is therefore a key component as it mediates contact with the OM TssJ lipoprotein, as well as with cytoplasmic BC subunits.

Here, we show that the enteroaggregative Escherichia coli TssM protein is a polytopic membrane protein, inserted into the inner membrane by three trans-membrane helices (TMH).

The C-terminal portion of TssM is in the periplasm and interacts with TssJ. [START_REF] Felisberto-Rodrigues | Towards a structural comprehension of bacterial type VI secretion systems: characterization of the TssJ-TssM complex of an Escherichia coli pathovar[END_REF] TMH2 and TMH3 delimitates a ∼ 35 kDa cytoplasmic domain, TssM Cyto , which is conserved among TssM homologues. Computer analyses show that TssM Cyto is constituted of two sub-domains: a sub-domain with a nucleotide tri-phosphatase (NTPase)-like domain followed by an extension. Indeed, TssM has been previously shown to bind and hydrolyse NTPs. [START_REF] Ma | IcmF family protein TssM exhibits ATPase activity and energizes type VI secretion[END_REF] However, the role of the NTP-binding motif and its functional implication during T6SS activity is still a matter of debate. [START_REF] Ma | An IcmF family protein, ImpLM, is an integral inner membrane protein interacting with ImpKL, and its walker a motif is required for type VI secretion system-mediated Hcp secretion in Agrobacterium tumefaciens[END_REF][START_REF] Zheng | Dissection of a type VI secretion system in Edwardsiella tarda[END_REF] The extension comprises a eukaryotic DPY-30-like dimerization motif.

We show that the NTPase-like domain mediates interaction with TssK whereas the extension is necessary and sufficient for TssM Cyto oligomerization and interaction with TssG. Sitedirected mutagenesis of conserved motifs within the extension revealed their contribution for TssM Cyto oligomerization, TssM Cyto -TssG interaction and for proper assembly of the T6SS.

Our results thus provide details on the molecular interface between the T6SS membrane and baseplate complexes.

RESULTS

TssM is a polytopic IM protein

The TssM protein encoded within the enteroaggregative E. coli sci-1 gene cluster (EC042_4539; Genbank accession (GI): 284924260) is a large protein of 1129 amino acids.

Based on hydrophobicity plots, most widely used computer tools predict TssM as an inner membrane protein with three trans-membrane helices (TMH) (Fig. 1A). Indeed, fractionation experiments showed that TssM co-fractionates with membrane proteins (data not shown). To experimentally define the TssM topology and determine the TMH boundaries we performed a cysteine accessibility assay using the substituted cysteine accessibility method (SCAM, Ref 38. This assay relies on the ability of 3-(N-maleimidylpropionyl) biocytin (MPB), a sulfhydryl reagent to cross the outer membrane but not the inner membrane of Gram-negative bacteria including EAEC. [START_REF] Aschtgen | The SciZ protein anchors the enteroaggregative Escherichia coli Type VI secretion system to the cell wall[END_REF][START_REF] Aschtgen | The C-tail anchored TssL subunit, an essential protein of the enteroaggregative Escherichia coli Sci-1 Type VI secretion system, is inserted by YidC[END_REF] TssM possesses nine native cysteine residues, with one (C727) predicted to locate in the periplasm. Hence, the WT TssM protein is labelled by MPB in vivo (Fig. 1B).

In agreement with the computer predictions, a TssM protein in which the cysteine at position 727 is substituted to serine (C727S) was not labelled with MPB (Fig. 1B). These data suggest that C727 is located in the periplasm whereas all other 8 cysteine residues locate in the cytoplasm or are buried into the structure of the protein and then inaccessible to MPB. We then introduced cysteine substitutions in the C727S TssM variant at various positions along the protein (at positions 37, 67, 352 and 386) (Fig. 1A). All these mutated proteins were produced at similar levels (Fig. 1B) and were able to complement the effect of the tssM mutant in an Hcp secretion assay (data not shown). The A37C and S386C variants were biotinylated with MPB suggesting that the A37 and S386 residues locate in the periplasm (Fig. 1B). By contrast, the V67C and S352C variants were not labelled indicating that the V67 and S352 residues locate in the cytoplasm (Fig. 1B). All together, the data of the cysteine accessibility defined the topology of TssM: TssM is constituted of three TMH, with the Nterminus in the cytoplasm and the C-terminus in the periplasm. TssM spans the IM through two TMH oriented in-to-out (TMH1, residues 13-29; TMH3, residues 360-382) and one TMH oriented out-to-in (TMH2, residues 44-62) (Fig. 1C). TMH2 and TMH3 thus delimitate a ∼ 35 kDa domain located in the cytoplasm, called hereafter TssM Cyto .

