

Type VI secretion TssK baseplate protein exhibits structural similarity with phage receptor-binding proteins and evolved to bind the membrane complex

van Son Nguyen, Laureen Logger, Silvia Spinelli, Pierre Legrand, Thi Thanh Huyen Pham, Thi Trang Nhung Trinh, Yassine Cherrak, Abdelrahim Zoued, Aline Desmyter, Eric Durand, et al.

▶ To cite this version:

van Son Nguyen, Laureen Logger, Silvia Spinelli, Pierre Legrand, Thi Thanh Huyen Pham, et al.. Type VI secretion TssK baseplate protein exhibits structural similarity with phage receptor-binding proteins and evolved to bind the membrane complex. Nature Microbiology, 2017, 2, pp.17103. 10.1038/nmi-crobiol.2017.103 . hal-01780712

HAL Id: hal-01780712 https://amu.hal.science/hal-01780712

Submitted on 27 Apr 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Type VI secretion TssK baseplate protein exhibits structural similarities with phage
2	receptor binding protein and evolved to bind the membrane complex
3	
4	Van Son Nguyen ^{1,2} , Laureen Logger ³ , Silvia Spinelli ^{1,2} , Pierre Legrand ⁴ , Thi Thanh Huyen
5	Pham ^{1,2,5} , Thi Trang Nhung Trinh ^{1,2,5} , Yassine Cherrak ³ , Abdelrahim Zoued ³ , Aline
6	Desmyter ^{1,2} , Eric Durand ³ , Alain Roussel ^{1,2} , Christine Kellenberger ^{1,2} , Eric Cascales ^{3*} and
7	Christian Cambillau ^{1,2*}
8	
9 10	¹ Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France.
11	² Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche
12	Scientifique (CNRS), Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France.
13	³ Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la
14	Méditerranée, Aix-Marseille Univ Centre National de la Recherche Scientifique
15	(UMR7255), 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
16 17	⁴ Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette Cedex, France.
18	⁵ University of Science and Technology of Hanoi, Training and Services Building, Vietnam
19	Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay District, Hanoi,
20	VietNam
21	
22	* corresponding authors: Eric Cascales (cascales@imm.cnrs.fr) and Christian Cambillau

23 (cambillau@afmb.univ-mrs.fr).

- 24 *Running title*: T6SS-bacteriophage baseplate homology
- 25 Keywords: Type VI secretion, nanobody, protein secretion, protein transport, baseplate,
- 26 structure-function analysis, contractile tail, receptor binding protein, shoulder, tail assembly
- 27

28 ABSTRACT

29

30 The Type VI secretion system (T6SS) is a multiprotein machine widespread in 31 Gram-negative bacteria that delivers toxins into both eukaryotic and prokaryotic cells. 32 The mechanism of action of the T6SS is comparable to that of contractile myophages. 33 The T6SS builds a tail-like structure made of an inner tube wrapped by a sheath 34 assembled under an extended conformation. Contraction of the sheath propels the inner 35 tube toward the target cell. The T6SS tail is assembled on a platform – the baseplate – 36 functionally similar to bacteriophage baseplates. In addition, the baseplate docks the tail 37 to a trans-envelope membrane complex that orients the tail toward the target. Here, we 38 report the crystal structure of TssK, a central component of the T6SS baseplate. We 39 show that TssK is constituted of three domains and establish the contribution of each 40 domain to the interaction with TssK partners. Importantly, this study reveals that the 41 N-terminal domain of TssK is structurally homologous to the shoulder domain of phage 42 receptor binding proteins while the C-terminal domain binds the membrane complex. We propose that TssK has conserved the domain of attachment to the virion particle but 43 44 has evolved the reception domain to use the T6SS membrane complex as receptor.

45 Introduction

46 Delivery of bacterial effector proteins and toxins into target cells relies on trans-47 envelope nanomachines called secretion systems. These machines select and transport effectors in the milieu or directly into the target cell¹. Most of these secretion systems evolved 48 49 from efflux pumps or from machineries involved in conjugation or flagellar, twitching or 50 gliding motility¹. The Type VI secretion system (T6SS) is a fascinating machine that uses a 51 contractile mechanism similar to that of contractile tail structures such as bacteriophages or R-pyocins²⁻⁷. The T6SS delivers toxins and effectors in both eukaryotic and procaryotic cells 52 and participates to bacterial pathogenesis and inter-bacterial competition^{8,9}. By eliminating 53 competing bacteria, the T6SS confers an increased ability to colonize the niche¹⁰⁻¹⁶ 54 55 Basically, the T6SS can be viewed as a contractile tail oriented towards the target cell and anchored to the cell envelope by a membrane complex $(MC)^{3,17}$. The MC is evolutionarily 56 related to a sub-complex associated with Type IVb secretion system^{18,19}. The MC is a 1.7-57 58 MDa trans-envelope structure constituted of three conserved subunits: the TssJ outer membrane lipoprotein and the TssL and TssM inner membrane proteins²⁰⁻²⁶. In several cases, 59 60 the MC is properly inserted and anchored to the cell wall by additional proteins with peptidoglycan hydrolysis and peptidoglycan binding properties^{21,27-29}. The contractile tail is 61 composed of the inner tube made of hexamers of the Hcp protein, stack on each other 30,31 , 62 tipped by VgrG and surrounded by the contractile sheath made of the TssBC proteins³⁰⁻³². The 63 64 polymerization of the tail tube/sheath tubular structure is initiated on an assembly platform, 65 the baseplate (BP), the less characterized T6SS sub-complex, and is coordinated by the TssA protein³³⁻³⁵. The T6SS contractile tail shares functional and structural homologies with the tail 66 of several bacteriophages^{5,6,30,36,37}. Once the T6SS tail is assembled, the sheath contracts and 67 propels the inner tube/spike needle complex towards the target cell³⁹⁻⁴², and it has been 68 proposed that this needle complex traverses the cell envelope through the MC^{26} . A recent *in* 69

70	vivo study identified five components of the BP: TssE, -F, -G, -K and VgrG ³⁴ . While TssA
71	was also identified in this screen, later observations have demonstrated that TssA is not a
72	structural component of the baseplate per se^{34} . TssE is a homologue of gp25, a bacteriophage
73	T4 baseplate wedge protein ^{18,19,43} . By contrast, no tri-dimensional structure is available for
74	TssF, -G or -K. In silico analyses recently predicted that TssF and TssG share limited
75	homologies with gp6 and gp7 respectively ³⁴ whereas controversies exist regarding TssK ^{44,45} .
76	Interestingly, T6SS BP sub-complexes could be isolated in Serratia marcescens and
77	uropathogenic <i>Escherichia coli</i> (UPEC) such as the TssKFG or TssKFGE complexes ^{33,45} .
78	These complexes likely represent the equivalent of wedge complexes of phage baseplates,
79	which assemble around the central gp27-gp5 hub/spike ^{46,47} . In addition to appear central for
80	the assembly of the T6SS wedges, TssK is a key BP subunit mediating contacts with the
81	cytoplasmic domains of MC components ^{35,48,49} . Hence, TssK is an essential BP component
82	connecting MC, BP and tail components. However, we still lack structural information on
83	TssK. While we showed that TssK assembles trimeric complexes in enteroaggregative E. coli
84	$(EAEC)^{48}$, a study reported that it assembles trimers and hexamers in <i>S. marcescens</i> ³³ . The
85	available structural information on the EAEC TssK protein (accession number: EC042_4526)
86	consists to the low-resolution (~ 26 Å) negative stained electron microscopy structure of the
87	TssK trimer, as well as its SAXS envelope ⁴⁸ . Despite intensive efforts, neither full-length of
88	cleaved forms of TssK could be crystallized. Here, we report the crystal structure of the full-
89	length EAEC TssK protein, obtained as a complex with a camelid nanobody that facilitated
90	the crystallisation process. The structure of trimeric TssK reveals an unexpected homology of
91	its N-terminal domain with siphophages RBP shoulders, hence expanding the number of
92	homologous proteins between T6SS and bacteriophages. While TssK N-terminal domain
93	attaches to the rest of T6SS baseplate, the C-terminal domain binds the membrane complex
94	and has evolved to use the T6SS membrane complex as receptor for docking the baseplate. In

95	addition, the flexibility of the TssK C-terminal domain suggests that TssK may establish a
96	flexible link to maintain the anchorage of the baseplate to the T6SS membrane complex
97	before and after tail contraction.
98	
99	Results
100	
101	TssK crystallization is facilitated when complexed to the TssK-specific nb18 nanobody.
102	Despite extensive efforts, previous attempts to crystallize TssK were unsuccessful.
103	Crystallization of proteins has been previously shown to be facilitated once the protein of
104	interest is complexed to camelid single-chain antibodies, called nanobodies ⁵⁰ . We sused this
105	approach for the crystallization of the periplasmic domain of the T6SS TssM subunit ^{26,51,52} .
106	We therefore immunized a llama with purified TssK, and isolated nanobodies that bind TssK:
107	nbK18, nbK25 and nbK27. The crystal structure of nbK18 was determined (Supplementary
108	Figure 1a) and its complexation with TssK was then monitored by Biolayer interferometry
109	(BLI). Kinetic and steady-state analyses defined K_D of 2.4 nM and 3.1 nM respectively.
110	
111	The TssK structure reveals a three-domain protein organized as a tightly packed trimer.
112	The structure of the nbK18-TssK co-crystallized complex was determined at 2.6 Å
113	resolution. The complex contains three TssK molecules to which three nbK18 units are bound
114	(Supplementary Figure 1b). TssK trimerization is in agreement with previous gel filtration
115	data suggesting that TssK forms trimer ⁴⁸ . Each nanobody interacts with two monomers of
116	TssK and covers ~700 \AA^2 of the accessible surface area of a TssK monomer and 80 \AA^2 of a
117	second monomer. Interaction of nbK18 with TssK is mainly mediated by nbK18 CDR3 but
118	also by the two other CDRs and the conserved skeleton (Supplementary Figure 1b,

119 Supplementary Table 2), a feature already observed in other cases^{53,54}. NbK18 binds the TssK

120 N-terminal β-sandwich and more specifically the L4-5 and L6-7 loops (Supplementary

121 Figure 1b inset; Supplementary Table 2).

122 The TssK trimer has the overall structure of an apple core or an hourglass, with two globular 123 domains – the N-terminal shoulder (herefater named $TssK_S$) and C-terminal head ($TssK_H$) 124 domains – separated by a helical stalk, the neck (TssK_N). The TssK trimer is tightly packed, as 1400-1570 Å² of the accessible surface area of each monomer is covered by the two other 125 monomers (Fig. 1a). The structure exhibits high B-factors ($\sim 100 \text{ Å}^2$) and consequently the 126 127 side-chains of solvent exposed residues are often disordered when not involved in crystal 128 packing contacts. A large segment is missing at the bottom of the shoulder domain, between 129 residues 130 and 144, and a short loop is incomplete at the top of the neck domain, between 130 residues 221 and 224. These segments and have not been incorporated into the model (Fig. 131 1a). Two of the three monomers are not complete: their amino acid chains start at residue 19 132 and end at residues 320 and 315 for monomers A and C, respectively, suggesting that their C-133 terminal domain might be totally disordered. In contrast, the main-chain of monomer B could 134 be traced up to residue 334, and the side-chain identity can be assigned (Fig. 1a). However, 135 despite its stabilization by crystal contacts, the C-terminal domain of chain B exhibits an 136 average B-factor double compared to the rest of the structure, impeding its complete 137 assignment (Fig. 1a). 138 The TssK monomer structure comprises three domains: a N-terminal β -sandwich domain 139 (shoulder, TssK_s, residues 19-174), a linker (residues 175-193) and a four-helix bundle 140 middle domain (neck, TssK_N, residues 194-313), and, in chain B only, a partially traced C-141 terminal domain (head, TssK_H, residues 315-447) (Fig. 1b). The N-terminal domain starts

- 142 with a long α -helix followed by three anti-parallel β -strands forming a β -sheet (β 1- β 3). After
- 143 β -strand 4, a short β -hairpin (β 4, β 5) is followed by β -strands 6 and 7. Together, β -strands 4, 6

144	and 7 form the second β -sheet of the β -sandwich. After a long linker, α -helices 2, 3 and 4
145	form an antiparallel bundle. Helix 4 is then followed by a long unstructured stretch of
146	residues returning in the direction of the N-terminus and positioning α -helix 5 parallel to α -
147	helix 3, allowing the chain to continue in a direction opposite to the N-terminus. The C-
148	terminal domain, starting at residue 317, is predicted by JPRED ⁵⁵ as assembling three α -
149	helices and seven β -strands. We assigned 106 amino acids for a total of 125 for the complete
150	C-terminal domain. At this stage it comprised two complete α -helices and an incomplete one,
151	as well as two β -sheets forming a β -sandwich of putatively 7 β -strands, but most connections
152	were not visible in the electron density map.
153	To obtain a better model of TssK, the C-terminal domain (amino-acids 316-445) was
154	produced, crystallized and its structure solved at 1.6 Å resolution. This domain is very
155	compact and comprises three α -helices (α 6-8) and 7 β -strands (β 10-16) (Fig. 1b). The
156	structure of the isolated C-terminal domain was reintroduced in the structure of full-length
157	TssK, and refinement was performed. Apart from loop 372-382, which has a different
158	conformation, the domain conformations are very close in the isolated and full-length
159	structures (r.m.s.d = 1.2 Å on 115 residues) (Supplementary Figure 2). Notably, the C-
160	terminal domain of chain B establishes stabilizing packing contacts, involving mainly loop
161	372-382. As such, the complete TssK trimer is ~ 110 Å long and ~ 85 Å wide at the level of
162	the shoulder domains, and ~ 40 Å wide at the level of the central domain (Fig. 1a).
163	We previously reported the negative stain electron microscopy (EM) structure of TssK ⁴⁸ . The
164	crystal structure of TssK was fitted into the EM map using Chimera ⁵⁶ (Fig. 1c,d). With the
165	exception of the C-terminal domain of monomer B, TssK fits exquisitely well into the EM
166	structure with a correlation of 0.89 and 93 % of atoms included in the map.
167	Nanobody epitope analysis performed by BLI revealed that nbK27 and nbK25 bind
168	TssK using another epitope compared to nbK18. We therefore co-crystallized the cloned

169	$TssK_{SN}$ domain (shoulders and neck domain, residues 1-315) with nbK18 and nbK27. Crystals
170	of the $TssK_{SN}$ -nbK18–nbK27 were obtained and the structure was solved (Supplementary
171	Table 1). The structure of the TssK _{SN} -nbK18–nbK27 superimposes well with that of the
172	TssK-nbK18 complex, with a small rotation of the three nbK18. By contrats to nbK18, that
173	binds each TssK monomer, a unique nbK27 binds the trimeric assembly along the 3-fold axis
174	at the bottom of the shoulder domains (Fig. 2a,b), resulting in a TssK ₃ /nbK18 ₃ /nbK27 ₁
175	stoichiometry. The most striking result of nbK27 binding to TssK is the ordering of the
176	bottom of the shoulder domains segments that were disordered in the TssK-nbK18 complex:
177	the N-terminal segment 1-19 and the β -hairpin 130-144 (Fig. 2c,d). This ordering results in
178	strong domain-swapped like interactions of the 1-19 segment with the i-1 monomer, and of
179	the 130-144 β -hairpin with the i+1 monomer (Fig. 2c). Notably, the stabilized structures
180	comprise all the bottom part of TssK, a surface with a diameter of ~50 Å (Fig. 2d). Finally,
181	the list of domains or segments present in the different crystal structures is summarized as a
182	linear sequence representation with secondary structures (Supplementary Figure 3).

