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Abstract 30 

The intestinal microbiota plays an important role in health, particularly in promoting intestinal 31 

metabolic capacity and in maturing the immune system. The intestinal microbiota also 32 

mediates colonization resistance against pathogenic bacteria, hence protecting the host from 33 

infections. On the other hand, some bacterial pathogens deliver toxins that target 34 

phylogenetically related or distinct bacterial species in order to outcompete and establish 35 

within the microbiota. The most widely distributed weapons include bacteriocins, as well as 36 

contact-dependent growth inhibition and type VI secretion systems. In this review, we discuss 37 

important advances about the impact of such antibacterial systems on shaping the intestinal 38 

microbiota.  39 
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The intestinal microbiota: our best frenemy 40 

The mammalian intestine is inhabited by a large and diverse community of microbes, 41 

referred to as the gut microbiota. The human gut microbiota, also referred to as a "microbial 42 

organ", weights 1-2 kg, and consists of approximately 100 trillion (1014) bacteria representing 43 

6-10 phyla, including two predominant phyla – Bacteroidetes and Firmicutes –, and about 44 

500-1000 distinct species [1]. This highly complex microbial community (see Glossary) is 45 

controlled by various factors, such as host genetics and environmental factors. Moreover, 46 

microbiota diversity and composition is influenced by host diet as well as by positive and 47 

antagonistic interactions between bacteria within the microbiota. 48 

The intestinal microbiota has an overall beneficial impact on its host, by providing 49 

metabolic activities within the intestine and favoring the development of the intestinal 50 

immune system [2] (Figure 1). Exemplifying this notion is the observation that the immune 51 

responses in mice housed in germ-free conditions are abnormal compared to conventionally-52 

colonized mice [3, 4]. Therefore, early exposure to microbes in the intestine is a critical factor 53 

to modulate intestinal immune responses [5], and a well-documented example of a single 54 

microbial member playing a central role in shaping the intestinal immune system is 55 

segmented filamentous bacteria (SFB), which can promote the robust differentiation of Th17 56 

cells [6-8]. Moreover, if not well managed, the gut microbiota can become deleterious, for 57 

example by inducing uncontrolled intestinal inflammation. In light of the benefits the 58 

microbiota confers and on its potential to harm its host, the gut microbiota has previously 59 

been referred as the host’s best frenemy [9]. 60 

Collectively, the microbiota and its derived metabolites are critical components for the 61 

maturation of host intestinal immunity, and research has accumulated on the central role 62 

played by the intestinal microbiota in the protection of the host intestine against pathogens, a 63 

phenomenon called colonization resistance [10-12]. Bacterial competition occurs either by 64 

depleting nutrients from the milieu (exploitation competition) or by deploying antibacterial 65 
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weapons to specifically eliminate target cells (interference competition) (Figure 1). Many 66 

bacteria can directly prevent intestinal pathogens colonization or overgrowth by consuming 67 

common limited resources, hence inducing starvation of competing pathogens. One example 68 

highlighting this mechanism of exploitation competition is the finding that the commensal 69 

Bacteroides thetaiotaomicron consumes carbohydrates used by the pathogen Citrobacter 70 

rodentium, thus leading to a competitive exclusion of the pathogen from the intestine [13, 14] 71 

(Figure 1). Through the production of specific metabolites, the intestinal microbiota can also 72 

modify the host environmental conditions, then compromising pathogen growth and/or 73 

virulence. Butyrate, a short-chain fatty acid (SCFA) produced by the intestinal microbiota, 74 

downregulates the expression of several virulence genes of Salmonella enterica serovar 75 

Enteritidis (S. Enteritidis) and Typhimurium (S. Typhimurium) [15] and inhibits the growth of 76 

enterohemorrhagic Escherichia coli (EHEC) [16] (Figure 1). Finally, members of the 77 

microbiota can affect the growth of other cells by producing and releasing inhibitory 78 

substances, such as antibiotics and peptide antibiotics, or by injecting antibacterial effectors 79 

into target cells. Here we will briefly describe the various mechanisms evolved by bacteria to 80 

destroy rivals and we will review recent studies on how these systems contribute to reshaping 81 

bacterial communities in vivo. 82 

  83 

Bacterial weapons in the intestine 84 

To combat competitors, bacteria deploy a broad arsenal of antibacterial weapons. 85 