The cytoplasmic domain of TssM oligomerizes and interacts with components of the

T6SS membrane and baseplate complexes

The topology of TssM indicates the existence of two soluble domains, one in the periplasm (TssM Peri , amino-acids 383-1129) and one residing into the cytoplasm (TssM Cyto , amino-acids 63-359). The T6SS being a multi-protein complex, such large protein domains might be necessary for interacting with other T6SS components. Indeed, we and other have previously demonstrated that TssM Peri interacts with the TssJ outer membrane lipoprotein in Edwardsiella tarda and enteroaggregative E. coli. [START_REF] Zheng | Dissection of a type VI secretion system in Edwardsiella tarda[END_REF][START_REF] Felisberto-Rodrigues | Towards a structural comprehension of bacterial type VI secretion systems: characterization of the TssJ-TssM complex of an Escherichia coli pathovar[END_REF] By contrast, little is known regarding the cytoplasmic domain of TssM. To gain further insights onto TssM Cyto partners, we used TssM Cyto as bait for an in vivo systematic bacterial two-hybrid assay. TssM Cyto was fused to the T18 domain of the Bordetella adenylate cyclase and all the other T6SS proteins -or soluble domains -were fused either at their N-or C-terminus of the T25 domain. The results presented in Fig. 2 show that TssM Cyto interacts with itself and with TssK whatever the constructions used. In addition, TssM Cyto interacts with TssG and with the cytoplasmic domain of TssL (TssL Cyto ) when fused at the N-terminus of T25. In conclusion, TssM Cyto is capable of oligomerization and interacts with components of the T6SS membrane (TssL Cyto ) and baseplate (TssK and TssG) complexes. These results are in agreement with previously published bacterial two-hybrid screens and co-immune precipitations that identified TssM-TssK, TssM-TssL and TssM-TssG interactions. [START_REF] Brunet | The Type VI secretion TssEFGK-VgrG phage-like baseplate is recruited to the TssJLM membrane complex via multiple contacts and serves as assembly platform for tail tube/sheath polymerization[END_REF][START_REF] Zoued | TssK is a trimeric cytoplasmic protein interacting with components of both phage-like and membrane anchoring complexes of the type VI secretion system[END_REF][START_REF] Ma | An IcmF family protein, ImpLM, is an integral inner membrane protein interacting with ImpKL, and its walker a motif is required for type VI secretion system-mediated Hcp secretion in Agrobacterium tumefaciens[END_REF][START_REF] Aschtgen | The SciZ protein anchors the enteroaggregative Escherichia coli Type VI secretion system to the cell wall[END_REF] Sub-domain architecture of TssM Cyto Pfam, Blast and HHPred analyses suggest that EAEC TssM Cyto is organized as a NTPase domain (TssM Cyto/NTP ; amino-acids 62-248; Pfam accession: PF06858) followed by a C-terminal extension (TssM Cyto/Ct ; amino-acids 254-360) (Fig. 3; Supp. Fig. S1-S2). However, despite the fact that the overall NTPase domain is conserved among the TssM Cyto homologs, the sequence alignment shows that the NTP binding and hydrolysis motifs (Walkers A & B and NTP specific motif) are not well conserved (Supp. Fig. S1). In agreement with this observation, an evolutionary analysis of TssM Cyto NTPase domains shows that they categorize into two sub-groups: while the TssM proteins encoded within the Pseudomonas aeruginosa H1, Agrobacterium tumefaciens and Edwardsiella tarda T6SS gene clusters carry a complete NTPase domain, a number of TssM, including that of EAEC, Serratia and Citrobacter possess a NTPase domain amputated of hydrolysis motifs (Supp. Fig. S1 andS2).

Our attempts to produce and purify the EAEC TssM Cyto domain or the TssM C NTPase sub-domain in order to gain structural information were unsuccessful, as the different constructs used were all insoluble. Consequently, we sought to construct homology-based models of both TssM Cyto sub-domains using a bioinformatic approach. The TssM Cyto/NTP structure was predicted using HHpred. [START_REF] Söding | The HHpred interactive server for protein homology detection and structure prediction[END_REF] The program confirmed that the EAEC TssM Cyto/NTP protein resembles the solved structure of various GTP-hydrolysing proteins (Supp. Fig. S3).

The X-ray structure of the Burkholderia thailandensis EngB GTP-binding protein (PDB ID: 4DHE) [START_REF] Baugh | Combining functional and structural genomics to sample the essential Burkholderia structome[END_REF] was subsequently used as template to build a homology model of the EAEC TssM Cyto/NTP domain. Figure 3 shows that TssM C/NTP adopts a compact fold consisting of a four-stranded parallel β-sheet with one side being in contact with three α-helices. The TssM Cyto/NTP domain belongs to the α/β class, harbouring an incomplete Rossmann fold, a motif associated with nucleotide-binding proteins. [START_REF] Hanukoglu | Rossmann fold: A beta-alpha-beta fold at dinucleotide binding sites[END_REF] The EAEC TssM Cyto/NTP architecture is typical of P-loop nucleotide triphosphate hydrolases. The predicted structure of EAEC TssM Cyto/NTP diverges however from the classical αβα sandwich architecture as the second αhelix is not strictly sandwiching the β-strand. As expected, the large loops that bear the binding and hydrolysis motifs are absent in the EAEC TssM Cyto/NTP , by contrast to EngB or the homology model of the A. tumefaciens TssM Cyto/NTP domain (Supp. Fig. S4). The TssM Cyto/Ct homology model was constructed using the Swiss-Model server based on the Xray structure of the C-terminal domain of human DPY-30-like protein, a component of the eukaryotic histone methyltransferase complex (PDB ID: 3G36) [START_REF] Wang | Crystal structure of the C-terminal domain of human DPY-30-like protein: A component of the histone methyltransferase complex[END_REF] as template (Supp. Fig. S3).

The TssM C/Ct structure was confidently modelled from residue Q254 to N289 (Fig. 3). This fragment encompasses the two-helix 40-amino-acid Dpy-30 motif (Pfam accession: PF05186) found in DPY-30 proteins and involved in DPY-30 dimerization [START_REF] Wang | Crystal structure of the C-terminal domain of human DPY-30-like protein: A component of the histone methyltransferase complex[END_REF] .

Specific motifs are involved in TssM Cyto oligomerization and interaction with TssG.

The structural organization of TssM Cyto prompted us to investigate the contribution of the two sub-domains to the TssM Cyto interactions. The interaction network of TssM Cyto/NTP and TssM Cyto/Ct was assessed by bacterial two-hybrid. As shown in Figure 4A, TssM Cyto/NTP interacts with TssK, whereas TssM Cyto/Ct mediates oligomerization and interactions with TssG and TssL Cyto . Interestingly the interaction network of the isolated sub-domains, TssM Cyto/NTP and TssM Cyto/Ct , recapitulates the interaction network of TssM Cyto (Fig. 4A), supporting the hypothesis of two independently-folded domains. The TssM Cyto/Ct -TssG and TssM Cyto/NTP -TssK interactions were further confirmed by co-immuno-precipitation experiments: TssG was co-precipitated with TssM Cyto and TssM Cyto/Ct (Fig. 4B, upper panel). As previously shown [START_REF] Zoued | TssK is a trimeric cytoplasmic protein interacting with components of both phage-like and membrane anchoring complexes of the type VI secretion system[END_REF] , TssK did not interact with TssM Cyto by co-immuno-precipitation. However, our results suggest that it is prevented by the extension as the TssM Cyto/NTP domain alone interacts with TssK (Fig. 4B, lower panel).

