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The degradation of photovoltaic (PV) modules remains a major concern on the control and the development of the photovoltaic
field, particularly, in regions with difficult climatic conditions. The main degradation modes of the PV modules are corrosion,
discoloration, glass breaks, and cracks of cells. However, corrosion and discoloration remain the predominant degradation
modes that still require further investigations. In this paper, a model-based PV corrosion prognostic approach, based on an
ensemble Kalman filter (EnKF), is introduced to identify the PV corrosion parameters and then estimate the remaining useful
life (RUL). Simulations have been conducted using measured data set, and results are reported to show the efficiency of the
proposed approach.

1. Introduction

In order to maximize the system availability and reduce the
maintenance cost, the concept of fault prognosis has been
proposed to estimate the damage propagation and then
predict the fault appearance [1, 2]. More precisely, several
approaches have been proposed to tackle this issue and could
be categorized into three main families [3, 4]. The first cate-
gory uses prognosis-based models. These models consider
the damage as a continuous variable in which the evolution
is defined by a deterministic or stochastic law (see [3, 5]).
The second category of models uses measured data without
requiring an equipment behavior (e.g., see [6, 7]). The third
category is experience-based prognostic and requires, essen-
tially, expert experience together with rigorous stochastic
and probabilistic modelling.

This paper focuses on the first category that uses
prognosis-based models that attracted the intention of sev-
eral authors (see, e.g., [8–11]) and can be further categorized
into two types. The first one concerns deterministic models
(see, e.g., [9, 12, 13]). In this case, the techniques used to

estimate degradation are based either on observers or on
the Interacting Multiple Model. For example, the conven-
tional observer approach that can be envisaged for studying
determinist systems prognosis is highlighted in [14]. The
second type is dedicated to the stochastic models (see, e.g.,
[15, 16]) and Bayesian filters [17, 18]. For stochastic models,
which attract our attention, the prediction techniques can be
classified according to their natures or uncertainties. For
example, when the models are linear with Gaussian uncer-
tainties, techniques based on the ordinary Kalman filter can
be used, but, when models are nonlinear, the filtering may
be performed with an extended Kalman filter [18, 19]. On
the other hand, for systems with non-Gaussian uncertainty,
classical filtering techniques are not adapted and present
many convergence difficulties. In this case, several types
of filters based on the Monte Carlo method could be used
(see, e.g., [15, 16]).

This paper puts more emphasis on PV corrosion propa-
gation prognostic and investigates further Bayesian method
using EnKF. Previous studies have shown that this filter is
more suitable for systems with complex phenomenon and
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have been applied in many fields [20]. For example, it has
been used to predict the flow of fluids in porous environment
[21] or to predict the weather [22, 23]. In these two cases, the
models that describe the systems’ evolution are either highly
nonlinear or having important dimensions.

It is worth noting that the performance study between
the EnKF and other filters, mainly the PF, has been
performed by many authors in different fields especially for
nonlinear stochastic filtering problems (e.g., [24, 25]). For
instance, the results of these studies show that the PF is
computationally expensive and needs big sampling size to
converge, especially, for systems with high dimensions.
However, the EnKF gives more robust and promising results
even if the sampling size is too small. For example, in the
assumption of Gaussian uncertainties and nonlinear model
(e.g., [25]), similar to our PV corrosion study, the prediction
is better with EnKF. Indeed, the covariance matrix estima-
tion is based on limited data assimilation component of
ensemble forecasting. Besides, from this limited sampling
size, the time of the algorithm convergence is still fast
and consequently good for the purpose of prognosis. The
obtained results from our numerical study, presented in
Section 3, confirm also that EnKF outperforms the PF
for nonlinear system with Gaussian uncertainties.

Throughout this paper, the general mathematical model
that describes the evolution of the PV corrosion can be
written as follows:

dk = f dk−1, θ, uk−1 + wd
k−1,

yk = h dk, θ +wy
k,

1

where dk ∈ℝnd is the degradation variable. The function f d
and h are smooth functions. uk ∈ℝ is the input vector of
the system, yk ∈ℝ is the output vector, and θ is an unknown
parameter defining the damage speed. wd

k ∼N 0,Qk and
wy
k ∼N 0, Rk denote the modelling and measurement

uncertainties where Qk and Rk represent the covariance
matrices.

Generally speaking, this mathematical model is used to
describe the nominal system operation. Besides, the estima-
tions consist in analyzing the difference between the sensed
values and model outputs (i.e., residual). In our case, the state
d evolution is modelled and combined with a hidden param-
eter θ which describes the damage speed, random noises, and
observed measurements. In this case, the residual value is
used to eliminate noise and then to restore the actual signal
and unknown parameters. To summarize, the main contri-
butions of this paper are the following:

(i) Introduce the PV corrosion parametric state model

(ii) Estimate the unknown parameter using a Bayesian
filter

(iii) Analyze the damage propagation instead of estimat-
ing the RUL

This reminder of this paper is organized as follows.
Section 2 describes the prognostic methodology and presents

the filtering technique. In Section 3, the prognostic and
numerical results are given. The conclusions and future work
are presented in Section 4.