These weapons vary in terms of mechanism of action, toxin targets, and mode of penetration, 86 

and hence limit the acquisition of mechanism of resistance by competitors. The most widely 87 

distributed weapons in Enterobacteria are microcins and bacteriocins [17], contact-dependent 88 

growth inhibition (CDI) [18] and Type VI secretion systems (T6SS) [19] (Figure 2). Other 89 

mechanisms, such as Type I, Type IV and Type VII secretion systems or outer membrane 90 
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exchange, have also been recently shown to mediate toxin delivery into competitors or to 91 

promote contact-dependent killing [20-25]. 92 

Bacteriocins are a group containing a large variety of proteinaceous antibiotics of 93 

various lengths: microcins are 15-60 amino-acid peptides, lantibiotics are peptide containing a 94 

modified amino-acid (lanthionine), whereas colicin-like proteins are > 40 kDa multidomain 95 

proteins and tailocins are high molecular weight multiprotein complexes resembling 96 

bacteriophage tails [26-29]. Bacteriocins are produced upon stress conditions, and share a 97 

similar mechanism of action. After release, they bind to an outer membrane receptor and 98 

parasitize cell envelope components for penetration [26, 27, 30] (Figure 2). The exploitation 99 

of specific reception and translocation machineries restrict the action of these toxins to the 100 

same or phylogenetically related species. Cell toxicity is conferred by pore-forming activity 101 

that collapses the membrane potential at the inner membrane, by digestion or cleavage of 102 

nucleic acids or of cell wall precursors [26, 30]. Bacteriocins include S-type pyocins liberated 103 

by Pseudomonas species, and colicins that are produced by enteric strains such as E. coli, C. 104 

rodentium and Enterobacter species [26, 30]. 105 

By contrast to bacteriocins that are diffusible toxins, CDI and T6SSs are cell-cell 106 

contact-dependent mechanisms. CDI is a variant of two-partner secretion, a family of Type V 107 

secretion systems widely represented in Proteobacteria [31-33]. It comprises two proteins: the 108 

CdiB outer membrane transporter translocates the CdiA protein to the cell surface. CdiA are 109 

usually elongated spring-like β-helical structures that carry a C-terminal toxin domain. The C-110 

terminal domain mediates target cell recognition, penetration and toxicity (Figure 2). Similar 111 

to bacteriocins, the requirements for specific receptors and target cell factors restrict the 112 

action of CDI to close relatives [18, 31, 34, 35]. 113 

T6SS is a more complex machinery, broadly distributed in Proteobacteria and 114 

Bacteroidetes. Its assembly requires at least 13 components to form a speargun-like weapon 115 

[19, 36, 37]. T6SS could be considered as a bacteriophage-like contractile tail structure 116 
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anchored to the cell envelope [19, 38, 39]. The tail is constituted of an effector-loaded syringe 117 

wrapped by the sheath that is built under a metastable, extended conformation [19, 36, 37, 40-118 

42]. Contraction of the sheath presumably propels the syringe towards the rival cell, and thus 119 

delivers effectors to cause cell damages [40, 42-46] (Figure 2). How the target cell is sensed 120 

and how cell-cell contact triggers T6SS assembly or firing is largely unknown but in certain 121 

cases, transcriptional, post-transcriptional or post-translational regulatory cascades, cell-122 

envelope damage or the presence of kin cell components in the milieu trigger a T6SS 123 

response to attacks [44, 46-52]. By contrast to bacteriocins and CDI, T6SSs do not exploit 124 

specific receptors, and hence target a broader range of bacteria, although no T6SS-dependent 125 

damages of Gram-positive bacteria have been observed [53]. T6SS antibacterial effectors 126 

include peptidoglycan-acting enzymes (amidases, glycosyl hydrolases), membrane-targeting 127 

proteins (phospholipases and pore-forming), nucleases and NAD(P)(+) glycohydrolases [53-128 

59]. Interestingly, the T6SS is also capable of delivering effectors into eukaryotic cells, 129 

including single-celled microorganisms and animal tissues [54, 60]. Phospholipases and 130 

nucleases can act as trans-kingdom effectors, but specialized toxins, such as those interfering 131 

with cytoskeleton or tubule dynamics, have been identified and characterized [60-67].  132 

For all these systems, attacker bacteria are protected from self-intoxication and 133 

intoxication by kin cells by the production of immunity proteins that usually bind with high 134 

affinity and inhibit the catalytic activity of the cognate effector [26, 31, 34, 54, 55, 68, 69]. 135 

In addition, some enteric pathogens can produce broadly bioactive small molecules 136 

such as antibiotics, non-ribosomal peptide antibiotics, sactibiotics and lantibiotics [70-72], 137 

that may act toward other members of the intestinal microbiota and/or toward enteric 138 

pathogens. Finally, other extracellular contractile injection systems such as R-pyocins, anti-139 

feeding prophages (Afp) and Afp-like particles have antibacterial or antimicrobial activities 140 