Interestingly, the TssM Cyto/Ct sub-domain interacts with several partners from the membrane and baseplate sub-complexes. We therefore questioned whether these different interactions involve the same recognition motif or different binding epitopes on TssM Cyto . The sequence alignment of TssM Cyto homologues emphasized two well-conserved regions, F278-E284 and L309-S315 (Supp. Fig. S1). Region F278-E294 is specifically conserved in TssM Cyto lacking functional NTPase domain, whereas the L309-S315 motif is conserved among all TssM Cyto (Supp. Fig. S1). Using site-directed mutagenesis, we engineered TssM Cyto variants in which these motifs were targeted. Although these two motifs do not appear to be involved in TssM Cyto -TssL Cyto interactions, substitutions within the L309-S315 motif specifically abolished the TssM Cyto -TssG interaction (Fig. 5A and5B). We also noted that substitutions within the F278-E284 motif impacted TssM Cyto oligomerization. However, although the L279W and L282W/A283W mutations prevented interaction with TssM Cyto in the bacterial two-hybrid assay (Fig. 5A), only the L279W mutations had a strong effect on multimerization in the co-immunoprecipitation assay (Fig. 5B). It is worthy to note that the TssM Cyto/Ct F278-E284 residues correspond to the dimerization motif in Dumpy-30 (DPY-30) proteins (Supp. Fig. S4B).

TssM Cyto oligomerization and interaction with the TssG baseplate subunit are critical for T6SS function.

The mutations that specifically affect TssM Cyto oligomerization and TssM Cyto -TssG complex formation were tested for their repercussion on T6SS function. EAEC Sci-1 T6SS function could be monitored by measuring its antibacterial activity. [START_REF] Flaugnatti | A phospholipase A1 anti-bacterial T6SS effector interacts directly with the C-terminal domain of the VgrG spike protein for delivery[END_REF] The four TssM substitutions were introduced within the native, chromosomal tssM gene. Fig. 6A shows that all four mutated strains were defective in T6SS-dependent killing of prey bacterial cells. We therefore conclude that TssM Cyto oligomerization and interaction with TssG are required for proper function of the Type VI secretion apparatus.

T6SS biogenesis starts with the assembly of the membrane complex and is followed by (i) the recruitment of the baseplate and (ii) tail polymerization. We therefore sough to define which stage of T6SS biogenesis is impacted by these mutations. We first tested the effects of these mutations on T6SS sheath assembly by following the dynamics of a chromosomally-encoded TssB-sfGFP fusion using fluorescence microscopy (Fig. 6B). All the substitutions severely affected T6SS sheath assembly as indicated by the decrease in the number of sheath per bacterial cell (Fig. 6B). While ∼ 25% of the wild-type cells assembled sheath structures, TssBC sheath assembled on rare occasions in cells carrying mutations affecting TssM Cyto oligomerization (3-4 % of cells with sheath structures). The effect of the TssM Cyto -TssG disruption was even more drastic as sheath assembly was observed in ~ 1% of the cells.

Second, we tested the effect of these mutations on recruitment of the baseplate. By following the dynamics of a sfGFP-TssF fusion, a recent study concluded that the membrane complex recruits and stabilizes the T6SS baseplate. [START_REF] Brunet | The Type VI secretion TssEFGK-VgrG phage-like baseplate is recruited to the TssJLM membrane complex via multiple contacts and serves as assembly platform for tail tube/sheath polymerization[END_REF] We therefore investigated whether the mutations affecting oligomerization of the cytoplasmic loop of TssM and contacts between this loop and the TssG baseplate component impact baseplate assembly, stability and recruitment. As TssG fusions to sfGFP were previously shown to be non functional [START_REF] Brunet | The Type VI secretion TssEFGK-VgrG phage-like baseplate is recruited to the TssJLM membrane complex via multiple contacts and serves as assembly platform for tail tube/sheath polymerization[END_REF] , we introduced the TssM point mutations in a strain producing the chromosomal and functional sfGFP-TssF fusion, a TssG protein partner, and we monitored the formation and stability of baseplate foci by fluorescence microscopy (Fig. 6C). All four mutations significantly decreased the number of cells with sfGFP-TssF foci and the average number of foci per cell (1 cluster in 15-25% of the mutated cells compared to 1-3 foci in ~ 65% for WT cells) (Fig. 6C and6D). Taken together, these data demonstrate that mutations that affect TssM Cyto oligomerization and TssM Cyto -TssG complex formation abolish T6SS sheath formation and function by impacting T6SS baseplate assembly and stability.

DISCUSSION

In this manuscript, we report the characterization of the cytoplasmic domain of the T6SS membrane core complex protein TssM from EAEC. We showed that TssM Cyto comprises two sub-domains, a domain resembling NTPases but lacking nucleotide binding and hydrolysis motifs, followed by a ∼ 110-amino-acid extension. Protein-protein interaction studies revealed that this extension mediates TssM Cyto oligomerization and interaction with the TssG baseplate subunit. We finally defined specific motifs involved in these interactions and reported that these interactions are critical for the assembly of a functional T6SS. Models summarizing the findings reported in this study are depicted in Fig. 7.

We first defined the boundaries of the TssM trans-membrane segments using cysteine accessibility experiments. We determined that TssM is constituted of three TMH. The TssM N-terminus locates in the cytoplasm and is followed by a trans-membrane hairpin, a cytoplasmic domain, and the third TMH, TMH3. Finally, the ∼ 750-amino-acid C-terminal domain locates in the periplasm (Fig. 1C). This topology is similar to the topology of the Agrobacterium tumefaciens TssM protein previously defined using translational reporter fusions. [START_REF] Ma | An IcmF family protein, ImpLM, is an integral inner membrane protein interacting with ImpKL, and its walker a motif is required for type VI secretion system-mediated Hcp secretion in Agrobacterium tumefaciens[END_REF] Computer analyses of TssM proteins encoded within well-studied T6SS gene cluster showed that this topology is likely shared between all the homologues with the notable exception of the P. aeruginosa H1-T6SS TssM protein that is predicted to have a single TMH corresponding to TMH3 (Supp. Fig. S5).