184 The TssK N-terminal domain shares structure similarities with phage Receptor Binding
185 Protein shoulder domains.

186 The three domains of TssK were subjected to DALI analyses to detect structural 187 similarities. Interestingly, DALI retrieved strong similarities between the TssK N-terminal β-188 sandwich domain and the shoulder domains from lactococcal siphophages receptor binding proteins (RBP) (Fig. 3), including phages 1358 (PDB: 4L9B, Z=9.0, r.m.s.d. = 3.0 Å;⁵⁷) and 189 p2 (PDB: 1ZRU, Z=6.0 r.m.s.d.= 3.0 Å;⁵⁸). In addition, although helix bundles represent a 190 191 common structural fold, DALI analyses detected similarities between the TssK neck domain and a domain of the human adenylosuccinate lyase (PDB: 4FFX, Z=9.4, r.m.s.d.=3.1 Å,⁵⁹) 192 193 (Supplementary Figure 4).

195 Interaction analyses of TssK domains

196	Previous studies have shown that TssK is a central subunit of the T6SS, as it interacts
197	with components of the MC (the cytoplasmic domains of TssL (TssL _C) and TssM (TssM _C)),
198	of the baseplate (the TssFG complex) and of the tail (TssA, TssC and Hcp) ^{33,34,39,48,60} . We
199	therefore sought to define the domains mediating TssK interactions with MC and BP. First,
200	the N-terminal shoulder and neck ($TssK_{SN}$), shoulder ($TssK_S$), neck ($TssK_N$) and C-terminal
201	head (TssK _H) domains of TssK were cloned in two-hybrid vectors and tested for their ability
202	to promote oligomerization and to interact with TssFG, TssL _C and TssM _C (Fig. 4a). In
203	agreement with the crystal structure of the TssK trimer (Fig. 1a), both shoulder and neck
204	domains oligomerize whereas the TssK head domain does not interact with TssK (Fig. 4a,
205	first column). More interestingly, the two-hybrid analyses revealed that the N-terminal
206	shoulder domain mediates contacts with the TssFG complex whereas the C-terminal head
207	domain interacts with $TssL_C$, $TssM_C$ and to a lesser extent to $TssFG$. We then monitored co-
208	immunoprecipitation experiments. Soluble lysates of cells producing the VSV-G-tagged TssK
209	domains were combined with lysates containing FLAG-tagged TssF and TssG, or the
210	cytoplasmic domains of TssL (TssL _C) or TssM (TssM _C). FLAG-tagged proteins were
211	immobilized on agarose beads coupled to the monoclonal anti-FLAG antibody and the eluted
212	material was analysed by SDS-PAGE and immuno-staining. Figure 4b shows that the $TssK_S$
213	domain is co-precipitated with the TssFG complex, whereas the the $\ensuremath{TssK}_{\ensuremath{H}}$ domain co-
214	precipitates with $TssL_C$ and $TssM_C$ - and to a lower extent - with $TssFG$. The results of
215	BACTH and co-immunoprecipitation analyses are summarized in Supplementary Figure 5.
216	To confirm these results, we engineered vectors producing TssFG as well as either
217	$6 \times$ His-tagged TssK _{SN} or TssK _H . HPLC chromatography indicated that TssKFG and
218	TssK _{SN} FG complexes form (Supplementary Figure 6a). However, while we succeeded to

219 purify the TssK_{SN}FG complex (Fig. 4c, Supplementary Figure 6a), TssK_H was purified alone 220 and did not co-purify with TssFG; isolated TssFG is not observed on the chromatogram as it 221 is insoluble (Supplementary Figure 7a). These results confirm the $TssK_{SN}/TssFG$ complex 222 interaction and indicate that the low TssK_H/TssFG interaction, observed by BACTH and co-223 immuno-precipitation, should be weaker and in fast exchange. To gain further insights on the 224 contribution of the TssK_{SN} domain for binding to the TssFG complex, we then tested binding 225 of the TssK-specific nbK18 and nbK27 nanobodies to the TssK_{SN}FG complex. The purified 226 TssK_{SN}FG complex was mixed with an excess of nanobody and analysed by gel filtration and 227 HPLC. First, we confirmed that nbK18 and nbK27 bind alone and simultaneously to $TssK_{SN}$. 228 We performed then the analysis of TssK_{SN}FG in the presence of nbK18, nbK27 and nbK18 + 229 nbK27 (Supplementary Figure 6b). We found that nbK18 binds to the TssK_{SN}FG complex 230 (Fig. 4c,d and Supplementary Figure 6c) whereas nbK27 does not (Fig. 4c,e). From these 231 results, we concluded that nbK27 and TssFG share the same binding site to TssK, and hence, 232 that TssFG should bind to the bottom of the TssKs domain comprising the residues 1-19 233 segment and the 130-144 β -hairpin. Taken together, the results of the co-purification and the 234 nanobody binding experiments confirmed the interaction of TssK_s with the TssFG complex 235 and suggested that TssFG binds the bottom of TssK_s. 236 We could not assay the TssK_H interaction with the TssMc domain, as it is insoluble. In 237 contrast we performed a gel filtration of a mixture of TssLc and TssK_H, and found that they 238 do not co-purify. As an interaction is observed by double-hybrid and co-immunoprecipitation 239 this latter result suggests that this interaction is rather weak (around 1-10microM) and in fast

exchange. Indeed, this does not reflect the biological situation in which the interaction of
several TssK trimers and several Lc dimers occurs, leading certainly to a tremendous avidity
increase.

243

244 **Discussion**

245 In this work, we present the crystal structure and a domain analyses of a T6SS core 246 component, TssK. Previous studies have demonstrated that TssK is a trimer and is an 247 essential subunit of the Type VI secretion apparatus by connecting the trans-envelope membrane complex to the phage-like contractile tail⁴⁸. In addition, TssK has been shown to 248 be part of the T6SS assembly platform or baseplate^{33,34,39,45,48}. It has been recently reported 249 250 that phage T4 is a very complex phage, and that phage Mu is a simpler, widespread, and a better paradigm of phages with contractile tails ⁶¹. Notably, TssK has no counterpart in phage 251 Mu whereas other T6SS baseplate components have counterparts in both phages T4⁴⁵ and 252 Mu⁶¹: TssE corresponds to gp25 (T4) and Mup46 (Mu), TssF to gp6 and Mup47 and TssG to 253 254 Mup48 (no homologue in T4).

255 The X-ray structure of TssK confirms that TssK exists as a trimer. The TssK trimer 256 has an overall architecture resembling that of an apple core: a shoulder base and a distal head 257 separated by the central neck. The structure of TssK is modular. It comprises three domains: a 258 N-terminal domain, essentially β -stranded, comparable to the N-terminal shoulder domains of 259 phages p2 and 1358 RBPs, followed by a α -helical central domain and a mixed α β C-260 terminal globular domain. In vivo interactions studies with known partners of TssK support 261 the idea that TssK acts as a connector between two T6SS complexes that are evolutionarily 262 unrelated: the phage-like baseplate/tail and the T4bSS IcmF/DotU-like membrane complex 263 (Fig. 5). From the protein-protein interaction assays we concluded that the TssK N-terminal 264 shoulder domain binds to TssFG and that the C-terminal head domain mediates interactions 265 with the TssL and TssM inner membrane proteins..

The fascinating observation of this study is that TssK shares a similar overall architecture with lactococcal siphophage receptor-binding proteins. These RBPs are trimers and comprise shoulder and head domains separated by the neck^{57,58,62}. They recognize the

host cell surface and are responsible for properly orienting the phage onto the host cell^{63,64}. 269 270 RBPs are anchored to the virion and bind to receptors at the cell surface of the target cell. 271 Anchorage to the virion particle is mediated by the shoulder domain whereas the ability to 272 recognize the cell envelope receptor is conferred by the head domain. It has been reported that 273 in each lactococcal phage family, the shoulder domain structure is strictly conserved whereas 274 the head domain is relatively diverse and confers specificity for binding to the proper target cell^{57,58,62,63,65}. Another striking similarity between the TssK and RBP shoulder domains is the 275 276 ordering of their bottom segments upon binding to partners. When the phage p2 RBP is 277 expressed alone, the 20 N-terminal residues are disordered and not visible in the electron map 278 density. In contrast, they are ordered when the RBP is complexed with the other baseplate 279 components and constitutes the main contributors to the interaction. Worth noticing, the "arm 280 and hand" domain of the Dit protein inserts between the three N-termini, holding thus the RBP trimer ^{58,62,65}. A similar situation may exist with TssK. Although we do not have the 281 282 structure of TssK within the TssKFG complex, nanobody binding experiments on the 283 TssKFG complex have shown that the TssFG binding site on TssK involves the bottom of the 284 trimer, including the N-termini (Supplementary Figure 8). The ordering of this site upon 285 nbK27 binding suggests that this nanobody acts as a surrogate of the TssFG complex. 286 In myophages, such as phages T4 or Mu, both the baseplate and the tail sheath change conformation upon contraction^{45,61}. The tail sheath conformational change is also 287 documented for the T6SS³². It is therefore expected that a conformational reorganization also 288 occurs for the T6SS baseplate ^{35,38}. The flexibility of TssK head domain relative to the rest of 289 the trimer suggests that TssK may constitute a flexible link between the T6SS baseplate and 290 291 its membrane domain to accommodate the different conformations and radii before and after 292 tail contraction. The TssK flexible hinge would therefore prevent disruption of the contact 293 between the membrane and the baseplate complexes during sheath contraction.

294	By sharing the overall architecture and the N-terminal shoulder domain with RBPs, we
295	propose that TssK represents a RBP-like component of T6SS. Such as in RBPs, the TssK has
296	a modular architecture with a N-terminal shoulder domain and a C-terminal head domain.
297	The TssK shoulder domain interacts with the other T6SS baseplate components (TssFG). By
298	contrast, the head domain of TssK mediates interaction with the cytoplasmic domains of TssL
299	and TssM and hence docks the baseplate to the MC (Fig. 5). These data are consistent with
300	previous fluorescence microscopy imaging demonstrating that GFP-labeled TssK is recruited
301	to the MC and is necessary for recruiting the gp6/Mup47-like TssF baseplate subunit ³⁴ . Based
302	on these data and on the observation of TssE and TssG interactions with the cytoplasmic
303	domains of TssL and TssM respectively ^{34,49,66} , we propose that TssK first interacts with the
304	MC and that TssE-TssL and TssG-TssL additional contacts stabilize the MC-BP complex.
305	TssK has therefore a similar function to RBPs: it is anchored to the phage-like structure by a
306	conserved shoulder domain but, instead of allowing the phage particle to bind to the target
307	cell surface, it has evolved a distinct head domain to recognize and bind to the T6SS MC. It
308	should be stressed that while TssFG have sequence similarity with Myoviridae phages
309	baseplate components, the TssK shoulder domain has structural similarity with Siphoviridae
310	phages RBPs, and has no counterpart in Myoviridae. Therefore, even if the origin of T6SS tail
311	and baseplate is from Myoviridae phages, the TssK N-terminal domain may derive from
312	horizontal transfer from a Siphoviridae component in order to provide the ability to bind the
313	TssJLM complex of T6SS). These results point to a more complicated evolutionary process
314	leading to the T6SS where elements of different phage types were combined.
315	
316	Materials and Methods

318 Bacterial strains, growth conditions and chemicals

319	The strains used in this study are listed in Supplementary Table 3. Escherichia coli K-12
320	strains DH5 α , W3110, BTH101 and T7 Iq pLys were used for cloning procedures, co-
321	immune-precipitation, bacterial two-hybrid and protein purification respectively. The
322	enteroaggregative E. coli (EAEC) wild-type O3:H2 17-2 strain genomic DNA was used as
323	template for cloning. E. coli K-12 and EAEC cells were routinely grown in LB broth at 37°C,
324	with aeration. For protein production, cells were grown in terrific broth. Plasmids and
325	mutations were maintained by the addition of ampicillin (100 μ g/mL), kanamycin (50 μ g/mL)
326	or chloramphenicol (40 μ g/mL). Gene expression was induced by the addition of iso-propyl-
327	β -D-thio-galactopyranoside (IPTG, Sigma-Aldrich, 1 mM for nanobodies, 0.5 mM for TssK
328	and TssK domains production and BACTH analyses), L-arabinose (Sigma-Aldrich; 0.2%) or
329	anhydrotetracyclin (AHT; IBA Technologies; 0.2 µg/mL).

331 Plasmid construction

332 PCR were performed with a Biometra thermocycler, using the Pfu Turbo DNA polymerase

333 (Stratagene; La Jolla, CA). Plasmids and oligonucleotides are listed in Supplementary Table

334 3. Plasmids producing EAEC TssK domains fused to a VSV-G tag or to the T18 or T25

domains of the *B. pertussis* adenylate cyclase were engineered by restriction-free cloning 67 .

336 Briefly, DNA fragments corresponding to TssK domains were amplified from EAEC 17-2

337 genomic DNA using oligonucleotides bearing 5' extensions annealing on the target plasmid.

338 The PCR products were then used as primers for amplification of the target plasmid.

339 Constructs have been screened by colony-PCR and verified by DNA sequencing. The TssK_H

- domain (residues S316 to T445) was cloned into the pETG20A expression vector using the
- 341 same procedure.