[73-75].  141 
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Although the role of these systems in antibacterial competition is well documented in 142 

vitro, studies have only begun to investigate their contribution in in vivo animal models. 143 

 144 

Role of bacterial competition in the intestinal microbiota  145 

The gut microbiota is a very stable ecosystem [1]. However, the invasion or 146 

overgrowth of pathogens induces dysbiosis, an instability that may alter the composition of 147 

the microbiota but also host physiology [11, 76-78]. It is now well appreciated that 148 

interference competition between members of the microbiota, in addition to indirect 149 

competition such as exploitation competition, plays a central role in microbiota ecology [78].  150 

Until recently, the role of interbacterial competition in shaping bacterial communities 151 

has been underestimated [79]. However, antibacterial weapons are key players in the control 152 

of bacterial populations, and a summary of known examples of in vivo bacterial competition 153 

is presented in Table 1. The importance of these weapons in vivo is supported by the 154 

estimation that more than 109 T6SS firing events occur per minute per gram of colonic 155 

contents [80]. T6SS gene clusters are highly represented in Bacteroidales strains, which 156 

account for a large portion of the gut microbiota [81, 82]. In addition, many Gram-negative 157 

enteric pathogens, including Vibrio cholerae, S. Typhimurium, C. rodentium, and Shigella 158 

sonnei utilize functional T6SSs to fire against other species in vitro [83, 84]. In agreement 159 

with the concept that T6SSs are important players in bacterial competition within the 160 

intestine, a number of enterobacterial T6SS gene clusters are upregulated in conditions 161 

encountered in the gut or when a threshold of cell density is reached [85]. The V. 162 

cholerae T6SS is activated by mucins and microbiota-modified bile salt [86]; the S. 163 

Typhimurium T6SS is activated by bile salts [87]; and the enteroaggregative E. coli Sci-1 164 

T6SS is responsive to iron starvation [88].  165 

V. cholerae, S. Typhimurium and S. sonnei deploy their T6SSs to kill or displace 166 

commensal bacteria, allowing a successful colonization of the host and an increased 167 
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persistence in experimental models [89-92]. Using transposon insertion site sequencing (Tn-168 

Seq) to identify V. cholerae mutants that exhibit a colonization defect in the rabbit intestine, 169 

Fu et al. found tsiV3, encoding immunity to the T6SS VgrG3 peptidoglycan hydrolase 170 

effector [93]. Interestingly, a recent study demonstrated that V. cholerae T6SS-mediated 171 

colonization specifically occurs in intestinal microenvironments, such as the middle small 172 

intestine, suggesting that T6SS effectors might target specific species [94]. The antagonistic 173 

behavior of V. cholerae in the gut triggers intestinal colonization, virulence gene expression, 174 

and host innate immune response [95]. In a recent study, Sana and collaborators demonstrated 175 

that the successful establishment of S. Typhimurium in the mouse intestine requires the T6SS 176 

Tae4 amidase effector [87]. Thus, the observation that bacterial-specific effectors are required 177 

for efficient colonization demonstrates that the T6SS mediates antagonistic interbacterial 178 

interactions during infection. It is not yet known whether T6SS specifically targets certain 179 

species, but the observation that S. Typhimurium targets Klebsiella oxytoca and has only 180 

weak impact on other species suggests that the T6SS does not fire randomly [87]. 181 

Interestingly, S. Typhimurium and K. oxytoca utilize the same carbon sources and thus the 182 

specific elimination of a metabolic competitor may provide a better access to the available 183 

nutritional resources [79]. Another example of T6SS-mediated metabolic competition is the 184 

secretion of manganese- and zinc-scavenging enzymes by pathogens such as Burkholderia 185 

thailandensis [96, 97]. In addition, EHEC uses its T6SS to secrete catalases, thus providing a 186 

higher resistance to reactive oxygen species produced by the host [98]. A recent example of 187 

the importance of the T6SS in intestinal colonization is related to the increased prevalence of 188 