The topology experiments also defined that TssM TMH2 and TMH3 delimit a 35-kDa cytoplasmic domain, TssM Cyto . Our data showed that TssM Cyto oligomerizes and interacts with TssL Cyto . The TssM Cyto -TssM Cyto and TssM Cyto -TssL Cyto interactions have been reported in the Agrobacterium tumefaciens T6SS [START_REF] Ma | An IcmF family protein, ImpLM, is an integral inner membrane protein interacting with ImpKL, and its walker a motif is required for type VI secretion system-mediated Hcp secretion in Agrobacterium tumefaciens[END_REF] . The conservation of TssM Cyto oligomerization and interaction with TssL Cyto between A. tumefaciens and EAEC suggest that these contacts are important for T6SS function. Indeed, mutation of L279, a residue that participates to TssM Cyto oligomerization, severely impacts T6SS function in EAEC. The low-resolution of the recently published electron microscopy (EM) map of the 5-fold symmetry TssJLM MC does not allow to use docking simulations to precisely locate the TssM cytoplasmic domain and therefore to provide insight onto its oligomeric state in the complex. However, stoichiometry analyses and reconstruction of the MC suggested it is constituted of 5 dimers of TssJLM heterotrimers. [START_REF] Durand | Biogenesis and structure of a type VI secretion membrane core complex[END_REF] These information suggest that, similarly to the TssL cytoplasmic domain [START_REF] Durand | Structural characterization and oligomerization of the TssL protein, a component shared by bacterial type VI and type IVb secretion systems[END_REF] , TssM Cyto dimerizes. The biogenesis of the MC may therefore start with the formation of dimers of heterotrimers that will then symmetrize. Based on the TssM Cyto interaction with the TssL cytoplasmic domain, it has been proposed that these two domains form the large base of the T6SS MC. [START_REF] Durand | Biogenesis and structure of a type VI secretion membrane core complex[END_REF] This cytoplasmic base corresponds to the docking site for the TssEFGK-VgrG baseplate complex. [START_REF] Brunet | The Type VI secretion TssEFGK-VgrG phage-like baseplate is recruited to the TssJLM membrane complex via multiple contacts and serves as assembly platform for tail tube/sheath polymerization[END_REF][START_REF] Durand | Biogenesis and structure of a type VI secretion membrane core complex[END_REF][START_REF] Zoued | Priming and polymerization of a bacterial contractile tail structure[END_REF] Indeed, our bacterial two-hybrid and co-immune precipitation experiments confirmed that TssM Cyto interacts with two baseplate components, TssK and TssG (Fig. 7).

Bio-informatic analyses predict that TssM Cyto comprises a N-terminal NTPase domain and a C-terminal DPY-30-like domain named TssM Cyto/NTP and TssM Cyto/Ct , respectively. However, although the EAEC TssM Cyto/NTP domain belongs to the NTPase fold, it misses the specific binding and hydrolysis motifs found in functional NTPases, such as the Walker A and B motifs. Sequence alignment of TssM Cyto/NTP domains from various bacterial species revealed that they categorize in two sub-families. While a number of TssM Cyto/NTP domains do not carry these motifs, other TssM possess Walker A and B signatures, including that of A. tumefaciens, Edwardsiella tarda or P. aeruginosa H1-T6SS (Suppl. Fig. S2). Indeed, the detergent-solubilized A. tumefaciens TssM protein exhibits ATPase activity. [START_REF] Ma | IcmF family protein TssM exhibits ATPase activity and energizes type VI secretion[END_REF] However, mutations of these motifs in A. tumefaciens and E. tarda did not have the same impact on the function of the T6SS. Production of the K124A TssM variant in Edwardsiella was fully functional as shown by T6SS-dependent Hcp, VgrG and EvpP release. [START_REF] Zheng | Dissection of a type VI secretion system in Edwardsiella tarda[END_REF] By contrast, ATP binding and hydrolysis regulate conformational changes within the periplasmic domain of the A. tumefaciens TssM protein and the Agrobacterium TssM K145A variant is unable to restore Hcp release. [START_REF] Ma | An IcmF family protein, ImpLM, is an integral inner membrane protein interacting with ImpKL, and its walker a motif is required for type VI secretion system-mediated Hcp secretion in Agrobacterium tumefaciens[END_REF][START_REF] Ma | IcmF family protein TssM exhibits ATPase activity and energizes type VI secretion[END_REF] Therefore, TssM C/NTP domains come in different flavours: active NTPase domains (e.g., A. tumefaciens), inactive NTPase domains (e.g., E. tarda) and NTPase fold lacking the functional motifs (e.g., EAEC). Interestingly, our protein-protein interaction studies showed that TssM C/NTP contacts TssK. In the case of TssM with functional NTP domains, it would be interesting to test whether the presence of TssK influences NTP binding and hydrolysis.

The TssM Cyto C-terminal extension shares structural homologies with the dimerization motif of DPY-30, a subunit of the histone methyltransferase complex in eukaryotic cells. This two-α-helix motif forms an antiparallel bundle at the dimer interface, which is mediated by extensive hydrophobic and van der Waals interactions (Suppl. Fig. S4). [START_REF] Wang | Crystal structure of the C-terminal domain of human DPY-30-like protein: A component of the histone methyltransferase complex[END_REF] Indeed, this DPY-30-like hairpin and notably the conserved L279 residues are involved in TssM Cyto oligomerization. In addition to its role in TssM Cyto oligomerization, this sub-domain is also required for proper interaction with the cytoplamic domain of TssL, TssL Cyto , and with TssG, one of the components of the T6SS baseplate (Fig. 7). Whereas we have not identified in this study the residues of TssM Cyto/Ct mediating the interaction with TssL Cyto , a conserved hydrophobic sequence (L-A-G-I-V-F-S in EAEC) is required for TssM Cyto -TssG complex formation. Taken together, our results show that this relatively small sub-domain is responsible for several interactions. Interestingly, a similar case has been reported for DPY-30, which is a partner of several complexes involved in the regulation of chromatin and nucleosome organization. [START_REF] Tremblay | Molecular basis for DPY-30 association to COMPASSlike and NURF complexes[END_REF] One may hypothesize that TssM Cyto/Ct uses its DPY-30-like domain to interact sequentially with its different protein partners. Purification of the TssM Cyto -TssL Cyto -TssG complex or high-resolution structure of the different binary complexes involving TssM Cyto/Ct will shed light on the dynamic nature of these interactions.