The *tssK*, *tssF* and *tssG* were initially cloned in a pCDF-Duet1 vector with Cter His₆tag, Nter TREP tag and Cter FLAG tag for The *tssK*, *tssF* and *tssG*, respectively (Supplementary Figure 8). For this study, the TREP and FLAG tags were removed by overlapping PCR (Supplementary Figure 8). The *tssK_{SN}FG* and *tssK_HFG* vectors were obtained by Gibson assembly (Gibson Assembly Cloning Kit, New England BioLabs) (Supplementary Figure 9).

347

348 Bacterial two-hybrid

- 349 The adenylate cyclase-based bacterial two-hybrid technique ⁶⁸ was used as previously
- 350 published ⁶⁹. Briefly, the proteins to be tested were fused to the isolated T18 and T25
- 351 catalytic domains of the Bordetella adenylate cyclase. After introduction of the two plasmids
- 352 producing the fusion proteins into the reporter BTH101 strain, plates were incubated at 30°C
- 353 for 24 hours. Three independent colonies for each transformation were inoculated into 600 μL
- of LB medium supplemented with ampicillin, kanamycin and IPTG (0.5 mM). After
- 355 overnight growth at 30°C, 10 µL of each culture were dropped onto LB plates supplemented
- 356 with ampicillin, kanamycin, IPTG and 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside
- 357 (X-Gal) and incubated for 12 hours at 30 °C. Controls include interaction assays with TolB
- and Pal, two protein partners unrelated to the T6SS. The experiments were done at least in
- triplicate and a representative result is shown.

360 Co-immunoprecipitation

- 361 Co-immunoprecipitation experiments were performed as previously described³⁵. 10^{11}
- 362 exponentially growing cells producing the proteins of interest were harvested, and
- 363 resuspended in CellLyticTM B Cell Lysis reagent (Sigma-Aldrich) supplemented with protease
- 364 inhibitors (Complete, Roche), lysozyme (100 µg/mL) and DNase (100 µg/mL) and incubated

- 365 for 1 hour with strong shaking. The insoluble material was discarded by centrifugation for 45
- 366 min at $60,000 \times g$ and the supernatant from 2×10^{10} cells was incubated overnight at 4°C with
- 367 anti-FLAG M2 affinity beads (Sigma-Aldrich). Beads were then washed twice with
- 368 CellLyticTM and once with Tris-HCl 20 mM pH8.0, NaCl 100 mM. The total extract and
- 369 immunoprecipitated material were resuspended and boiled in Laemmli loading buffer prior to
- analyses by SDS-PAGE and immunoblotting.
- 371 High-performance liquid size-exclusion chromatography
- 372
- 373 Size exclusion chromatography was performed on an Ultimate 3000 HPLC system (Dionex),

using a Superdex 200 increase 10/30GL column equilibrated in Tris 10mM pH8, NaCl 150

375 mM at a flow rate of 0.6ml/min. Accurate injections of 30 ul samples were done using the

autosampler and detection was monitored at 280nm.

377

378 Gel filtration analyses

The effect of domains deletions on TssKFG as well as the binding of nanobodies nbK18 and nbK27 to TssK_{SN}FG were analyzed using nickel affinity chromatography and gel filtration chromatography. The three constructs possess a unique module bearing a His₆ tag (Supplementary Figure 9)): On TssK for the TssKFG construct, on TssK_H for the TssK_HFG construct, and on TssK_{SN} for the TssK_{NS}FG construct. The purification procedures were similar to those used for the TssK-nbK18 complex (see above). An molar excess of nanobody (1.2), nbK18 or nbK25, was added to the TssK_{SN}FG complex and submitted to a nickel

- affinity purification, followed by gel filtration. The mixtures were immobilized on a 5-mL
- 387 Ni²⁺ HisTrap prepacked column (GE Healthcare) using an AKTA FPLC system. After
- 388 extensive washing steps in absence or presence of 50 mM of imidazole, they were eluted with

250 mM imidazole. The fractions containing the His₆ tagged proteins were pooled and loaded
on to a preparative 10/300 Superdex 200 gel filtration column (GE Healthcare) equilibrated in

20 mM Tris-HCl, pH 8.0, 150 mM NaCl. The peaks were analysed by SDS gels. The same

392 conditions were applied to the $TssK_HFG$ construct. The fractions containing the His_6 tagged

393 proteins were pooled and loaded on to aHiLoad 16/600 Superdex 200, column equilibrated in

394 20 mM Tris-HCl pH 8.0, 150 mM NaCl buffer.

395 *Protein purification*.

6×His-tagged TssK was purified as previously described⁴⁸. E. coli T7 Iq pLys cells carrying 396 397 pRSF-TssK (TssK_{6His}) or pETG20A-TssK_{Ct} (TssK C-terminal domain fused to a thioredoxin-398 $6 \times$ His-TEV N-terminal extension, TRX-6His-TEV-TssK_{Ct}) were grown at 37 °C in terrific 399 broth to an optimal optical density $(OD_{600}) \sim 0.6-1.0$ and *tssK* expression was induced with 400 0.5 mM IPTG for 16 h at 17 °C. Cells were harvested, resuspended in 50 mM Tris-HCl pH 401 8.0, 300 mM NaCl supplemented with 1 mM PMSF, 0.25 mg/mL lysozyme, 100 µg/mL 402 DNase I and 20 mM MgCl₂. After sonication, soluble proteins were separated from inclusion 403 bodies and cell debris by centrifugation at 20,000 \times g for 30 min. TssK_{6His} and TRX-6His-TEV-TssK_{Ct} were immobilized on a 5-mL Ni²⁺ HisTrap prepacked column (GE Healthcare) 404 405 using an AKTA FPLC system. After extensive washing steps in absence or presence of 50 406 mM of imidazole, TssK_{6His} and TRX-6His-TEV-TssK_{Ct} were eluted with 250 mM imidazole. 407 The fractions containing the TssK_{6His} protein were pooled and loaded on to a preparative 408 Superdex 200 gel filtration column (GE Healthcare) equilibrated in 20 mM Tris-HCl, pH 8.0, 409 150 mM NaCl. TssK_{6His} was concentrated to 25 mg/mL and stored at 4 °C for crystallization 410 trials. The fractions containing TRX-6His-TEV-TssK_{Ct} were pooled and incubated with TEV 411 protease (protein/TEV to a 20/1 molecular ratio) coupled to dialysis against 50 mM Tris-HCl 412 pH 8.0, 300 mM NaCl supplemented with 10 mM imidazole overnight at 4 °C. The proteins were then subjected to a second Ni²⁺ HisTrap prepacked column. The untagged TssK_H protein 413

414 was collected in the flow through and concentrated on a preparative Superdex 200 gel

415 filtration column equilibrated in 20 mM Tris-HCl, pH 8.0, 150 mM NaCl. TssK_H was

416 concentrated to 26 mg/mL and stored at 4 °C for crystallization trials. pETG20A-TssK_{SN}

417 (TssK N-terminal domain fused to a thioredoxin-6×His-TEV N-terminal extension, TRX-

418 6His-TEV-TssK_{SN}) was prepared and purified in the same conditions as TssK_{6His}.

419

420 *Generation and purification of TssK-specific llama nanobodies.*

421 To obtain nanobodies against TssK, a llama (Lama glama) was immunized with 422 purified TssK_{6His} (Ardèche-lamas France). Approximately 400 µg of TssK_{6His} in 10 mM 423 HEPES, 150 mM NaCl, pH 7.5, was injected subcutaneously four times at one-week intervals 424 using incomplete Freund's adjuvant, followed by a fifth injection two weeks later. Blood 425 samples were collected aseptically 5 days after the last boost. Lymphocytes were isolated 426 from blood samples, and cDNA was synthesized from the acquired RNA using a reverse PCR protocol. A nanobody phage display library of approximately 10⁹ independent transformants 427 was generated using the phagemid vector pHEN4^{70,71}. Phage display selection and screening 428 of specific nanobodies were performed as previously published⁷². An enrichment of antigen-429 430 specific clones was observed after two consecutive rounds of selection on solid-phase coated 431 antigen. After the second round, TssK-specific nanobodies were identified, and the inserts of 432 the corresponding pHEN4-derived plasmids were sequenced and cloned into the pHEN6 433 vector. E. coli WK6 cells carrying the pHEN6 derivatives were grown at 37°C in terrific broth 434 supplemented with 0.1 % glucose and 100 μ g/mL ampicillin to an optical density ~ 0.6-1.0 435 and the expression of the nanobodies was induced by the addition of 1 mM IPTG for 16 h at 436 28°C. The periplasmic fraction containing the nanobodies was prepared using mild osmotic 437 shock and the His-tagged nanobodies were immobilized on a 5-mL Ni-NTA column 438 equilibrated in 50 mM Tris-HCl, pH 8.0, 300 mM NaCl, and 10 mM imidazole. Nanobodies

439 were eluted in 250 mM imidazole and concentrated using the Amicon-technology (10-kDa

440 cut-off) prior to loading on a HiLoad 16/60 Superdex 75 gel filtration column equilibrated in

441 20 mM Tris-HCl, pH 8.0, 150 mM NaCl. The final concentration for NbK18 and NbK27

- 442 were 13 mg/mL and 10 mg/mL, respectively.
- 443
- 444 Crystallization and structure determination of nbK18, TssK-nbK18 complex, TssK_H and
- 445 $TssK_{SN}$ -nbK18-nbK27.

446 Crystallization screening experiments were performed with several commercial kits, including 447 STURA, WIZARD and MDL. The nanodrop crystallization experiments were performed in 448 SWISSCI 3-well plates. The reservoirs of the SWISSCI plates were filled up using a TECAN 449 pipetting robot, while the nanodrops were dispensed with a Mosquito robot. All 450 crystallization experiments were performed at 293 K. For nbK18, a single crystal was 451 obtained by mixing 100 nL of the nbK18 protein solution with 100 nL of 0.2 M Li₂SO₄, 0.1 452 M NaAc, pH 4.75, and 30 % m/v PEG8000. The crystal was cryo-cooled in reservoir liquid 453 supplemented with 5 % ethylene glycol. For the TssK-nbK18 complex, purified TssK was 454 mixed with nbK18 (TssK:nbK18 at 1:1.2 molecular ratio), and then adjusted to a 455 concentration of 10 mg/mL for 1 hour prior to crystallization experiments. Small crystals 456 were obtained in 100 mM Tris-HCl, pH 8.5, 200 mM MgCl₂, 15 % PEG-6000. Optimization 457 was achieved by varying the concentration of PEG-6000 from 8 to 20 % m/v and the pH from 458 8 to 9. Quality crystals were obtained in 100 mM Tris-HCl, pH 8.3, 200 mM MgCl₂, 10 % 459 PEG-6000. All crystals, including CsI/NaI derivatives, were cryo-cooled in a well solution 460 supplemented with 20 % ethylene glycol. For the CsI/NaI derivatives, the TssK-nb18 crystals 461 were soaked for a few seconds in a well solution supplemented with 20 % ethylene glycol and 462 0.5 M CsI/Nal. For TssK_H, the best crystals appeared in 400 mM NaH₂PO₄, 1.6 M K₂HPO₄ 463 100 mM imidazole, pH 8.0. Crystals were flash cooled in 5 M sodium formate. Crystals of the

464	TssK _{SN} -nbK18-nbK27 complex were obtained in the STURA Footprint Screening plate.
465	$TssK_{SN}$ (35 mg/ml) was mixed with the purified nanobodies nbK18 and nbK27 concentrations
466	of 10 mg/ml, with a molar excess of 1.2 vs TssK _{SN} . A volume of 100 nL of the proteins
467	mixtures was mixed with 45% PEG600, 0.1 M HEPES pH 7.5, and disposed over the
468	reservoir. Crystals appear in a few days. Crystals were cryo-cooled in the mother liquor.
469	Data collection was performed at ID23-2 (ESRF synchrotron, Grenoble, France) for nbK18
470	and TssK _H , and at Proxima 1 (Soleil synchrotron, Saint-Aubin, France) for the TssK-nbK18
471	complex and the data for the crystal of the $TssK_{SN}$ -nbK18-nbK27 complex were collected at
472	ESRF beam line ID30A-3 (Supplementary Table 1). The data were integrated and scaled
473	with the XDS/XSCALE package and converted to a ccp4 input format file by XDSCONV ⁷³ .
474	For nbK18, the crystal diffracted up to 1.5 Å (Supplementary Table 1) and belonged to space
475	group P4 ₃ , with cell dimensions $a = b = 53.4$ Å, $c = 88.0$ Å; $\alpha = \beta = \gamma = 90^{\circ}$. Two molecules
476	in the symmetric unit yielded a Vm value of 2.29 Å3/Da and 46.35 % solvent. Molecular
477	replacement was performed using MOLREP ⁷⁴ and a truncated nanobody structure as a
478	starting model. Refinement was performed using autoBUSTER ⁷⁵ alternating with rebuilding
479	with COOT ⁷⁶ . Two nbK18 molecules are contained in an asymmetric unit and possesses a
480	shorter complementary-determining region 3 (CDR3) compared to those usually found in
481	camelid single-chain domains. For TssK-nbK18, the crystal belonged to the orthorhombic
482	space group P2 ₁ 2 ₁ 2 ₁ with cell dimensions a=93.3, b=153.7, b=154.8 Å; $\alpha = \beta = \gamma = 90^{\circ}$.
483	Diffraction images were processed and scaled with the XDS/XSCALE package ⁷³ . The high-
484	resolution data cut-offs were defined based on the CC1/2 statistical indicator ⁷⁷ . Molecular
485	replacement on the native data set using the structure of nbK18 provided the positions of three
486	nbK18, but this did not yield a good enough initial electron density map. Therefore, three
487	360-degree rotation datasets were collected at different positions of the large single CsI/NaI
488	crystal derivative at 1.7712-Å X-ray wavelength to 3.5-Å resolution. The heavy atom

489	substructure, comprising 20 sites, was obtained with the SHELXC/D/E software suite ⁷⁸ using
490	the HKL2MAP graphical interface ⁷⁹ . This sub-structure was subsequently refined and used
491	for phase calculation with PHASER ⁸⁰ . Phase improvement and extension by density
492	modification using 3-fold non-crystallographic symmetry averaging performed with
493	PARROT ⁸¹ produced readily interpretable maps that allowed positioning of the three nbK18
494	and a first rough TssK model to be built. Inspection of electron density maps and model
495	adjustment and rebuilding were performed using COOT ⁷⁶ , and BUSTER was used for model
496	refinements ⁷⁵ . The initial refined model was then positioned by molecular replacement with
497	MOLREP ⁷⁴ in a 2.7 Å resolution native dataset collected at 0.9786-Å wavelength with cell
498	dimensions a=93.3, b=153.7, b=154.8 Å. Then, several iterations of model improvement were
499	conducted by cycling through refinement with autoBUSTER ⁷⁵ , phase improvement by density
500	modification with PARROT ⁸¹ , auto-tracing with BUCCANEER ⁸² and manual pruning and
501	rebuilding using COOT^{76} . The structure of TssK_{H} was obtained by molecular replacement
502	using MOLREP ⁷⁴ using the partial structure in the refined full-length TssK and a 1.6-Å
503	resolution dataset. Refinement and manual building were performed as described above. The
504	TssK _{SN} -nbK18-nbK27 data were processed and scaled with the XDS/XSCALE package ⁷³ .
505	The crystald belong to the same space group as TssK-nbK18 (P2 ₁ 2 ₁ 2 ₁) with a comparable
506	packing and cell dimensions of a=90.9, b=143.3, c=150.3. The structure was determined by
507	molecular replacement with $MOLREP^{74}$ using the TssK _{SN} and nbK18 structures as separate
508	models. The resulting map made it possible to complete the missing segments of $TssK_{SN}$ (1-
509	19 and 130-144) as well to construct the nbK27 model using alternate manual fitting with
510	COOT ⁷⁶ and autoBUSTER ⁷⁵ for model refinements at 2.2 Å resolution (Supplementary Table
511	1).