S. sonnei infections over that of the close relative Shigella flexneri. By contrast to S. flexneri, 189 

the genome of S. sonnei encodes a functional T6SS that confers a competitive advantage by 190 

outcompeting S. flexneri in vitro as well as in the mouse gut [90]. Interestingly, S. sonnei also 191 

encodes the ColE1 colicin that enables E. coli elimination [90]. Those recent findings are in 192 

agreement with the observation that colicinogenic E. coli cells present an increased intestinal 193 
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persistence compared to the isogenic E. coli strain unable to produce colicins [99, 100]. Other 194 

bacteriocins and R-pyocins have the ability to destroy rivals in biofilm or mixed communities, 195 

and to specifically eliminate bacterial species after therapeutic administration; and hence are 196 

proposed to be viable alternatives to antibiotics [101-105].  197 

While the above examples showed that antibacterial weapons are used by pathogens to 198 

colonize their hosts, the gut microbiota also exerts an important control to prevent 199 

colonization by pathogens [106, 107]. Indeed, many commensal strains produce those 200 

weapons and therefore protect the niche against the invasion of external microbes or against 201 

the overgrowth of indigenous pathogens. An elegant example is the recent observation that 202 

the probiotic strain E. coli Nissle uses microcins M and H47 to limit the expansion of 203 

competing Enterobacteriaceae, including pathogens such as adherent-invasive E. coli (AIEC) 204 

and S. Typhimurium during intestinal inflammation [108]. Another example is Bacillus 205 

thuringiensis, a bacterium able to secrete a bacteriocin (thuricin CD) that directly targets 206 

spore-forming Bacilli and Clostridia, including Clostridium difficile [109]. 207 

Other commensals, such as those of the Bacteroidales order, antagonize gut microbiota 208 

using secreted antimicrobial proteins or T6SS [56, 110-113]. Interestingly, it has been shown 209 

that intense transfer of genetic material occurs between Bacteroidales species in the gut [82]. 210 

As a consequence, Bacteroidales have accumulated genes encoding immunity proteins to 211 

T6SS effectors they do not encode [80], and thus maintain a stable balance in the microbiota 212 

by preventing their own elimination. In addition, the symbiotic Bacteroides fragilis strain was 213 

shown to use the T6SS to harm enterotoxigenic B. fragilis cells, demonstrating that the 214 

activity of Bacteroidales T6SSs may protect the host against intestinal inflammatory diseases 215 

[114].  Altogether, these data demonstrate that a broad range of competitive mechanisms 216 

occurs within the intestinal microbiota and plays a role in microbiota composition, 217 

establishment, stability, and evolution. 218 

 219 
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Concluding Remarks 220 

 Future studies will be needed to further characterize mechanisms by which bacteria 221 

compete within the intestinal tract, with a particular focus on long-lasting consequences on 222 

microbiota composition and host physiology (see Outstanding Questions). Long-term 223 

experiments are also required to understand the real contribution of antibacterial weapons in 224 

shaping microbial communities. At present, it is not clear whether being well armed 225 

represents a true advantage, as antibacterial weapons have limited impact on well-structured 226 

communities [115]. In addition, microbial communities are subjected to a rock-paper-scissor 227 

game, in which the production of these weapons is energetically consuming, and hence 228 

attacker cells might be defeated by professional cheaters or by strains with a better fitness 229 

[116, 117]. 230 

 Another important field of research that needs further investigation is the impact that 231 

such antimicrobial systems may have on both microbiota composition and host physiology in 232 

the long term. An example highlighting the importance of interbacterial competition in long 233 

term dysbiosis is the observation that intestinal colonization of AIEC, an E. coli pathovar 234 

associated with Crohn’s disease, causes alteration of microbiota composition and chronic 235 

colitis in mice, with both phenotypes persisting well beyond AIEC clearance [118]. Hence, in 236 

addition to their own virulence potential, AIEC bacteria are able to induce chronic 237 

inflammation by detrimentally altering the intestinal microbiota composition [118]. While the 238 

precise role played by antibacterial systems in such long-term alterations still needs to be 239 

investigated, they may further highlight the unappreciated importance of such 240 

bacteria/bacterial competition in microbiota stability and host physiology. 241 

Finally, such antibacterial mechanisms may be tailored in a near future as an 242 

alternative or complementary approach to the use of antibiotics. A few bacteriocins, such as 243 

nisin, have been validated by the FDA and are used as food preservatives [119]. While such 244 

compounds are used to extend shelf life, we still ignore their impact on the intestinal 245 



! 11!