The interactions between TssM Cyto and TssK and TssG, two components of the baseplate complex, might be important to recruit or to stabilize the BC at the cytoplasmic base of the TssJLM MC. In addition to this structural role, it is likely that these interactions are required for proper function of the baseplate. As shown for other contractile structures such as bacteriophages, the baseplate serves as assembly platform for the tail, but is also responsible for initiating sheath contraction. [START_REF] Taylor | Structure of the T4 baseplate and its function in triggering sheath contraction[END_REF][START_REF] Kostyuchenko | Three-dimensional structure of bacteriophage T4 baseplate[END_REF][START_REF] Kostyuchenko | The tail structure of bacteriophage T4 and its mechanism of contraction[END_REF][START_REF] Leiman | Morphogenesis of the T4 tail and tail fibers[END_REF] The TssM Cyto -TssG interaction might be therefore important to regulate baseplate assembly, recruitment or sheath assembly and/or contraction. Indeed, point mutations disrupting the TssM Cyto -TssG interaction destabilize the baseplate complex and prevent elongation of the tail sheath. It is interesting to note that TssM undergoes structural transitions [START_REF] Ma | IcmF family protein TssM exhibits ATPase activity and energizes type VI secretion[END_REF] and one may suggest that TssM conformational changes might be transduced to the baseplate via the TssM Cyto/NTP -TssK and/or TssM Cyto/Ct -TssG interactions leading to sheath assembly. As TssM has a large periplasmic domain and a short extension that lies outside of the cell [START_REF] Durand | Biogenesis and structure of a type VI secretion membrane core complex[END_REF] , it is a strong candidate to sense modifications of the cell envelope such as an attack by neighbouring cells, or contact with a prey, and to transmit the information to the baseplate complex. Further experiments will provide insights on how sheath assembly and/or contraction is regulated.

Our results also pointed that mutations disrupting TssM Cyto oligomerization and TssM Cyto -TssG complex formation affect T6SS-dependent activities as they abolish TssBCsheath assembly and inhibit bacterial prey killing. The drastic effect of these mutations makes these interactions attractive targets for the rationale design of drugs that, by binding to TssM Cyto , would hamper the T6SS activity and the delivery of harmful toxins. This approach has been successfully achieved in the case of the Brucella Type IV secretion VirB8 inner membrane subunit for which specific inhibitors of its dimerization were identified by a highthroughput bacterial two-hybrid screen and were further shown to inhibit!Brucella infection of macrophages. [START_REF] Paschos | An in vivo high-throughput screening approach targeting the type IV secretion system component VirB8 identified inhibitors of Brucella abortus 2308 proliferation[END_REF][START_REF] Smith | Identification of the binding site of Brucella VirB8 interaction inhibitors[END_REF] This example emphasises the importance of understanding protein-protein interactions in bacterial secretion systems with the ultimate goal to target specific interactions with small molecule inhibitors.

MATERIALS and METHODS

Bacterial strains, media, growth conditions and chemicals. Strains used in this study are listed in Supplementary Table S1. Escherichia coli K-12 DH5α, BTH101 and W3110 were used for cloning procedures, bacterial two-hybrid and co-immune precipitation, respectively. The E. coli K-12 W3110 strain carrying the pUA66-rrnB plasmid (gfp under control of the constitutive rrnB ribosomal promoter, specifying strong and constitutive fluorescence, and kanamycin resistance) [START_REF] Zaslaver | A comprehensive library of fluorescent transcriptional reporters for Escherichia coli[END_REF] was used as prey in antibacterial competition experiments. Enteroaggregative E. coli strain 17-2, and its ΔtssM, tssB-GFP and GFP-tssF derivatives [START_REF] Brunet | The Type VI secretion TssEFGK-VgrG phage-like baseplate is recruited to the TssJLM membrane complex via multiple contacts and serves as assembly platform for tail tube/sheath polymerization[END_REF][START_REF] Zoued | TssK is a trimeric cytoplasmic protein interacting with components of both phage-like and membrane anchoring complexes of the type VI secretion system[END_REF][START_REF] Aschtgen | The SciZ protein anchors the enteroaggregative Escherichia coli Type VI secretion system to the cell wall[END_REF] were used in this study. Chromosomal fluorescent reporter insertions were obtained using the modified one-step inactivation procedure 51 using the red recombinase expressed from pKOBEG [START_REF] Chaveroche | A rapid method for efficient gene replacement in the filamentous fungus Aspergillus nidulans[END_REF] as previously described [START_REF] Aschtgen | SciN is an outer membrane lipoprotein required for type VI secretion in enteroaggregative Escherichia coli[END_REF] using pgfp-KD4 as template for Polymerase Chain Reaction (PCR) amplification. Briefly, the sfGFP-coding sequence and the kanamycin cassette were amplified from the pgfp-KD4 vector [START_REF] Brunet | The Type VI secretion TssEFGK-VgrG phage-like baseplate is recruited to the TssJLM membrane complex via multiple contacts and serves as assembly platform for tail tube/sheath polymerization[END_REF] with oligonucleotides carrying 50nucleotide extensions homologous to regions adjacent to the site of insertion. The PCR product was column purified (PCR and Gel Clean up kit, Promega) and electroporated. Kanamycin resistant clones were recovered and the insertion of the kanamycin cassette at the targeted site was verified by PCR.

Kanamycin cassettes were then excised using pCP20. [START_REF] Datsenko | One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products[END_REF] tssM point mutations were engineered at the native locus on the chromosome by allelic replacement using the pKO3 suicide vector. [START_REF] Link | Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization[END_REF][START_REF] Battesti | Acyl carrier protein/SpoT interaction, the switch linking SpoTdependent stress response to fatty acid metabolism[END_REF] Briefly, 17-2 tssB-GFP or GFP-tssF cells were transformed with a pKO3 plasmid in which a fragment of the tssM gene carrying the point mutations has been cloned (see below). Insertion of the plasmid into the chromosome was selected on chloramphenicol plates at 42°C. Plasmid sequences removal was then selected on 5% sucrose plates without antibiotic and tssM point mutation recombinant strains were screened by PCR and confirmed by DNA sequencing (Eurofins,MWG). Unless specified, cells were grown in Luria broth (LB) or in sci-1 inducing medium (SIM: M9 minimal medium, glycerol 0.2%, vitamin B1 1 µg/mL, casaminoacids 100 µg/mL, LB 10%, supplemented or not with bactoagar 1.5%) [START_REF] Brunet | An epigenetic switch involving overlapping fur and DNA methylation optimizes expression of a type VI secretion gene cluster[END_REF] at 37°C with shaking. Plasmids were maintained by addition of ampicillin (100 µg/mL), kanamycin (50 µg/mL) or chloramphenicol (30 µg/mL). Gene expression from pASK-IBA37 and pBAD vectors was induced by the addition 0.1 µg/mL of anhydrotetracyclin (AHT, IBA Technology) and 0.02% of L-arabinose (Sigma-Aldrich), respectively. Plasmid construction. Plasmids used in this study are listed in Supplementary Table S1. Polymerase Chain Reactions (PCR) were performed using a Biometra thermocycler using the Q5 high fidelity DNA polymerase (New England Biolabs). Restriction enzymes were purchased from New England Biolabs and used according the manufacturer's instructions. Custom oligonucleotides, listed in Supplementary Table S1, were synthesized by Sigma Aldrich. Enteroaggregative E. coli 17-2 chromosomal DNA was used as a template for all PCRs. E. coli strain DH5α was used for cloning procedures. With the exception of the pKO3-'tssM' vector, plasmids have been constructed by restriction-free cloning [START_REF] Van Den Ent | RF cloning: a restriction-free method for inserting target genes into plasmids[END_REF] as previously described [START_REF] Aschtgen | The SciZ protein anchors the enteroaggregative Escherichia coli Type VI secretion system to the cell wall[END_REF] . Briefly, genes of interest were amplified with oligonucleotides introducing extensions annealing to the target vector. The double-stranded product of the first PCR was then been used as oligonucleotides for a second PCR using the target vector as template. pKO3-'tssM' has been constructed by the restriction-ligation procedure. A BamHI-SalI PCR product corresponding to a fragment of the tssM gene (nucleotides 216-1569) was ligated into pKO3 digested by the same enzymes using T4 DNA ligase (New England Biolabs). Substitutions into pIBA37-FLAG TssM, pTssM Cyto -T18, pT18-TssM Cyto and pKO3-'tssM' have been introduced by sitedirected mutagenesis using complementary pairs of oligonucleotides and the Pfu Turbo high fidelity polymerase (Agilent Techologies). All constructs have been verified by restriction analysis and DNA sequencing (Eurofins, MWG).