513 Biolayer interferometry (BLI)

514	NbK18 was biotinylated using the EZ-Link NHS-PEG4-Biotin kit (Perbio Science,
515	France). The reaction was stopped by removing the excess biotin reagent using a Zeba Spin
516	Desalting column (Perbio Science, France). BLI assays were performed in black 96-well
517	plates using an OctetRed96 (ForteBio, USA) apparatus. The total working volume for
518	samples or buffer was 0.2 ml and the rpm setting was 1000 rpm for baseline, loading, and
519	association and dissociation steps. The experiments were performed at 25°C. Prior to each
520	assay, streptavidin (SA) biosensor tips (ForteBio, USA) were hydrated in 0.2 ml kinetic
521	buffer (KB, ForteBio, USA) for 20 min. Streptavidin (SA) biosensor tips were then loaded
522	with biotinylated nbK18 at 5 mg/mL in KB, followed by a quenching step using biocytin. A
523	baseline was recorded, and nbK18 binding to $TssK_{6His}$ was performed at concentrations of
524	0.08 to 50 nM. Association and dissociation were carried out for 300 s and 600 s,
525	respectively. Complete dissociation of the complex was achieved by three-fold regeneration
526	(5 s in glycine 10 mM, pH 1.7) and neutralization (5 s in KB).
527	
528	Data availability and accession codes
529	Structures of nbK18, TssK-nbK18 complex, TssK _{SN} -nbK18-nbK27 complex and TssK _H were
530	deposited in the Protein Data Bank (PDB) under accession numbers 5M2W, 5M30, 5MWN
531	and 5M2Y, respectively.
532	
533	Author contributions
534	V.S.N., E.C. and C.C. designed the study. V.S.N., L.L., S.S., P.L., T.T.H.P., T.T.N.T., Y.C.,
535	A.Z., A.D., E.D., A.R., C.K., E.C. and C.C. contributed to analysis of the data and

- 536 preparation of this manuscript. V.S.N., S.S., P.L. and C.C. perform the proteins production,
- 537 crystallization and crystallographic experiments. T.T.H.P. and T.T.N.T. contributed to protein

538	production and crystallization. A.D. performed the nanobodies selection and characterization.
539	E.D. provided the TssKFG clone. C.K. performed the BLI and HPLC experiments. L.L.,
540	Y.C., A.Z. and E.C performed the double hybrid and co-immunoprecipitation experiments.
541	
542	Funding information
543	This work was supported by the Centre National de la Recherche Scientifique and the Aix-
544	Marseille Université, and grants from the Agence Nationale de la Recherche (ANR-14-CE14-
545	0006-02) and the French Infrastructure for Integrated Structural Biology (FRISBI). V.S.N
546	was supported by a fellowship from the French Embassy in Vietnam. L.L. and A.Z. were
547	supported by doctoral fellowships of the Ministère Français de l'Enseignement Supérieur et de
548	la Recherche and end-of-thesis fellowships from the Fondation pour la Recherche Médicale
549	(FRM) (FDT20160435498 and FDT20140931060 respectively). T.T.N.T. was supported by a
550	grant from the Ministère des Affaires Etrangères – France (N°861733C). Y.C. is supported by
551	a doctoral school PhD fellowship from the FRM (ECO20160736014).
552	
553	Correspondence and requests for materials should be addressed to E.C. and C.C.
554	
555	Acknowledgements
556	We thank the members of the Cambillau/Roussel and Cascales laboratories for insightful
557	discussions, Amel Kassa for initial work on TssK, Laure Journet for critical reading of the
558	manuscript, the Soleil (Saint Aubin, France) and ESRF (Grenoble, France) synchrotrons for
559	beam time allocation and Annick Brun, Isabelle Bringer and Olivier Uderso for technical
560	assistance.

References

563	1	Costa, T. R. et al. Secretion systems in Gram-negative bacteria: structural and
564		mechanistic insights. Nature reviews. Microbiology 13, 343-359,
565		doi:10.1038/nrmicro3456 (2015).
566	2	Bonemann, G., Pietrosiuk, A. & Mogk, A. Tubules and donuts: a type VI secretion
567		story. <i>Molecular microbiology</i> 76 , 815-821, doi:10.1111/j.1365-2958.2010.07171.x
568		(2010).
569	3	Cascales, E. & Cambillau, C. Structural biology of type VI secretion systems.
570		Philosophical transactions of the Royal Society of London. Series B, Biological
571		sciences 367, 1102-1111, doi:10.1098/rstb.2011.0209 (2012).
572	4	Kapitein, N. & Mogk, A. Deadly syringes: type VI secretion system activities in
573		pathogenicity and interbacterial competition. Current opinion in microbiology 16, 52-
574		58, doi:10.1016/j.mib.2012.11.009 (2013).
575	5	Zoued, A. et al. Architecture and assembly of the Type VI secretion system.
576		Biochimica et biophysica acta 1843, 1664-1673, doi:10.1016/j.bbamcr.2014.03.018
577		(2014).
578	6	Ho, B. T., Dong, T. G. & Mekalanos, J. J. A View to a Kill: The Bacterial Type VI
579		Secretion System. Cell host & microbe 15, 9-21, doi:10.1016/j.chom.2013.11.008
580		(2014).
581	7	Basler, M. Type VI secretion system: secretion by a contractile nanomachine.
582		Philosophical transactions of the Royal Society of London. Series B, Biological
583		sciences 370, doi:10.1098/rstb.2015.0021 (2015).
584	8	Durand, E., Cambillau, C., Cascales, E. & Journet, L. VgrG, Tae, Tle, and beyond: the
585		versatile arsenal of Type VI secretion effectors. Trends in microbiology 22, 498-507,
586		doi:10.1016/j.tim.2014.06.004 (2014).

587 9 Russell, A. B., Peterson, S. B. & Mougous, J. D. Type VI secretion system effectors:

588 poisons with a purpose. *Nature reviews*. *Microbiology* **12**, 137-148,

589 doi:10.1038/nrmicro3185 (2014).

- Kapitein, N. & Mogk, A. Type VI secretion system helps find a niche. *Cell host & microbe* 16, 5-6, doi:10.1016/j.chom.2014.06.012 (2014).
- 592 11 Wexler, A. G. *et al.* Human symbionts inject and neutralize antibacterial toxins to
- persist in the gut. *Proceedings of the National Academy of Sciences of the United States of America* 113, 3639-3644, doi:10.1073/pnas.1525637113 (2016).
- 595 12 Chatzidaki-Livanis, M., Geva-Zatorsky, N. & Comstock, L. E. Bacteroides fragilis
- 596 type VI secretion systems use novel effector and immunity proteins to antagonize
- 597 human gut Bacteroidales species. *Proceedings of the National Academy of Sciences of*
- 598 *the United States of America* **113**, 3627-3632, doi:10.1073/pnas.1522510113 (2016).
- 599 13 Sana, T. G. et al. Salmonella Typhimurium utilizes a T6SS-mediated antibacterial
- 600 weapon to establish in the host gut. *Proceedings of the National Academy of Sciences*
- 601 *of the United States of America* **113**, E5044-5051, doi:10.1073/pnas.1608858113
- 602 (2016).
- Hecht, A. L. *et al.* Strain competition restricts colonization of an enteric pathogen and
 prevents colitis. *EMBO reports* 17, 1281-1291, doi:10.15252/embr.201642282 (2016).
- Fu, Y., Waldor, M. K. & Mekalanos, J. J. Tn-Seq analysis of Vibrio cholerae intestinal
 colonization reveals a role for T6SS-mediated antibacterial activity in the host. *Cell*

607 *host & microbe* **14**, 652-663, doi:10.1016/j.chom.2013.11.001 (2013).

- 16 Ma, L. S., Hachani, A., Lin, J. S., Filloux, A. & Lai, E. M. Agrobacterium tumefaciens
- deploys a superfamily of type VI secretion DNase effectors as weapons for
- 610 interbacterial competition in planta. *Cell host & microbe* **16**, 94-104,
- 611 doi:10.1016/j.chom.2014.06.002 (2014).

- 612 17 Coulthurst, S. J. The Type VI secretion system a widespread and versatile cell
- 613 targeting system. *Research in microbiology* **164**, 640-654,
- 614 doi:10.1016/j.resmic.2013.03.017 (2013).
- Bingle, L. E., Bailey, C. M. & Pallen, M. J. Type VI secretion: a beginner's guide. *Current opinion in microbiology* 11, 3-8, doi:S1369-5274(08)00007-6 (2008).
- 617 19 Cascales, E. The type VI secretion toolkit. *EMBO reports* 9, 735-741,
- 618 doi:10.1038/embor.2008.131 (2008).
- 619 20 Aschtgen, M. S., Bernard, C. S., De Bentzmann, S., Lloubes, R. & Cascales, E. SciN
- 620 is an outer membrane lipoprotein required for type VI secretion in enteroaggregative
 621 Escherichia coli. *Journal of bacteriology* 190, 7523-7531, doi:10.1128/JB.00945-08
- 622 (2008).
- 623 21 Aschtgen, M. S., Gavioli, M., Dessen, A., Lloubes, R. & Cascales, E. The SciZ
- 624 protein anchors the enteroaggregative Escherichia coli Type VI secretion system to the 625 cell wall. *Molecular microbiology*, doi:10.1111/j.1365-2958.2010.07028.x (2010).
- 626 22 Ma, L. S., Lin, J. S. & Lai, E. M. An IcmF family protein, ImpLM, is an integral inner
- 627 membrane protein interacting with ImpKL, and its walker a motif is required for type
- VI secretion system-mediated Hcp secretion in Agrobacterium tumefaciens. *Journal of bacteriology* 191, 4316-4329, doi:10.1128/JB.00029-09 (2009).
- Felisberto-Rodrigues, C. *et al.* Towards a structural comprehension of bacterial type
 VI secretion systems: characterization of the TssJ-TssM complex of an Escherichia
 coli pathovar. *PLoS pathogens* 7, e1002386, doi:10.1371/journal.ppat.1002386
 (2011).
- Aschtgen, M. S., Zoued, A., Lloubes, R., Journet, L. & Cascales, E. The C-tail
 anchored TssL subunit, an essential protein of the enteroaggregative Escherichia coli

636 Sci-1 Type VI secretion system, is inserted by YidC. *MicrobiologyOpen* **1**, 71-82,

637 doi:10.1002/mbo3.9 (2012).

- Durand, E. *et al.* Structural characterization and oligomerization of the TssL protein, a
 component shared by bacterial type VI and type IVb secretion systems. *The Journal of biological chemistry* 287, 14157-14168, doi:10.1074/jbc.M111.338731 (2012).
- 641 26 Durand, E. *et al.* Biogenesis and structure of a type VI secretion membrane core
 642 complex. *Nature* 523, 555-560, doi:10.1038/nature14667 (2015).
- 643 27 Aschtgen, M. S., Thomas, M. S. & Cascales, E. Anchoring the type VI secretion
- system to the peptidoglycan: TssL, TagL, TagP... what else? *Virulence* 1, 535-540
 (2010).
- 646 28 Weber, B. S. *et al.* Genetic Dissection of the Type VI Secretion System in
- 647 Acinetobacter and Identification of a Novel Peptidoglycan Hydrolase, TagX, Required 648 for Its Biogenesis. *mBio* **7**, doi:10.1128/mBio.01253-16 (2016).
- 649 29 Santin, Y. G. & Cascales, E. Domestication of a housekeeping transglycosylase for
- assembly of a Type VI secretion system. *EMBO reports* **18**, 138-149,
- 651 doi:10.15252/embr.201643206 (2017).
- 652 30 Leiman, P. G. *et al.* Type VI secretion apparatus and phage tail-associated protein
- 653 complexes share a common evolutionary origin. *Proceedings of the National Academy*

654 of Sciences of the United States of America **106**, 4154-4159,

- 655 doi:10.1073/pnas.0813360106 (2009).
- Brunet, Y. R., Henin, J., Celia, H. & Cascales, E. Type VI secretion and bacteriophage
- tail tubes share a common assembly pathway. *EMBO reports*,
- 658 doi:10.1002/embr.201337936 (2014).
- 659 32 Kudryashev, M. *et al.* Structure of the type VI secretion system contractile sheath.
- 660 *Cell* **160**, 952-962, doi:10.1016/j.cell.2015.01.037 (2015).

661	33	English, G., Byron, O., Cianfanelli, F. R., Prescott, A. R. & Coulthurst, S. J.
662		Biochemical analysis of TssK, a core component of the bacterial Type VI secretion
663		system, reveals distinct oligomeric states of TssK and identifies a TssK-TssFG sub-
664		complex. The Biochemical journal, doi:10.1042/BJ20131426 (2014).
665	34	Brunet, Y. R., Zoued, A., Boyer, F., Douzi, B. & Cascales, E. The Type VI Secretion
666		TssEFGK-VgrG Phage-Like Baseplate Is Recruited to the TssJLM Membrane
667		Complex via Multiple Contacts and Serves As Assembly Platform for Tail
668		Tube/Sheath Polymerization. PLoS genetics 11, e1005545,
669		doi:10.1371/journal.pgen.1005545 (2015).
670	35	Zoued, A. et al. Priming and polymerization of a bacterial contractile tail structure.
671		Nature 531, 59-63, doi:10.1038/nature17182 (2016).
672	36	Boyer, F., Fichant, G., Berthod, J., Vandenbrouck, Y. & Attree, I. Dissecting the
673		bacterial type VI secretion system by a genome wide in silico analysis: what can be
674		learned from available microbial genomic resources? BMC genomics 10, 104,
675		doi:10.1186/1471-2164-10-104 (2009).
676	37	Pell, L. G., Kanelis, V., Donaldson, L. W., Howell, P. L. & Davidson, A. R. The
677		phage lambda major tail protein structure reveals a common evolution for long-tailed
678		phages and the type VI bacterial secretion system. Proceedings of the National
679		Academy of Sciences of the United States of America 106, 4160-4165,
680		doi:0900044106 (2009).
681	38	Kube, S. et al. Structure of the VipA/B type VI secretion complex suggests a
682		contraction-state-specific recycling mechanism. Cell reports 8, 20-30,
683		doi:10.1016/j.celrep.2014.05.034 (2014).