microbiota. In addition, colicins, R-pyocins, CdiA and T6SS effectors are modular proteins 246 

and hence might be genetically engineered to specifically target bacterial populations of 247 

interest. Modified colicins, R-pyocins or T6SS effectors have already been demonstrated to 248 

be efficiently delivered into target cells or to destroy specific species without affecting the gut 249 

microbiota diversity [87, 95, 120-124]. One may predict that these initial attempts will be 250 

actively pursued to deliver toxins or CRISPR/Cas system into specific species, with the 251 

ultimate goal to prevent intestinal colonization or to beneficially reshape an altered microbial 252 

ecosystem. 253 

 254 
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Glossary 534 

Dysbiosis: microbial population with an imbalanced composition, often associated with 535 

deleterious impact for the host. Dysbiosis has been identified as an important player of 536 

inflammation in inflammatory bowel diseases. 537 

 Intestinal immune system: The complex population of cells and interactions inhabiting our 538 

intestine with the dual role of tolerance toward our commensal microbiota and protection 539 

against intestinal pathogen. Importantly, the intestine represents the largest compartment of 540 

the immune system, with the estimation that 70% of the mammalian immune system is hosted 541 

within the intestine. 542 

Microbial community: mixed population of bacteria and single-cell microorganisms. 543 

Microbial communities include microbiota, but also biofilms (bacteria that adhere to a 544 

support) and consortiums (bacteria that exchange metabolic contents). 545 

  546 
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Legend to Figures 547 

Figure 1. Commensal microbiota-mediated colonization resistance in the intestine. The 548 

intestinal microbiota plays a central role in both intestinal barrier maintenance and immune 549 

system maturation. Examples of microbiota-mediated inhibition of intestinal colonization by 550 

enteric pathogens are represented: exploitation competition (utilization of nutrient resources), 551 

and interference competition (production of virulence gene repressor molecules or 552 

antibacterial weapons). EHEC, enterohaemorrhagic Escherichia coli. 553 

 554 

Figure 2. The arsenal of antibacterial weapons. The major antibacterial weapons used by 555 

enteric bacteria and their mechanism of action are schematically represented. Bacteriocins 556 

(green) are diffusible multi-domain proteins that are produced and released by the attacker 557 

cell. The reception (R) domain binds to the specific receptor and the translocation (T) domain 558 

helps the translocation of the activity (A) domain into the target. Contact-dependent growth 559 

inhibition (CDI, orange) comprises the CdiB translocator and CdiA toxin. The CdiA C-560 

terminal domain (Ct) binds to a specific receptor and translocates to the target cell. Type VI 561 

secretion system (T6SS, blue) is an injection system that uses a contractile mechanism to 562 

propel an effector-loaded needle into the target.  563 

  564 



! 21!

Table 1. Summary of known in vivo bacterial competition. 565 

 566 

 567 

Bacterium Weapon Target cell Toxin / Activity Reference 

Salmonella 
enterica 

Typhimurium 
T6SS Klebsiella oxytoca Tae4 (amidase) [87] 

Bacillus 
thuringiensis 

Bacteriocin 
thuricin CD 

Spore-forming Bacilli and Clostridia, 
including C. difficile pore-forming [109] 

Burkholderia 
thailandensis T6SS unknown unknown [96, 97] 

EHEC T6SS - Catalases [98] 

Shigella sonnei T6SS S. flexneri Unknown [90] 

Shigella sonnei ColE1  
colicin E. coli Pore-forming [90] 

E. coli Nissle Microcins M 
and H47 

Enterobacteriaceae, including 
pathogens such as AIEC and S. 

Typhimuirum 
unknown [108] 

Bacteroides 
fragilis T6SS B. fragilis, gut microbiota and 

pathogenic bacteria Bte2 [56, 110, 
114] 

V. cholerae T6SS commensal E. coli unknown [95] 



Outstanding Questions Box 

 

- How do antibiotics and antibacterial molecules alter the intestinal microbiota composition 
and affect colonization resistance? 

- What are the direct impacts of antibacterial weapons in the gut? 

- What is the contribution of the antibacterial weapons of commensals in the protection of the 
host against pathogens? 

- What is the target range of T6SS and what is the cost to produce antibacterial weapons? 

- Is it a real benefit for the bacterium to be equipped with antibacterial weapons? 

- How can antibacterial weapons be genetically modified for therapeutic purposes in order to 
manipulate the intestinal microbiota in beneficial ways?  

- What are the long term impacts of such antibacterial systems on the microbiota community 
and host physiology?!



Trends Box 

- The intestinal microbiota is a complex but stable ecosystem that plays a central role in 
human health, and disturbance of its composition and function is associated with many 
diseases. 

- Within the intestinal microbiota, bacteria exchange material and information. 

- The microbiota can be peaceful, but many bacteria fight with others to have a better access 
to their niche or nutrients. 

- Different antibacterial weapons have been identified and characterized, and many bacterial 
pathogens use these weapons to establish themselves in the intestinal environment, whereas 
some commensals use these weapons to specifically target pathogens, leading to protection of 
the host. 
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