Antibacterial assay. The antibacterial competition growth assay was performed as described. [START_REF] Flaugnatti | A phospholipase A1 anti-bacterial T6SS effector interacts directly with the C-terminal domain of the VgrG spike protein for delivery[END_REF] The wild-type E. coli strain W3110 bearing the GFP + kanamycin-resistant pUA66-rrnB plasmid [START_REF] Zaslaver | A comprehensive library of fluorescent transcriptional reporters for Escherichia coli[END_REF] was used as prey in the competition assay. The kanamycin-resistant pUA66-rrnB plasmid provides a strong constitutive green fluorescent (GFP + ) phenotype. Attacker and prey cells were grown for 16 hours in SIM, then diluted 100-fold in SIM. Once the culture reached an OD 600 = 0,8, cells were harvested and resuspended to an OD 600nm of 10 in SIM. Attacker and prey cells were mixed to a 4:1 ratio and 20-µL drops of the mixture were spotted in triplicate onto a pre-warmed dry SIM agar plate. After incubation for 4 hours at 37°C, the bacterial spots were resuspended in LB and bacterial suspensions were normalized to an OD 600 of 0.5. For enumeration of viable prey cells, bacterial suspensions were serially diluted and spotted onto selective LB agar plates supplemented with kanamycin (for the E. coli prey cells). The experiments were done in triplicate, with identical results, and we report here the results of a representative experiment.

Substituted cysteine accessibility method (SCAM).

Cysteine accessibility experiments were carried out as described [START_REF] Jakubowski | Agrobacterium tumefaciens VirB6 domains direct the ordered export of a DNA substrate through a type IV secretion system[END_REF][START_REF] Goemaere | Movements of the TolR Cterminal domain depend on TolQR ionizable key residues and regulate activity of the Tol complex[END_REF] with modifications. [START_REF] Aschtgen | The SciZ protein anchors the enteroaggregative Escherichia coli Type VI secretion system to the cell wall[END_REF][START_REF] Aschtgen | The C-tail anchored TssL subunit, an essential protein of the enteroaggregative Escherichia coli Sci-1 Type VI secretion system, is inserted by YidC[END_REF] A 40-mL culture of strain ∆tssM producing the TssM or cysteine-substituted TssM derivatives was induced for tssM gene expression with 0.02% AHT for 2 hours. Cells were harvested, resuspended in buffer A (100 mM HEPES (pH 7.5), 250 mM sucrose, 25 mM MgCl 2 , 0.1 mM KCl) to a final OD 600 of 12 in 500 µL of buffer A. MPB (Molecular Probes) was added to a final concentration of 100 µM (from a 20 mM stock freshly dissolved in DMSO) and the cells were incubated for 30 min at 25°C. β-Mercaptoethanol (20 mM final concentration) was added to quench the biotinylation reaction, and cells were washed twice in buffer A, and resuspended in buffer A containing N-ethyl maleimide (final concentration 5 mM) to block all free sulfhydryl residues. After incubation 20 min at 25°C, cells were disrupted by four passages at the French press at 800 psi.

Membranes recovered by ultracentrifugation 40 min at 100 000 × g were resuspended in 1 mL of buffer B (10 mM Tris (pH 8.0), 100 mM NaCl, 1% (w/v) Triton X-100, protease inhibitor cocktail (Complete, Roche)). After incubation on a wheel for 2 hours, unsolubilized material was removed by centrifugation 15 min at 20, 000 × g, and solubilized proteins were subjected to immune precipitations using anti-FLAG M2 affinity gel (Sigma-Aldrich). After 3 hours of incubation on a wheel, the beads were washed twice with 1 mL buffer B, and once with buffer C (10 mM Tris (pH 8.0), 100 mM NaCl, 0.1% (w/v) Triton X-100). Beads were air-dried, resuspended in Laemmli buffer and subjected to SDS-PAGE and immunodetection with anti-FLAG antibodies, and streptavidin coupled to alkaline phosphatase.

Bacterial two-hybrid assay. The adenylate cyclase-based bacterial two-hybrid technique [START_REF] Karimova | A bacterial two-hybrid system based on a reconstituted signal transduction pathway[END_REF] was used as previously published. [START_REF] Zoued | TssK is a trimeric cytoplasmic protein interacting with components of both phage-like and membrane anchoring complexes of the type VI secretion system[END_REF][START_REF] Battesti | The bacterial two-hybrid system based on adenylate cyclase reconstitution in Escherichia coli[END_REF] Briefly, pairs of proteins to be tested were fused to the isolated T18 and T25 catalytic domains of the Bordetella adelynate cyclase. After transformation of the two plasmids producing the fusion proteins into the reporter BTH101 strain, plates were incubated at 30°C for 48 hours. Three independent colonies for each transformation were inoculated into 600 µL of LB medium supplemented with ampicillin, kanamycin and IPTG (0.5 mM). After overnight growth at 30°C, 10 µL of each culture were dropped onto LB supplemented with 40 µg/mL -1 bromo-chloro-indolyl-β-Dgalactopyrannoside (X-Gal) and incubated for 16 hours at 30°C. The experiments were done at least in triplicate and a representative result is shown.