- Basler, M., Pilhofer, M., Henderson, G. P., Jensen, G. J. & Mekalanos, J. J. Type VI
- secretion requires a dynamic contractile phage tail-like structure. *Nature* 483, 182186, doi:10.1038/nature10846 (2012).
- 40 LeRoux, M. *et al.* Quantitative single-cell characterization of bacterial interactions

reveals type VI secretion is a double-edged sword. Proceedings of the National

- 689 Academy of Sciences of the United States of America **109**, 19804-19809,
- 690 doi:10.1073/pnas.1213963109 (2012).

688

41 Basler, M., Ho, B. T. & Mekalanos, J. J. Tit-for-tat: type VI secretion system

692 counterattack during bacterial cell-cell interactions. *Cell* **152**, 884-894,

- 693 doi:10.1016/j.cell.2013.01.042 (2013).
- Brunet, Y. R., Espinosa, L., Harchouni, S., Mignot, T. & Cascales, E. Imaging type VI
 secretion-mediated bacterial killing. *Cell reports* 3, 36-41,
- 696 doi:10.1016/j.celrep.2012.11.027 (2013).
- 43 Lossi, N. S., Dajani, R., Freemont, P. & Filloux, A. Structure-function analysis of
- HsiF, a gp25-like component of the type VI secretion system, in Pseudomonas
- 699 aeruginosa. *Microbiology* **157**, 3292-3305, doi:10.1099/mic.0.051987-0 (2011).
- Planamente, S. *et al.* TssA forms a gp6-like ring attached to the type VI secretion
- 701 sheath. *The EMBO journal* **35**, 1613-1627, doi:10.15252/embj.201694024 (2016).
- Taylor, N. M. *et al.* Structure of the T4 baseplate and its function in triggering sheath
 contraction. *Nature* 533, 346-352, doi:10.1038/nature17971 (2016).
- 46 Leiman, P. G. *et al.* Morphogenesis of the T4 tail and tail fibers. *Virology journal* **7**,
- 705 355, doi:10.1186/1743-422X-7-355 (2010).
- Leiman, P. G. & Shneider, M. M. Contractile tail machines of bacteriophages.
- 707 Advances in experimental medicine and biology 726, 93-114, doi:10.1007/978-1-
- 708 4614-0980-9_5 (2012).

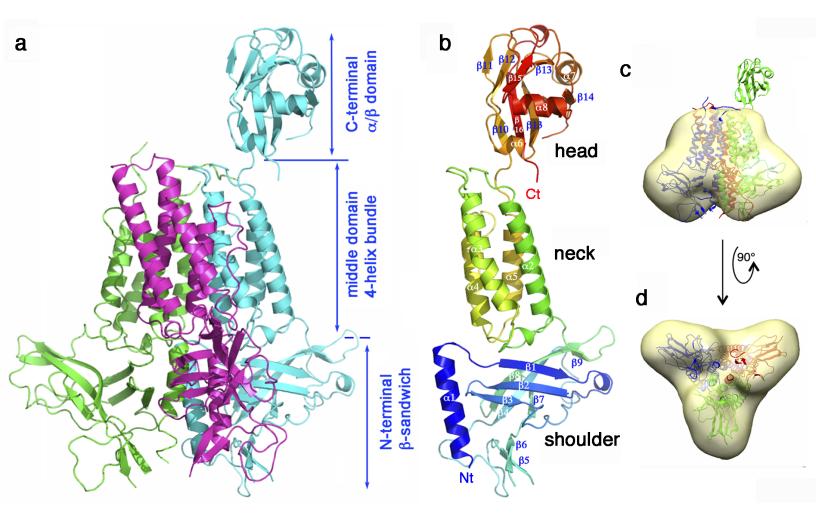
709	48	Zoued, A. et al. TssK is a trimeric cytoplasmic protein interacting with components of
710		both phage-like and membrane anchoring complexes of the Type VI secretion system.
711		<i>The Journal of biological chemistry</i> 288 27031–27041, doi:10.1074/jbc.M113.499772
712		(2013).
713	49	Logger, L., Aschtgen, M. S., Guerin, M., Cascales, E. & Durand, E. Molecular
714		Dissection of the Interface between the Type VI Secretion TssM Cytoplasmic Domain
715		and the TssG Baseplate Component. J Mol Biol 428, 4424-4437,
716		doi:10.1016/j.jmb.2016.08.032 (2016).
717	50	Desmyter, A., Spinelli, S., Roussel, A. and Cambillau, C. Camelid nanobodies: killing
718		two birds with one stone. Curr. Opin. Struct. Biol. 32 1-8 (2015).
719	51	Nguyen, V. S. et al. Inhibition of type VI secretion by an anti-TssM llama nanobody.
720		<i>PloS one</i> 10 , e0122187, doi:10.1371/journal.pone.0122187 (2015).
721	52	Nguyen, V. S. et al. Production, crystallization and X-ray diffraction analysis of a
722		complex between a fragment of the TssM T6SS protein and a camelid nanobody. Acta
723		crystallographica. Section F, Structural biology communications 71, 266-271,
724		doi:10.1107/S2053230X15000709 (2015).
725	53	Desmyter, A. et al. Three Camelid VHH domains in complex with porcine pancreatic
726		alpha-amylase - Inhibition and versatility of binding topology. Journal of Biological
727		Chemistry 277, 23645-23650, doi:10.1074/jbc.M202327200 (2002).
728	54	Spinelli, S., Tegoni, M., Frenken, L., van Vliet, C. & Cambillau, C. Lateral
729		recognition of a dye hapten by a llama VHH domain. J Mol Biol 311, 123-129,
730		doi:10.1006/jmbi.2001.4856 (2001).
731	55	Drozdetskiy, A., Cole, C., Procter, J. & Barton, G. J. JPred4: a protein secondary
732		structure prediction server. Nucleic acids research 43, W389-394,
733		doi:10.1093/nar/gkv332 (2015).

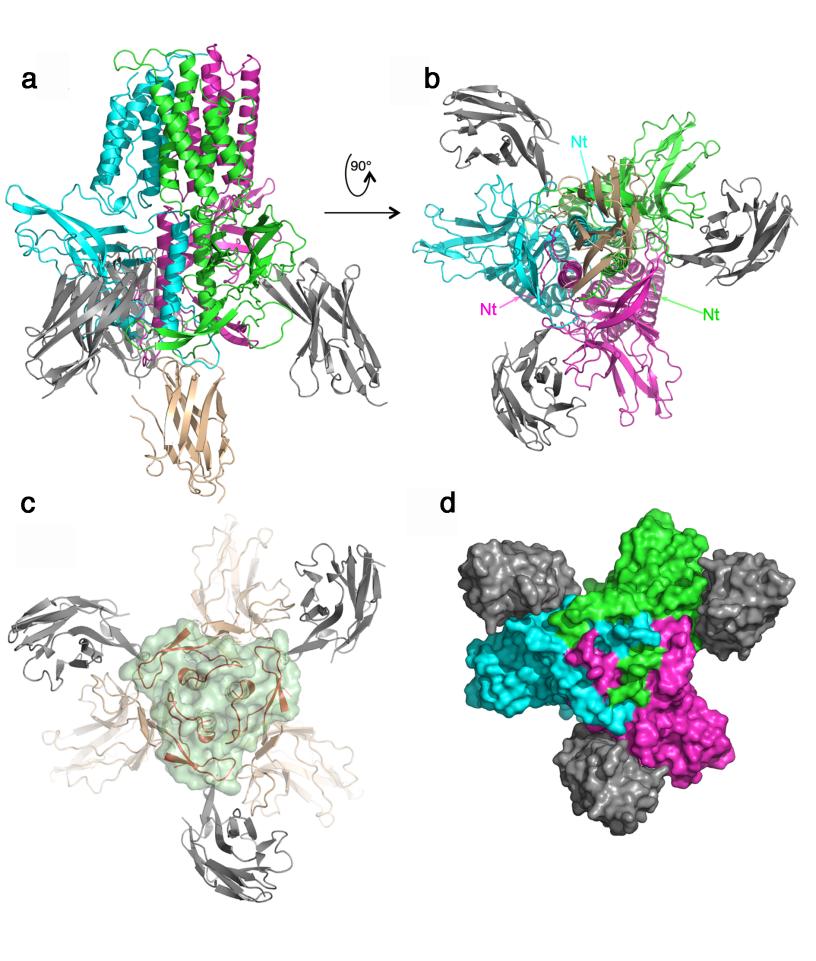
734	56	Pettersen, E. F. et al. UCSF Chimera a visualization system for exploratory research
735		and analysis. J Comput Chem 25, 1605-1612, doi:10.1002/jcc.20084 (2004).
736	57	Farenc, C. et al. Molecular insights on the recognition of a Lactococcus lactis cell wall
737		pellicle by phage 1358 receptor binding protein. Journal of virology,
738		doi:10.1128/JVI.00739-14 (2014).
739	58	Spinelli, S. et al. Lactococcal bacteriophage p2 receptor-binding protein structure
740		suggests a common ancestor gene with bacterial and mammalian viruses. Nature
741		structural & molecular biology 13, 85-89, doi:nsmb1029 (2006).
742	59	Ray, S. P. et al. Structural and biochemical characterization of human
743		adenylosuccinate lyase (ADSL) and the R303C ADSL deficiency-associated mutation.
744		Biochemistry 51, 6701-6713, doi:10.1021/bi300796y (2012).
745	60	Casabona, M. G., Vandenbrouck, Y., Attree, I. & Coute, Y. Proteomic
746		characterization of Pseudomonas aeruginosa PAO1 inner membrane. Proteomics 13,
747		2419-2423, doi:10.1002/pmic.201200565 (2013).
748	61	Buttner, C. R., Wu, Y., Maxwell, K. L. & Davidson, A. R. Baseplate assembly of
749		phage Mu: Defining the conserved core components of contractile-tailed phages and
750		related bacterial systems. Proceedings of the National Academy of Sciences of the
751		United States of America 113, 10174-10179, doi:10.1073/pnas.1607966113 (2016).
752	62	Spinelli, S. et al. Modular structure of the receptor binding proteins of Lactococcus
753		lactis phages. The RBP structure of the temperate phage TP901-1. The Journal of
754		biological chemistry 281 , 14256-14262 (2006).
755	63	Casjens, S. R. & Molineux, I. J. Short noncontractile tail machines: adsorption and
756		DNA delivery by podoviruses. Advances in experimental medicine and biology 726,
757		143-179, doi:10.1007/978-1-4614-0980-9_7 (2012).

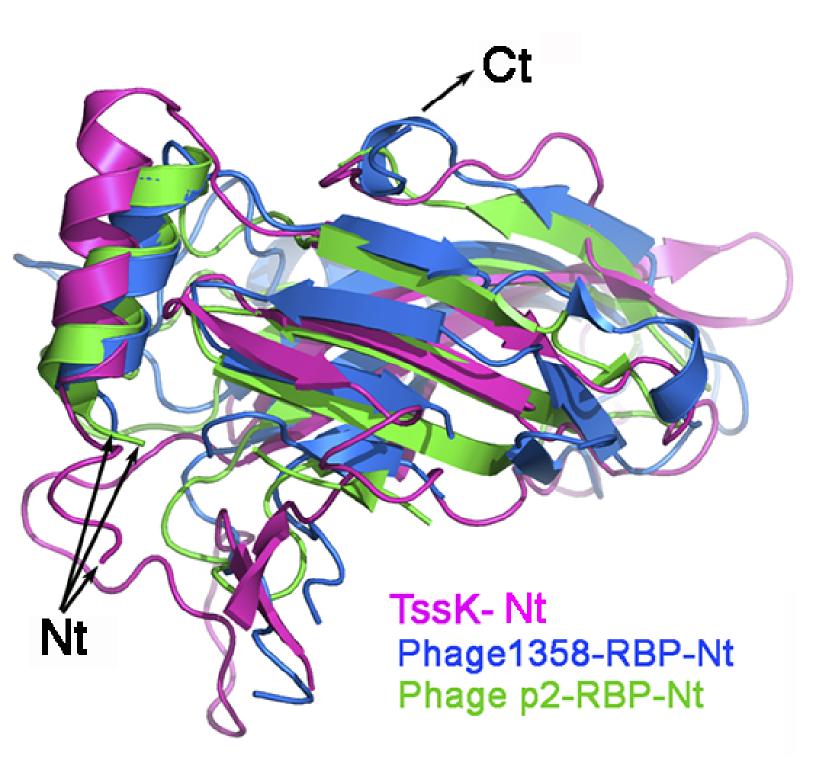
- 758 64 Spinelli, S., Veesler, D., Bebeacua, C. & Cambillau, C. Structures and host-adhesion
- mechanisms of lactococcal siphophages. *Frontiers in microbiology* **5**, 3,
- 760 doi:10.3389/fmicb.2014.00003 (2014).
- Sciara, G. *et al.* Structure of lactococcal phage p2 baseplate and its mechanism of
 activation. *Proceedings of the National Academy of Sciences of the United States of America* 107, 6852-6857, doi:1000232107 (2010).
- 764 66 Zoued, A. *et al.* Structure-Function Analysis of the TssL Cytoplasmic Domain
- Reveals a New Interaction between the Type VI Secretion Baseplate and Membrane
- 766 Complexes. *J Mol Biol* **428**, 4413-4423, doi:10.1016/j.jmb.2016.08.030 (2016).
- van den Ent, F. & Lowe, J. RF cloning: a restriction-free method for inserting target
 genes into plasmids. *Journal of biochemical and biophysical methods* 67, 67-74,
- 769 doi:10.1016/j.jbbm.2005.12.008 (2006).
- 77068Karimova, G., Pidoux, J., Ullmann, A. & Ladant, D. A bacterial two-hybrid system
- based on a reconstituted signal transduction pathway. *Proceedings of the National Academy of Sciences of the United States of America* **95**, 5752-5756 (1998).
- 773 69 Battesti, A. & Bouveret, E. The bacterial two-hybrid system based on adenylate
- cyclase reconstitution in Escherichia coli. *Methods* **58**, 325-334,
- 775 doi:10.1016/j.ymeth.2012.07.018 (2012).
- Pardon, E. *et al.* A general protocol for the generation of Nanobodies for structural
 biology. *Nature protocols* 9, 674-693, doi:10.1038/nprot.2014.039 (2014).
- 778 71 Arbabi Ghahroudi, M., Desmyter, A., Wyns, L., Hamers, R. & Muyldermans, S.
- 779 Selection and identification of single domain antibody fragments from camel heavy-
- 780 chain antibodies. *FEBS letters* **414**, 521-526 (1997).

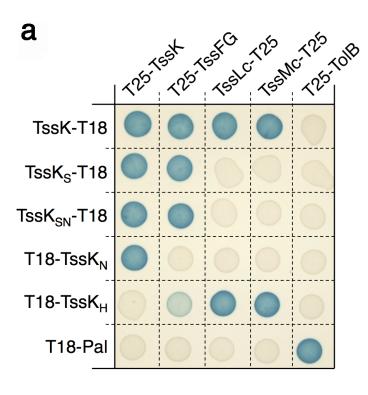
- 781 72 Desmyter, A. et al. Viral infection modulation and neutralization by camelid 782 nanobodies. Proceedings of the National Academy of Sciences of the United States of 783 America 110, E1371-1379, doi:10.1073/pnas.1301336110 (2013). 784 Kabsch, W. Xds. Acta Crystallogr D Biol Crystallogr 66, 125-132, 73 785 doi:S0907444909047337 (2010). 786 74 Vagin, A. & Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr 787 D Biol Crystallogr 66, 22-25, doi:10.1107/S0907444909042589 (2010). 788 75 Blanc, E. et al. Refinement of severely incomplete structures with maximum 789 likelihood in BUSTER-TNT. Acta Crystallogr D Biol Crystallogr 60, 2210-2221, 790 doi:S0907444904016427 (2004). 791 76 Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of 792 Coot. Acta Crystallogr D Biol Crystallogr 66, 486-501, 793 doi:10.1107/S0907444910007493 (2010). 794 Karplus, P. A. & Diederichs, K. Linking crystallographic model and data quality. 77 795 Science 336, 1030-1033, doi:10.1126/science.1218231 (2012). 796 78 Sheldrick, G. M. A short history of SHELX. Acta Crystallogr A 64, 112-122, 797 doi:10.1107/S0108767307043930 (2008). 798 79 Pape, T. a. S., T.R. HKL2MAP: a graphical user interface for macromolecular phasing 799 with SHELX programs. J. Applied Crystallogr. 37, 853-844 (2004). 800 80 McCoy, A. J. et al. Phaser crystallographic software. Journal of applied 801 crystallography 40, 658-674, doi:10.1107/S0021889807021206 (2007).
- 802 81 Cowtan, K. Recent developments in classical density modification. Acta Crystallogr D
- 803 Biol Crystallogr 66, 470-478, doi:10.1107/S090744490903947X (2010).

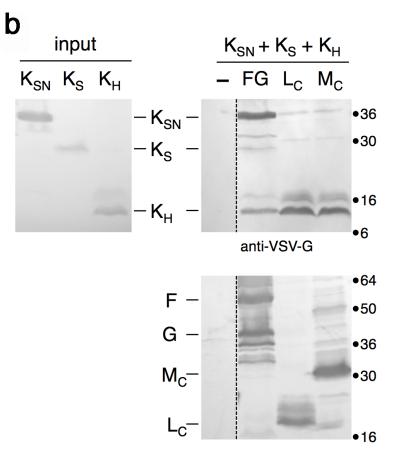
- 804 82 Cowtan, K. The Buccaneer software for automated model building. 1. Tracing protein
- 805 chains. Acta Crystallogr D Biol Crystallogr 62, 1002-1011,
- 806 doi:10.1107/S0907444906022116 (2006).

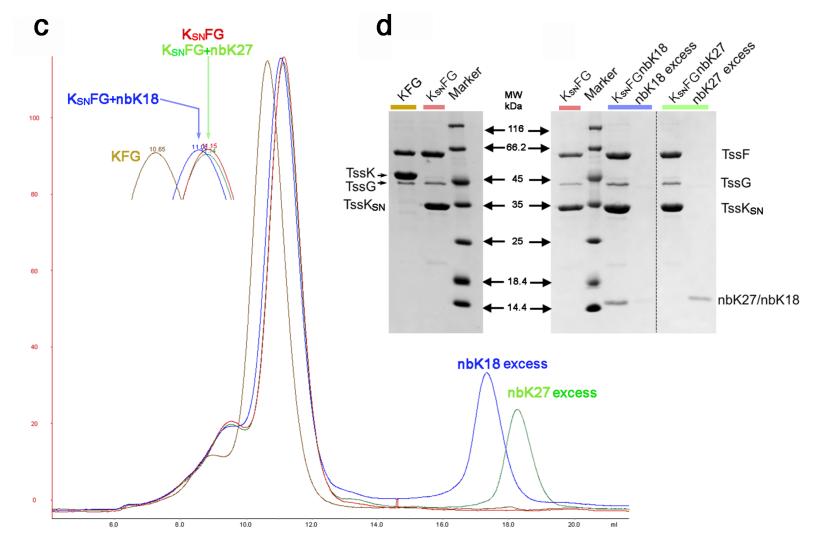

808 Legend to Figures

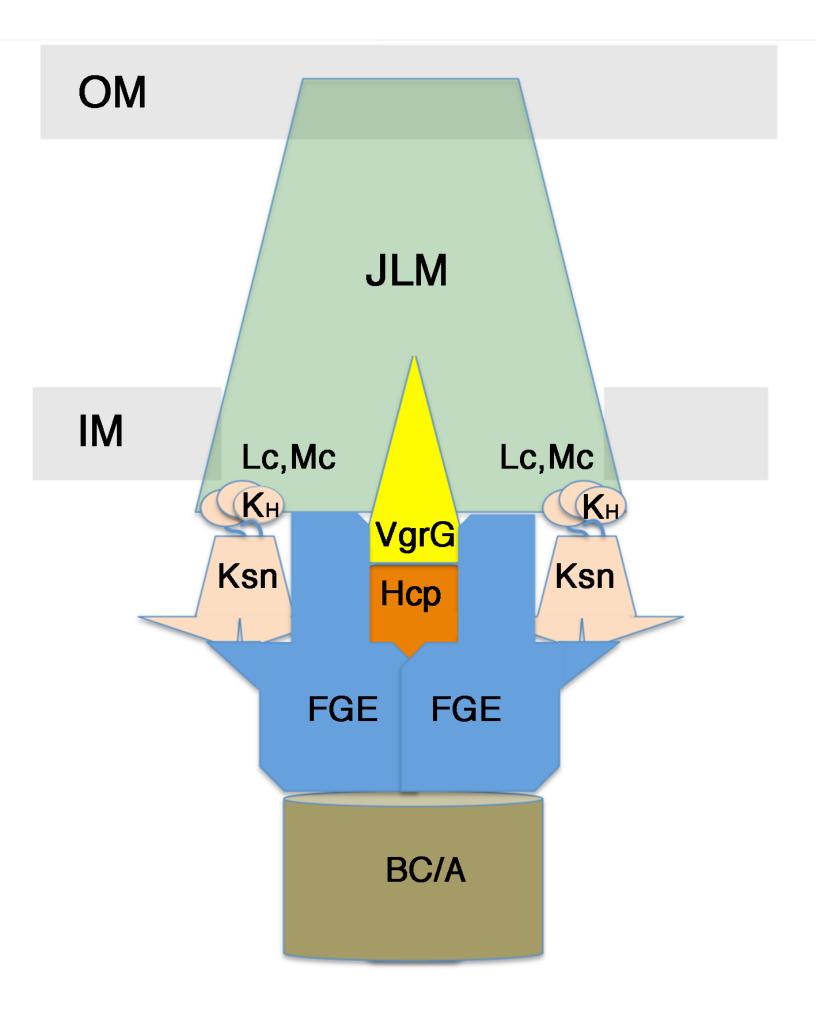

810	Figure 1. Structure of TssK. a, Ribbon view of the TssK trimer. Monomers A, B and C are
811	colored pink, blue and green, respectively. The location of the N-terminal (shoulder), central
812	(neck) and C-terminal (head) domains is indicated. b , Ribbon view of TssK monomer B (full-
813	length TssK). The monomer is rainbow-colored (blue to red from N- to C-terminal). The α -
814	helices and β -strands are numbered. (c, d) Side (c) and bottom (d) views of the TssK X-ray
815	structure fitted into the TssK negative-stain electron microscopy map (EMD-5739),
816	highlighting that the TssK C-terminal head domain is disordered.
817	
818	Figure 2. Structure of the TssK _{SN} -nbK18-nbK27 complex. a, Ribbon view of the TssK _{SN} -
819	nbK18-nbK27 complex. Monomers A, B and C are colored pink, blue and green,
820	respectively. The three nbK18 are colored grey and the unique nbK27 is colored beige. b ,
821	Same view as in (a), rotated by 90° presenting the bottom of the $TssK_{SN}$ domain. c, Same
822	orientation and colors as in (b), but with a molecular surface representation. d, Same
823	orientation as in (b). The $TssK_{SN}$ domain trimer (beige) and the nbK18 nanobody (grey) are
824	represented as ribbons. The $TssK_{SN}$ N-terminal segments ordered upon surface binding are
825	identified by their ribbon darker color (brown) and their green semi-transparent surface.
826	
827	Figure 3. Structural comparison of the TssK N-terminal shoulder domain with shoulder
828	domains of siphophage receptor-binding proteins. Superimposed ribbon views of the TssK
829	N-terminal shoulder domain (pink) with the shoulder domains of phages p2 (green) and 1358
830	(blue) RBPs (PDB 1ZRU and 4L9B respectively).
831	


832 Figure 4. Protein-protein interaction study of TssK domains. a, Bacterial two-hybrid 833 assay. BTH101 reporter cells producing the indicated proteins or domains (K, TssK; K_{SN}, 834 TssK shoulder and neck domains; K_S, TssK shoulder domain; K_N, TssK neck domain; K_H, 835 TssK head domain) fused to the T18 or T25 domain of the Bordetella adenylate cyclase were 836 spotted on X-Gal indicator plates. The blue color of the colony reflects the interaction 837 between the two proteins. TolB and Pal are two proteins known to interact but unrelated to the 838 T6SS. The BACTH experiments have been performed in triplicate with identical results. **b**, Co-immunoprecipitation assay. A mixture of soluble lysates from $2 \times 10^{10} E$. *coli* K-12 839 840 W3110 cells producing VSV-G-tagged TssK shoulder + neck (K_{SN}), TssK shoulder (K_{S}) and 841 TssK head (K_H) domains (individually shown on the left panel) was mixed with FLAG-842 tagged TssF + TssG, $TssL_C$ or $TssM_C$. FLAG-tagged proteins were subjected to immunoprecipitation with anti-FLAG-coupled beads, and the immunoprecipitated material 843 844 was separated by 12.5% crylamide SDS-PAGE and immunodetected anti-VSV-G monoclonal 845 antibodies. The position of each protein and domain is indicated, Molecular weight markers 846 (in kDa) are indicated on the right. The co-immunoprecipitation experiments have been 847 performed in duplicate with identical results. c, Gel filtration chromatograms of TssKFG 848 (brown), $TssK_{sN}FG$ (red), $TssK_{sN}FG$ + nbK18 (blue) and $TssK_{sN}FG$ + nbK27 (green); inset: 849 enlargment of the top of the peaks; the elution time is indicated above each peak. d, SDS gels 850 of the main peak of TssKFG (brown) and TssK_{SN}FG (red) showing the presence of TssK, 851 TssF and TssG, and TssK_{SN}, TssF and TssG, respectively. e, SDS gels of the main peak of 852 $TssK_{SN}FG$ (red), $TssK_{SN}FG$ + nbK18 (blue) and $TssK_{SN}FG$ + nbK27 (green) showing the 853 presence of nbK18 attached to TssKSNFG, but not nbK27. a-b: The experiments were done 854 at least in triplicate and a representative result is shown. **c-e:** The experiments were done in 855 triplicate and a representative result is shown.


856

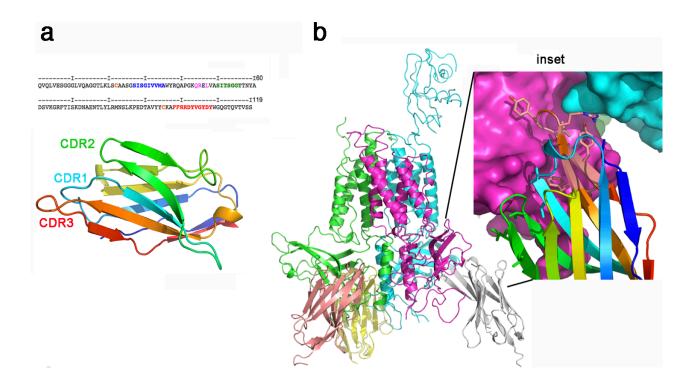

- 857 Figure 5. Schematic model of the baseplate docked to the membrane complex,
- 858 highlighting the connector role of TssK. The TssJLM membrane complex is represented in
- green whereas TssK is colored beige and the other baseplate components, TssFGE are colored
- 860 blue, VgrG is yellow and Hcp orange. The tail complex is shown in dark green. The three
- domains of TssK are represented in beige, the N-terminal shoulder domain anchored to the
- 862 baseplate and the C-terminal head domain bound to the membrane complex.