Co-immune precipitation. 100 mL of W3110 cells producing proteins of interest were grown to an OD 600 of 0.4 and the expression of the cloned genes were induced with AHT or L-arabinose for 45 min. The cells were harvested, and the pellets were resuspended in Tris-HCl 20 mM pH 8.0, NaCl 100mM, sucrose 30%, EDTA 1mM, lysozyme 100 µg/mL, DNase 100 µg/mL, RNase 100 µg/mL supplemented with protease inhibitors (Complete, Roche) to an OD 600 of 80 and incubated on ice for 20 min. Cells were lysed by three passages at the French Press (800 psi) and lysates were clarified by centrifugation at 20,000 × g for 20 min. Supernatants were used for co-immune precipitation using anti-FLAG M2 affinity gel (Sigma-Aldrich). After 3 hours of incubation, the beads were washed three times with 1 mL of Tris-HCl 20 mM pH 8.0, NaCl 100 mM, sucrose 15%, resuspended in 25 µL of Laemmli loading buffer, boiled for 10 min and subjected to SDS-PAGE and immunodetection analyses.

Fluorescence microscopy and statistical analyses. Overnight cultures of entero-aggregative E. coli 17-2 derivatives strains were diluted 1:100 in SIM medium and grown for 6 hours to an OD 600 ~ 1.0 to maximize expression of the sci-1 T6SS gene cluster. [START_REF] Brunet | An epigenetic switch involving overlapping fur and DNA methylation optimizes expression of a type VI secretion gene cluster[END_REF] Cells were washed in phosphate buffered saline (PBS), resuspended in PBS to an OD 600 ~ 50 and spotted on a thin pad of 1.5% agarose in PBS and covered with a cover slip. Microscopy recording and digital image processing have been performed as previously described. [START_REF] Brunet | The Type VI secretion TssEFGK-VgrG phage-like baseplate is recruited to the TssJLM membrane complex via multiple contacts and serves as assembly platform for tail tube/sheath polymerization[END_REF][START_REF] Durand | Biogenesis and structure of a type VI secretion membrane core complex[END_REF][START_REF] Brunet | Type VI secretion and bacteriophage tail tubes share a common assembly pathway[END_REF][START_REF] Brunet | Imaging type VI secretion-mediated bacterial killing[END_REF][START_REF] Zoued | TssK is a trimeric cytoplasmic protein interacting with components of both phage-like and membrane anchoring complexes of the type VI secretion system[END_REF] The Z project (average intensity) plugin has been used to merge and flatten all Z planes. Microscopy analyses were performed at least six times, each with technical triplicate, and a representative experiment is shown. The number of sheath per number of cells and sfGFP-TssF foci was measured manually.

Computer analyses. Trans-membrane helix predictions were made using HMMTop 61 , TMHMM [START_REF] Krogh | Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes[END_REF] , TMpred [START_REF] Hofmann | A database of membrane spanning protein segments[END_REF] and PHDhtm [START_REF] Rost | Topology prediction for helical transmembrane proteins at 86% accuracy[END_REF] . Secondary structure predictions were made using the Psipred server (http://bioinf.cs.ucl.ac.uk/psipred/). Structural predictions and homology modelling of the tridimensional structure of TssM Cyto/NTP and TssM Cyto/Ct were performed using HHpred [START_REF] Söding | The HHpred interactive server for protein homology detection and structure prediction[END_REF] or Swiss-Model [START_REF] Biasini | SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information[END_REF] , respectively. Figures were made using Chimera 66 . Amino-acid sequences were aligned with T-COFFEE [START_REF] Di Tommaso | T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension[END_REF] and phylogenetic analyses were performed with phylogeny.fr [START_REF] Dereeper | Phylogeny.fr: robust phylogenetic analysis for the non-specialist[END_REF] .

Miscellaneous. SDS-polyacrylamide gel electrophoresis was performed using standard protocols. For immunostaining, proteins were transferred onto nitrocellulose membranes, and immunoblots were probed with primary antibodies, and goat secondary antibodies coupled to alkaline phosphatase, and developed in alkaline buffer in presence of 5-bromo-4-chloro-3-indolylphosphate and nitroblue tetrazolium. The anti-FLAG (M2 clone, Sigma-Aldrich), anti-VSV-G (clone P5D4, Sigma-Aldrich) monoclonal antibodies, the alkaline phosphatase-conjugated streptavidin (Pierce) and alkaline phosphatase-conjugated goat anti-mouse secondary antibodies (Beckman Coulter) have been purchased as indicated and used as recommended by the manufacturer. 
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Figure 1 .

 1 Figure 1. TssM is a polytopic inner membrane protein. A. The trans-membrane helices predicted using the algorithms listed on the left are represented by black rectangles. The EAEC Sci-1 TssM natural cysteine residues, as well as the cysteine substitutions engineered in this study are indicated. Filled circles indicate cysteine residues labelled with the 3-(Nmaleimidylpropionyl) biocytin (MPB) probe, whereas open circles indicate unlabelled cysteine residues. Arrowheads indicate trans-membrane segments determined experimentally. B. Accessibility of cysteine residues. Whole EAEC ∆tssM cells producing wild-type TssM (WT) or the indicated mutant proteins were labelled with the MPB probe, lysed, solubilized, and TssM and mutant proteins were immunoprecipitated with anti-FLAG-coupled beads. The precipitated material was subjected to

Figure 2 .

 2 Figure 2. TssM Cyto interaction network identified by bacterial two-hybrid analysis. BTH101 reporter cells carrying pairs of plasmids producing the indicated T6SS proteins fused to the T18 or T25 domain of the Bordetella adenylate cyclase were spotted on X-Gal-IPTG indicator LB agar plates. Only the cytoplasmic (Cyto) or periplasmic (Peri) domains were used for membraneanchored proteins. Controls include T18 and T25 fusions to TolB and Pal, two proteins that interact but unrelated to the T6SS.

Figure 3 . 3 (Figure 4 .