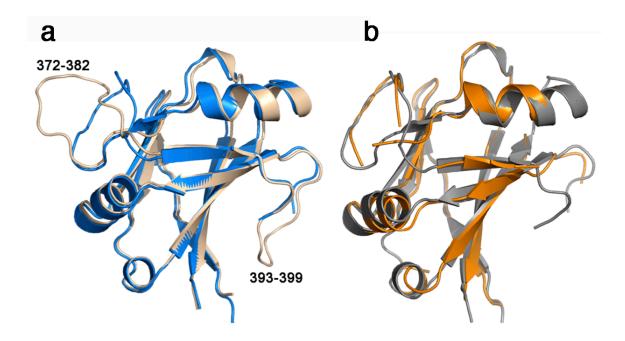


anti-FLAG

Type VI secretion TssK baseplate protein exhibits structural similarities with phage receptor binding protein and evolved to bind the membrane complex

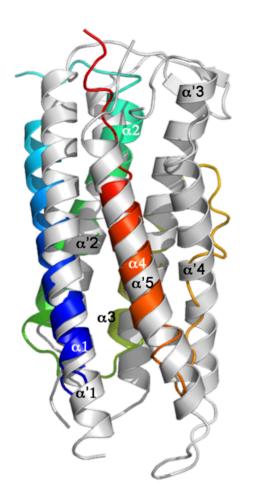

Van Son Nguyen, Laureen Logger, Silvia Spinelli, Pierre Legrand, Thi Thanh Huyen Pham, Thi Trang Nhung Trinh, Yassine Cherrak, Abdelrahim Zoued, Aline Desmyter, Eric Durand, Alain Roussel, Christine Kellenberger, Eric Cascales^{*} and Christian Cambillau^{*}

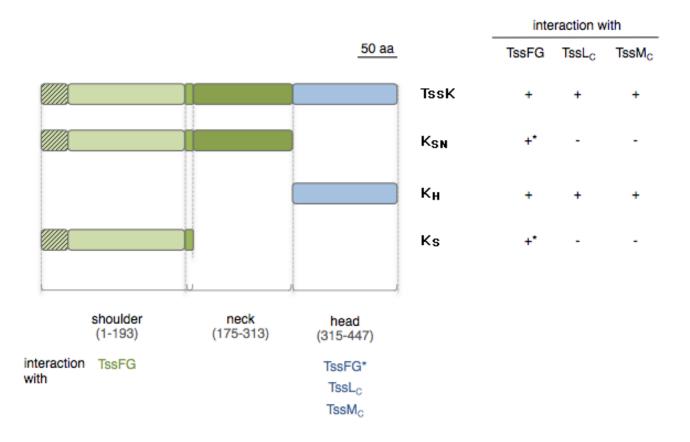
• corresponding authors: Eric Cascales (cascales@imm.cnrs.fr) and Christian Cambillau (cambillau@afmb.univ-mrs.fr).


This PDF file includes:

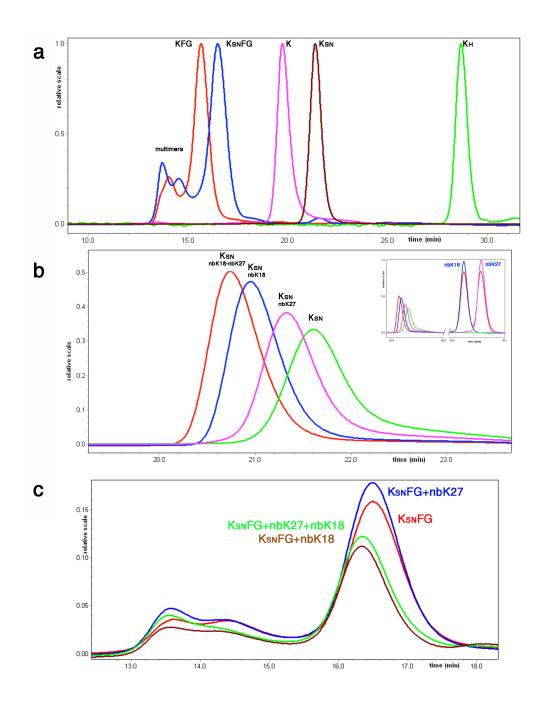
Supplementary Figures 1-10

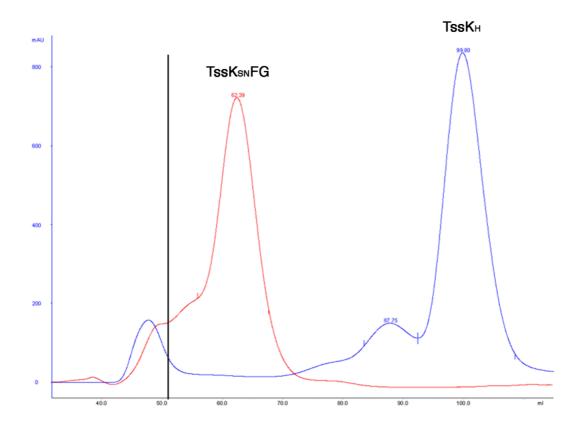
Supplementary Tables 1-3

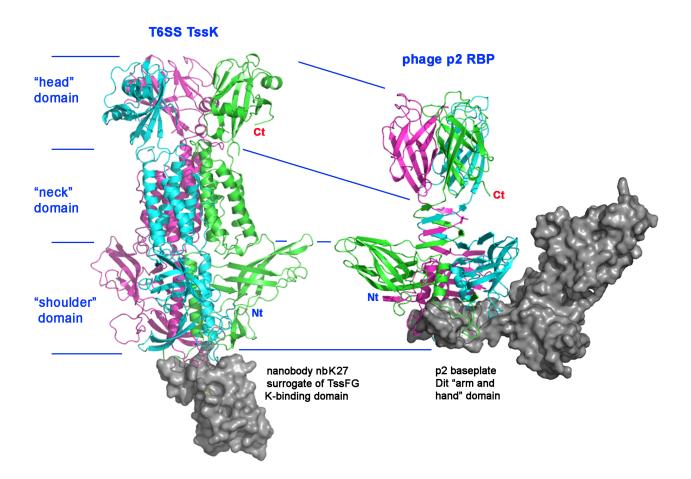

Supplementary Figure 1. Characterization of the nbK18 nanobody and its interaction with TssK. a, sequence and structure of TssK-specific nbK18 llama single-chain antibody. The nbK18 sequence is presented on top of its rainbow-colored ribbon structure. The three complementary-determining regions (CDR) are colored blue, green and red, respectively in the sequence and indicated with the same color code in the ribbon structure. **b,** structure of the trimeric TssK-nbK18 complex. Each TssK is colored as in Fig. 1A (monomers A, B and C in pink, blue and green, respectively) and the three nbK18 nanobodies, bound to TssK shoulder domain, are shown in grey, yellow and salmon, respectively. In the inset is shown a close-up of the TssK-nbK18 interaction at monomer A. TssK is shown in surface representation whereas nbK18 is shown in ribbon. The magnification highlights the side-chains of nbK18 that contact TssK.

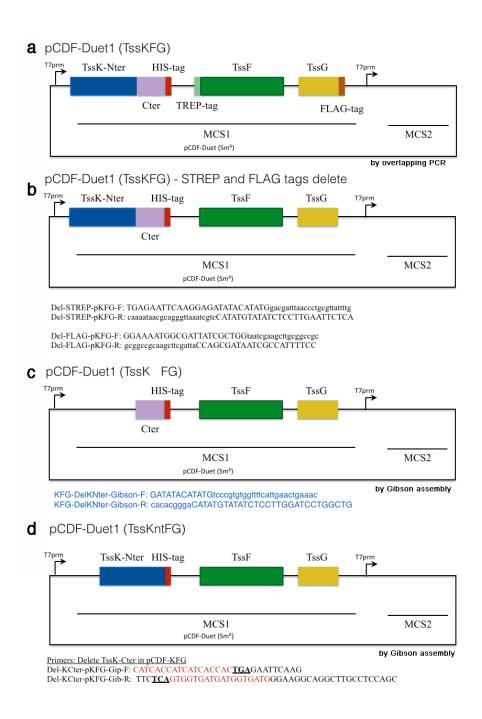

Supplementary Figure 2. Structural analysis of the TssK C-terminal domain. a, overlay between the TssK C-terminal head domain crystallized alone (beige) and in the refined full-length structure after insertion of the TssK C-terminal shoulder domain structure (blue). **b**, overlay between the TssK C-terminal head domain crystallized alone (grey) and in the full-length structure before the TssK C-terminal head structure insertion (orange).

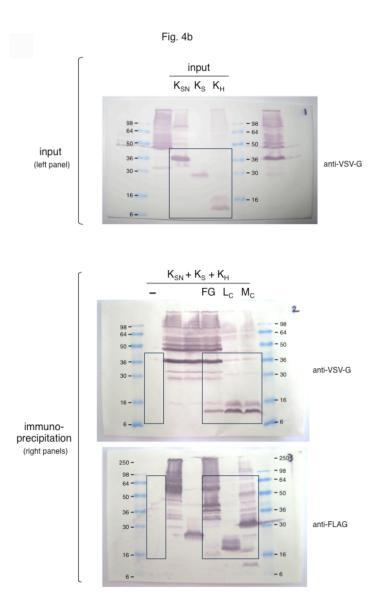
1 10 TT	200000000 20	α1 0000000 30		β1 5 0	β2 6 0	→ <u>TT</u> →	80	β4 η1 → <u>200</u> 90.	β5 100	$\rightarrow \frac{\beta 6}{\rightarrow \text{TT}}_{110}$	120
$\frac{\beta^7}{130}$	β8 140		39 →TT TT- 160	β10 17 ọ	TT $\xrightarrow{\beta 11}$ TT 180	η2 190	200 200	α2 210	β12 220 β12 β12 β12	β13 T→ 230	<u>00000000</u> 240
α3 000000000000000000000000000000000000	GHEQSEVAV	α4 0000000	JRMAHQENAAWI	LTCPVTRLVR	η3 200_0000000000000000000000000000000000	a5		$\frac{\beta_{15}}{TT} \xrightarrow{\beta_{16}} \beta_{16}$	α6 <u>0000</u> - 340	β17	α7
$\begin{array}{c} 250 \\ \hline \\ NALNSAEPVLKELLDN \\ 000000 \\ \hline \\ \end{array}$	260 (PYRHPELL)	270 IRELARL β19	280 AGSLLTFSLEH	290 NVDAVPAYHE β20	300 ΕΤΡΕΝΥΕΡΡΙΙ α8	310 SILINRILEASI β21 η6	320 PSRVVFIE β22	330 LKQKGVMWEGAL	HDARLREGA	350 DFWLSVRS	360 SMPGHELQT
XFPQLCKAGSPDDVSE	380 VVNVALSG	390 VIIRPVT	400 HVPAAIPLRLE	410 NQYFALDLST	420 DAARAMLDAGE	430 4CTFYTPASLGD	440 VKLELFAV	LRT			
TssK+ nbK18		GVV2	<u>खण्</u> च(subunit	B only, hig	jh B-factors))					
TssK₅n TssK₅n+nbK1	8+nbK27	GVI RPL	GVV.								

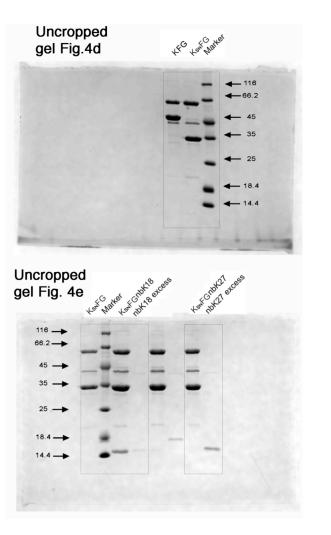

Supplementary Figure 3. Linear sequence representation of TssK with secondary structures. The domains or segments present in the different crystal structures are identified with different colors.


Supplementary Figure 4. Structural homologies of the TssK central domain (neck). Ribbon view of the overlay of t TssK_N helical bundle (rainbow colored) with the Human adenylosuccinate lyase (grey, PDB: 4FFX).


Supplementary Figure 5. Summary of the TssK domains interaction study. The different constructs used for the co-immunoprecipitation analyses are shown on left, with their boundaries (light green, N-terminal shoulder domain (K_s), amino-acids 1-193; dark green, central neck domain (K_N), amino-acids 175-313; blue, C-terminal head domain (K_H), amino-acids 315-447). The interactions identified by co-immunoprecipitations are indicated with '+' on the right (*, interaction observed by co-immunoprecipitation but not confirmed by co-purification and nanobody binding assays).


Supplementary Figure 6. a, HPLC gel Filtration chromatograms of TssKH, TssKSN, TssK, TssKSNFG and TssKFG. The peaks appearing before TssKFG are assigned to multimers. The peak amplitude has been scaled to 1.0. **b,** HPLC gel Filtration chromatograms of TssKSN in the presence of an excess of nbK18, nbK27 and nbK18, nbK27. **Inset**: the full chromatogram with the nanobodies. **c,** HPLC gel Filtration chromatograms of TssKSNFG alone or in the presence of an excess nbK27 of nbK18, and nbK18 + nbK27. **a,c**: the experiments were done in triplicate and a representative result is shown.


Supplementary Figure 7. Gel Filtration chromatograms of the product resulting from the $tssK_HFG$ expression (blue) compared to the $tssK_{SN}FG$ expression (orange). The main peak of the blue chromatogram corresponds to TssKH alone, indicating that a stable TssKHFG complex is not formed.



Supplementary Figure 8. Comparison of the TssK and phage p2 RBP structures evidencing the common topology of these trimers formed of shoulder, neck and head domains. The binding of TssK to nbK27 (that occupies the binding site of TssFG) is reminiscent of the binding of the Dit arm and hand extension of the phage p2 Dit molecule.

Supplementary Figure 9. Schematic representation of the *tssKFG His, strep and flag* (a), *tssKFG His* (b), *tssK_{SN}FG* (c) and *tssK_HFG* (d) constructs used in this study.

Supplementary Figure 10. Uncropped blots and gels.

Supplementary Table 1. Data collection and refinement statistics of nbK18, nbK18-TssK and TssK_{SN}-nbK18-nbK27 complexes, and TssK_H domain. (numbers in brackets refer to the highest resolution bin)

DATA COLLECTION	nbK18	TssK-nbK18 CsI/NaI	TssK-nbK18 native	TssK _{SN} -nbK18- nbK27	TssK _H
PDB	5M2W		5M30	5MWN	5M2Y
Source	ESRF ID23-2	Soleil PX 1	Soleil PX 1	ESRF ID30A-3	ESRF ID23-1
Wavelength (Å)	0.9786	1.7712	0.9786	0.9677	0.9789
Space group	P4 ₃	P212121	$P2_{1}2_{1}2_{1}$	P212121	P3 ₂
Cell (Å)	a=b=53.4 Å, c = 88.0 Å	a=93.4,b=153.7 c=154.2	a=93.2, b=153.7, c=154.8	a=90.9, b=143.3, c=150.3	a=b=63.8, c=63.1
Angles (°)	α=β=γ=90	α=β=γ=90	α=β=γ=90	α=β=γ=90	α=β=90;
Nr. of monomers	2	3/3	3/3	3/3/1	2
Resolution limits (Å)	20-1.50 (1.59-1.5)	50-3.49 (3.6-3.49)	50.0-2.6 (2.66-2.6)	50.0-2.20 (2.33-2.20)	41.6-1.61 (1.71-1.61)
Rmerge (Rpim ^a)	0.088 (0.785)	0.016 (1.8)	0.018 (1.40) ^a	0.077 (0.84)	0.06 (0.65)
CC1/2	0.994 (0.61)	0.999 (0.32)	1.0 (0.30)	0.993 (0.5)	0.99 (0.90)
Unique reflections	38858 (6348)	54138	69265 (4986)	100494 (16357)	36972 (5934)
Mean((I)/sd(I))	7.8 (1.6)	14.6 (1.0)	19.6 (0.5)	6.5 (1.0)	22.79 (3.36)
Completeness (%)	98.7 (98.2)	100 (99.5)	99.8 (99.2)	95.5 (92.4)	99.9 (99.5)
Multiplicity	3.5 (3.3)	18 (8)	11.0 (10.7)	4.8 (4.4)	10.6 (10.5)
SigAno (4.18 Å)		7.9 (0.94)			
CCano (4.18 Å)		0.98 (0.14)			
REFINEMENT					
Resolution (Å)	12.1-1.5 (1.54-1.5)		48.9-2.6 (2.67-2.6)	45.0-2.20 (2.26-2.20)	12.7-1.61 (1.65 1.61)
Number of reflections	38782 (2908)		59771 (4503)	98369 (6904)	36903 (2686)
Number of protein / water / ions atoms	1712/296/15		10297/120	10822/694	1966/223
Test set reflections	1940 (146)		2988	5032	1845
R _{work} /R _{free}	0.195/0.212 (0.3/0.28)		0.198/0.218 (0.249/0.295)	0.199/0.220 (0.232/0.249)	0.198/0.199 (0.216/0.246)
r.m.s.d.bonds (Å)/angles (°)	0.011 / 1.13		0.009 / 1.09	0.008 / 1.07	0.012 / 1.12
B-Wilson / B-mean Å	22.7 / 28.6		108.5/107.1	57.1/66.4	25.7/32.2
Ramachandran: preferred / allowed / outliers (%)	96.3 / 3.7 / 0		97.1/2.6/0.3	79.9/2.1/0	98.0/2.0/0

Supplementary Table 2. Interaction contacts between TssK and the nbK18 nanobody

(obtained with the PISA server (Krissinel & Henrick, 2007)). ASA: accessible surface area (Å²). BSA: buried surface area (Å²). **a**) surface of nbK18; blue: CDR1; green: CDR2; pink: CDR3. **b**) surface of TssK. (The bars indicate the percentage of the ASA covered; 1 bar = 10%).

	H-bonds	ASA	BSA
VAL 32		56.25	42.21
VAL 33		37.25	32.81
ALA 35		8.52	8.37
TYR 37	Н	41.54	25.97
total			125
LEU 47		79.47	60.17
SER 50		18.33	10.61
THR 52	Н	49.89	18.84
GLY 54		75.43	13.20
THR 56	Н	86.79	9.83
ALA 60		21.75	13.55
total			132
LYS 96	Н	33.05	22.99
PHE 98		73.41	72.20
ARG 100	Н	133.07	69.68
TYR 103		188.69	110.41
VAL 104		79.31	32.53
GLY 105	Н	38.52	38.52
TYR 106		89.32	33.59
ASP 107	Н	79.14	65.47
total			452
Grand total			709

a)

b)

	H-bonds	ASA	BSA
PRO 69		47.50	37.02
ASP 70		44.65	21.34
LEU 105		78.77	78.45
LEU 106	Н	70.66	33.60
ASN 107	Н	42.33	36.39
ALA 108	Н	106.15	35.88
ASN 109	Н	149.19	58.67
GLY 110		39.76	11.02
GLU 118		170.72	61.86
SER 119		48.16	17.95
GLU 120	Н	165.08	139.61
ARG 121		54.64	43.11
GLU 158	Н	160.85	84.97
ALA 160	Н	97.20	48.41
ALA 161		35.99	24.80
TRP 162	Н	48.61	8.76
LEU 163		22.45	21.13

Supplementary Table 3. Strains, plasmids and oligonucleotides used in this study.

Strains

Strains	Description and genotype	Source
<u>E. coli K-12</u>		
DH5a	F-, $\Delta(argF-lac)$ U169, phoA, supE44, $\Delta(lacZ)$ M15, relA, endA, thi, hsdR	New England Biolabs
W3110	F-, lambda- IN(<i>rrnD-rrnE</i>)1 <i>rph</i> -1	Laboratory collection
BTH101	F-, cya-99, araD139, galE15, galK16, rpsL1 (Str r), hsdR2, mcrA1, mcrB1.	Karimova et al., 2005
T7 Iq pLys	MiniF, $lysY$, $lacI^{q}$ (Cam ^R), $fhuA2$, $lacZ::T7$ gene1, $ompT$, gal , $sulA11$, $R(mcr-73::miniTn10\text{Tet}^{S})2$, dcm , $R(zgb-210::Tn10\text{Tet}^{S})$ endA1 $\Delta(mcrC-mrr)$	New England Biolabs
Enteroaggregative E. coli		
17-2	WT enteroaggregative Escherichia coli	Arlette Darfeuille-Michaud

Plasmids

Vectors	Description	Source
Protein production vectors		
		N
pRSF-1	cloning vector, PT7, Kan ^R	Novagen
pRSF-TssK _{6His}	<i>sci-1 tssK</i> cloned into pRSF-1, C-terminal 6×His sequence	This study
pETG20A	Gateway® destination vector, 6×His-TRX followed by a TEV cleavage site	Arie Geerlof
pETG-TssK _{Ct}	sci-1 tssK residues 316-445 cloned into pETG20A	This study
Expression vectors		
pASK-IBA37	cloning vector, Ptet, Amp ^R	IBA Technology
pASK-IBA37-TssA _{FLAG}	sci-1 tssA cloned into pASK-IBA37, C-terminal FLAG epitope	Zoued et al., 2016
pASK-IBA37-TssF _{FLAG}	sci-1 tssF cloned into pASK-IBA37, C-terminal FLAG epitope	Brunet et al., 2015
pASK-IBA37-TssG _{FLAG}	sci-1 tssG cloned into pASK-IBA37, C-terminal FLAG epitope	Brunet et al., 2015
pASK-IBA37- _{FLAG} TssLc	sci-1 tssL residues 1-184 cloned into pASK-IBA37, N-terminal FLAG epitope	Aschtgen et al., 2012
pASK-IBA37-TssM _C -NTP _{FLAG}	sci-1 tssM residues 62-273 cloned into pASK-IBA37, C-terminal FLAG epitope	Logger et al., 2016
pBAD33	cloning vector, pACYC184 origin, Para, araC, Cm ^R	Guzman <i>et al.</i> , 1995
pBAD33-TssK _{VSV-G}	sci-1 tssK cloned into pBAD33, C-terminal VSV-G epitope	Brunet <i>et al.</i> , 2015
pBAD33-TssK-SN _{VSV-G}	sci-1 tssK residues 1-315 cloned into pBAD33, C-terminal VSV-G epitope	This study
pBAD33-TssK-H _{VSV-G}	sci-1 tssK residues 315-445 cloned into pBAD33, C-terminal VSV-G epitope	This study
pBAD33-TssK-S _{VSV-G}	sci-1 tssK residues 1-193 cloned into pBAD33, C-terminal VSV-G epitope	This study
pBAD33-TssK-N _{VSV-G}	sci-1 tssK residues 175-315 cloned into pBAD33, C-terminal VSV-G epitope	This study
pUC-Hcp _{FLAG}	sci-1 hcp cloned into pUC12, Plac, C-terminal FLAG epitope	Aschtgen et al., 2008

Bacterial Two-Hybrid vectors

pT18-FLAG	Bacterial Two Hybrid vector, ColE1 origin, Plac, T18 fragment of Bordetella	
	pertussis CyaA, Amp ^R	Battesti & Bouveret, 2008
pTssK-T18	tssK cloned upstream T18 in pT18-FLAG	Zoued <i>et al.</i> , 2013
pTssK _S -T18	tssK residues 1-193 cloned upstream T18 in pT18-FLAG	This study
pT18-TssK _N	tssK residues 175-315 cloned downstream T18 into pT18-FLAG	This study
pTssK _{SN} -T18	tssK residues 1-315 cloned upstream T18 into pT18-FLAG	This study
pT18-TssK _H	tssK residues 315-445 cloned downstream T18 into pT18-FLAG	This study
pT18-Pal	pal cloned downstream the T18 coding sequence in pT18-FLAG	Battesti & Bouveret, 2008
pT25-FLAG	Bacterial Two Hybrid vector, p15A origin, Plac, T25 fragment of Bordetella	
	pertussis CyaA, Kan ^R	Battesti & Bouveret, 2008
pT25-TssFG	tssFG cloned downstream the T25 coding sequence in pT25-FLAG	Brunet <i>et al.</i> , 2015
pT25-TssK	tssK cloned downstream the T25 coding sequence in pT25-FLAG	Zoued <i>et al.</i> , 2013
pTssL _C -T25	tssL residues 1-184 cloned downstream the T25 coding sequence in pT25-FLAG	Durand et al., 2012
pTssM _C -T25	tssM residues 62-360 cloned upstream the T25 coding sequence in pT25-FLAG	Zoued <i>et al.</i> , 2013
pT25-TolB	tolB cloned upstream the T25 coding sequence in pT25-FLAG	Battesti & Bouveret, 2008

Oligonucleotides

Name	Destination	Sequence $(5' \rightarrow 3)$	')
For plasmid construction ^{b,}	c,d		
Tor plasmid construction			
5- pBAD33-TssK-SN _{VSV-G}	insertion of <i>tssK</i> ₁₋₃₁	₅ fragment into pBAD33	CTCTCTACTGTTTCTCCATACCCGTTTTTTTGGGCT
- F		• • •	AGCAGGAGGTATTACACCATGAAGATTTATCGCCCA
			TTATGGGAAGACG
3- pBAD33-TssK-SN _{VSV-G}	insertion of $tssK_{1-31}$	5 fragment into pBAD33	GGTCGACTCTAGAGGATCCCCGGGTACCTTATT
			<i>TCCTAATCTATTCATTTCAATATCTGTATA</i> GGAAGG
			CAGGCTTGCCTCCAGC
5- pBAD33-TssK-H _{VSV-G}	insertion of $tssK_{315}$.	445 fragment into pBAD33	<u>CTCTCTACTGTTTCTCCATACCCGTTTTTTTGGGCT</u>
			AGCAGGAGGTATTACACCATGCGTGTGG
			TTTTCATTGAACTGAAACAAAAGGC
3- pBAD33-TssK-H _{VSV-G}	insertion of <i>tssK</i> ₃₁₅ -	445 fragment into pBAD33	<u>GGTCGACTCTAGAGGATCCCCGGGTACCTTA</u> TTT TCCTAATCTATTCATTTCAATATCTGTATATGT
			CCGCAGCACCGCAAAAAGTTC
3-pBAD33-TssK-S _{VSV-G}	insertion of tssK1 10	³ fragment into pBAD33	GGTCGACTCTAGAGGATCCCCGGGTACCTTA
5 pb/1055 135K 5050-6		3 huginent into pb/tb55	TTTTCCTAATCTATTCATTTCAATATCTGTATA
			GGCAGACAGCGTCAGCAGAGGG
5-pBAD33-TssK-N _{VSV-G}	insertion of $tssK_{175}$.	315 fragment into pBAD33	CTCTCTACTGTTTCTCCATACCCGTTTTTTTGGGCT
1			AGCAGGAGGTATTACACCATGGGACAGTGG
			TGCAGGGACCCGCG
5-pTssK _s -T18	insertion of $tssK_{1-19}$	₃ fragment into pT18-Flag	<u>CGGATAACAATTTCACACAGGAAACAGCTATGACC</u>
			ATGAAGATTTATCGCCCATTATGGGAAGACG
3-pTssK _s -T18	insertion of $tssK_{1-19}$	₃ fragment into pT18-Flag	<u>CCTCGCTGGCGGCTAAGCTTGGCGTAAT</u>
			GGCAGACAGCGTCAGCAGAGGG
5-pT18-TssK _N	insertion of $tssK_{175}$.	315 fragment into pT18-Flag	
$2 - T_{10} - V_{2}$	incention of (V	f	<u>CAAG</u> GGACAGTGGTGCAGGGACCCGC
3-pT18-TssK _N	insertion of <i>tssK</i> ₁₇₅ .	315 fragment into pT18-Flag	AGGTCGACGGTATCGATAAGCTTGATATCGAATTC

		TAGTTAGGAAGGCAGGCTTGCCTCCAGC
5-pTssK _{SN} -T18	insertion of $tssK_{1-315}$ fragment into pT18-Flag	CGGATAACAATTTCACACAGGAAACAGCTATGACC
		ATGAAGATTTATCGCCCATTATGGGAAGACG
3-TssK _{SN} -T18	insertion of $tssK_{1-315}$ fragment into pT18-Flag	<u>CCTCGCTGGCGGCTAAGCTTGGCGTAAT</u> GGAAG
		GCAGGCTTGCCTCCAGC
5-pT18-TssK _H	insertion of <i>tssK</i> ₃₁₅₋₄₄₅ fragment into pT18-Flag	<u>CGCCACTGCAGGGATTATAAAGATGACGATGACA</u>
		AGCGTGTGGTTTTCATTGAACTGAAACAAAAGGG
3-pT18-TssK _H	insertion of $tssK_{315-445}$ fragment into pT18-Flag	<u>CGAGGTCGACGGTATCGATAAGCTTGATATCGAA</u>
		TTCTAGTTATGTCCGCAGCACCGCAAAAAGTTC
T6_K316-445_p17_F	insertion of $tssK_{316-445}$ fragment into pETG20A	GGCTTAGAAAACCTGTACTTCCAGGGTTCCCGT
		GTGGTTTTCATTGAACTGAAAC
T6_K316-445_p17_R	insertion of $tssK_{316-445}$ fragment into pETG20A	<u>ACCACTTTGTACAAGAAAGCTGGGTTTATTA</u> TGTCC
		GCAGCACCGCAAAAAGTTCC

^a Sequence annealing on the target plasmid <u>underlined</u>. ^b VSV-G epitope coding sequence *italicized*.