 334 Figure 3. Structural architecture of TssM Cyto .A. The cytoplasmic domain of TssM, TssM Cyto , delimitated by the trans-membrane helices 2 and 3 (TMH2 and TMH3 respectively) could be partitioned into an NTPase-like domain (NTP, blue) and a C-terminal extension (Ct, green).TssM Cyto/NTP was modelled using HHpred based on the X-ray structure of the Burkholderia thailandensis EngB GTP-binding protein (PDB ID: 4DHE). TssM Cyto/Ct was modelled using SwissModel based on the X-ray structure of the C-terminal domain of the human DPY-30-like protein, a component of the histone methyltransferase complex (PDB ID: 3G36). All images were made with Chimera.[START_REF] Pettersen | UCSF Chimera -a visualization system for exploratory research and analysis[END_REF] !

Figure 5 .

 5 Figure 5. Specific conserved motifs mediate TssM Cyto dimerization and interaction with TssG A. Bacterial two-hybrid assay. BTH101 reporter cells carrying pairs of plasmids producing the indicated T6SS proteins fused to the T18 or T25 domain of the Bordetella adenylate cyclase were spotted on X-Gal-IPTG indicator LB agar plates. Only the cytoplasmic ( C ) or periplasmic ( P ) domains were used for membrane-anchored proteins. Controls include T18 and T25 fusions to TolB and Pal, two proteins that interact but unrelated to the T6SS. B. Co-immunoprecipitation assay. Soluble lysates from 5×10 10 E. coli K12 W3110 cells producing FLAG-tagged TssM C WT (M Cyto_FL ) or mutants and VSV-G-tagged TssG (TssG V ) or TssM Cyto (TssM Cyto_V ) proteins were subjected to immunoprecipitation with anti-FLAG-coupled beads. The total soluble (Tot) and the immunoprecipitated (IP) material were separated by 12.5% acrylamide SDS-PAGE and immunodetected with anti-FLAG (lower panels) and anti-VSV-G (upper panels) monoclonal antibodies. Molecular weight markers (in kDa) are indicated on the left.

Figure 6 .

 6 Figure 6. TssM Cyto oligomerization and interaction with the TssG baseplate are essential for T6SS function, sheath assembly and baseplate stability A. Anti-bacterial assay. E. coli K-12 prey cells (W3110 gfp + , kan R ) were mixed with the indicated attacker cells, spotted onto Sci-1 inducing medium (SIM) agar plates and incubated for 4 hours at 37°C. The number of recovered E. coli prey cells is indicated in the graph (in log10 of colony-forming unit (cfu)). The circles indicate values from three independent assays, and the average is indicated by the bar. B. Image recordings of the TssB-sfGFP fusion protein in the indicated cells. Statistical analyses (n=number of sheath/ cell) are indicated under each strain. The number of cells studied per strain (n) is 150. The scale bare is 2 µm. C. Image recordings of the sfGFP-TssF fusion protein in the indicated cells. The scale bare is 2 µm. D. Statistical analyses of sfGFP-TssF in the indicated strains. Shown are box-and-whisker plots of the measured number of sfGFP-TssF foci per cell for each strain with the lower and upper boundaries of the boxes corresponding the 25% and 75% percentiles respectively. The black bold horizontal bar represents the median values for each strain and the whiskers represent the 10% and 90% percentiles. Outliers are shown as open circle. n indicates the number of cells analyzed per strain.

Figure 7 .

 7 Figure 7. Schematic representation of the TssM Cyto interaction network. A. Schematic representation of the TssJLM membrane complex (MC) and its interactions with the TssKEFG-VgrG baseplate complex (BC). The TssM Cyto/NTP and TssM Cyto/Ct and the TssL cytoplasmic domain (TssL Cyto ) are shown in blue, green and orange respectively. The interactions defined in this study are indicated by red arrows. Interactions determined previously 24 or in the accompanying article 69 are shown in blue dashed arrows. B. Schematic representation of a TssM Cyto dimer (TssM Cyto/NTP are shown in blue,
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Region of tssM cloned into the pKO3 vector This study pKO3-tssM-L279W Introduction of the TssM Leu279-to-Trp substitution into pKO3-tssM This study pKO3-tssM-L282W-A283W Introduction of the TssM Leu282 and Ala283-to-Trp substitutions into pKO3-tssM This study pKO3-tssM-I312A-V313A-F314A Introduction of the TssM Ile312 and Val313 and Phe314-to-Ala substitutions into pKO3-tssM This study pKO3-tssM-S315W Introduction of the TssM Ser315-to-Val substitution into pKO3-tssM This study

Aschtgen et al., 2010 17-2 tssB-gfp gfp inserted upstream the stop codon of tssB in 17-2 This study 17-2ΔtssM tssB-gfp Ω Kan gfp inserted upstream the stop codon of tssB in 17-2 ΔtssM This study 17-2 tssB-gfp tssM-L279W Chromosomal point mutation Leu279-to-Trp substitution of tssM in 17-2 tssB-gfp This study 17-2 tssB-gfp tssM-L282W-A283W Chromosomal point mutation Leu282 and Ala283-to-Trp substitutions of tssM in 17-2 tssB-gfp This study 17-2 tssB-gfp tssM-I312A-V313A-F314A Chromosomal point mutation Ile312 and Val313 and Phe314-to-Ala substitutions of tssM in 17-2 tssB-gfp This study 17-2 tssB-gfp tssM-S315W Chromosomal point mutation Ser315-to-Val substitution of tssM in 17-2 tssB-gfp This study 17-2 gfp-tssF gfp inserted downstream the start codon of tssF in 17-2 Brunet, Zoued et al., 2015 17-2ΔtssM gfp-tssF Ω Kan gfp inserted downstream the start codon of tssF in 17-2 ΔtssM This study 17-2 gfp-tssF tssM-L279W Chromosomal point mutation Leu279-to-Trp substitution of tssM in 17-2 gfp-tssF This study 17gfp-tssF tssM-L282W-A283W Chromosomal point mutation Leu282 and Ala283-to-Trp substitutions of tssM in 17-2 gfp-tssF This study 17-2 gfp-tssF tssM-I312A-V313A-F314A Chromosomal point mutation Ile312 and Val313 and Phe314-to-Ala substitutions of tssM in 17-2 gfp-tssF This study 17-2 gfp-tssF tssM-S315W Chromosomal point mutation Ser315 to Val substitution of tssM in 17-2 gfp-tssF This study

 --------------------- ---------------------e Sequences corresponding to the downstream and upstream regions of the gene to be inserted underlined