2. Problem Statement and
Prognosis Methodology

2.1. Problem Statement. In this work, it is assumed that the
structure of f d is polynomial (see e.g., [8, 26]) and depends
on an unknown parameter θ ([27]). In general, the corrosion
of photovoltaic module is assessed by measuring its power
loss during its lifetime compared to its initial values. Cur-
rently, there are a few corrosion PV models in the literature
and further investigations are still required. For example, in
[28], the authors propose a degradation model of the PV
model given by

dk = 1 − exp −b ka , 2

where a and b are the unknown parameters of the degra-
dation model. In our work, we further investigate this
model using prognostic-based Bayesian filter. The mea-
surements are assumed to be available during a finite time
horizon 0, kpΔh where Δh is the sampling period of the
time horizon and kp ∈ℕ.

The aim of the prognosis strategy is to estimate the
parameter θ = a, b and analyze the degradation trajectories
in order to estimate the RUL. It is worth noting that this
strategy was originally used for continuous deterministic
model based on observers’ design (see [14]). Despite the
relevance of the results obtained in prognostic, uncertainty
was not taken into consideration. In our work, (2) is
adapted as follows by taking into account the following
inherent uncertainties:

dk = 1 − exp −b ka + wd 3

In order to overcome nonlinearity and uncertainties, we
propose the EnKF filtering technique. Despite its similarity
with particle filters, the EnKF combines the Monte Carlo
method and the Kalman filter technique in order to estimate
the parameters and to compute their covariance matrix
even if the models are highly nonlinear [20]. However, this
type of filters is limited to the estimation of moments of
order 1 and order 2. Therefore, in this study, we deal only
with Gaussian uncertainties.

This EnKF reconstruction consists on minimizing the
error between the model (2) and the measurement set Ykp

=
y0, y1,… , ykp obtained during a time horizon 0, kpΔh

Then, the corrosion trajectory analysis can be performed
for the prognosis and the PV RUL estimation. Furthermore,
the parameter θ estimation is carried out in a recurrent way,
that is, at each time k ∈ ⟦1, kp⟧. Indeed, when a new measure-
ment yk is available, θ can be adjusted by the filtering
techniques. Thus, the parameter θ will be modelled by a
variable θk which changes over time. More precisely, and
because of the inherent uncertainties, the parameter’s
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dynamic is supposed to be given by a forced random path
as follows:

θk = θk−1 + wθ
k−1, 4

where wθ
k−1 ∼N 0, Zk−1 is the additive noise and Zk−1 is the

matrix of covariance associated to the uncertain parameter.
Finally, taking into account (4) and the damage behavior
(3), the PV state model can be written as follows:

dk = 1 − exp −bk k
ak +wd

k ,
θk = θk−1 + wθ

k ,
yk = dk + wy

k

5

2.2. Bayesian Filtering. In a Bayesian framework, the
estimation of θk consists in approximating the conditional
expectation P θk∣Ykp

For k ∈ ⟦1, kp⟧, this probability law

can be calculated into two steps as shown in Figure 1.

2.2.1. Prediction. By using the models (5) and without
knowledge of the measurement yk, the prior probability law
is obtained via the Chapman-Kolmogorov equation:

P θk∣Yk−1 = P θk∣θk−1 P θk−1∣Yk−1 dθk−1 6

2.2.2. Correction. This step is dedicated to modify the prior
probability law by introducing the measurement yk The
obtained posterior probability law is given by using the Bayes
formula as follows:

P θk∣Yk = P yk∣θk P θk∣Yk−1
P yk∣Yk−1

7

The formula (6) and (7) are the optimal Bayesian filtering
equations. In practical situations, the optimal algorithms
to compute these equations are difficult, even impossible,
to be implemented due to the complex integrations, which
cannot be performed analytically. However, if the uncer-
tainties are Gaussian, the results can be obtained by the
elaboration of Kalman filters. In the sequel, the two steps,
prediction and correction, are carried out through EnKF
filtering Algorithm 1.

3. Prognosis Results

In this section, we present the rules for estimating the RUL
together with a numerical example.

3.1. RUL Estimation. The objective of prognosis is to estimate
the RUL; therefore, looking at the considered uncertainties,
this estimation is given as a conditional probability law of

RUL, denoted P RUL∣Ykp
For this purpose, let us consider

RULi kp as the necessary duration so that the nth step
prediction of the ith future degradation members, noted

as dikn = 1 − exp −bikpk
aikp
n

i∈⟦1,N⟧
, reaches the degradation

threshold Ds More precisely, the member’s RULi kp
expression can be written as follows:

RULikp = Inf
n>p

kn∣d
i
kn
=Ds − kpΔh , i ∈ ⟦1,N⟧, 8

and the Monte Carlo probability law P RUL∣Ykp
estimation

based on the members RULi kp i=1,…,N is the following:

P RUL kp = r∣Ykp
= 1
N
〠
N

i=1
Γ r−dr,r+dr RULi kp , 9

where Γ is a function defined by

ΓI a
1, if a ∈ I,
0, else

10

The mean value of the RUL is estimated by

RUL kp = 1
N
〠
N

i=1
RULi kp 11

and the variance is given by

kp = 1
N
〠
N

i=1
RULi kp − RUL kp

2
12

Prediction

P(y
k

y
k

P(𝜃
k P(𝜃

k
P(𝜃

k

Correction
P(𝜃

k‒1 Y0:k‒1)
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𝜃
k
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Figure 1: The Bayesian filtering steps for k ∈ ⟦1, kp⟧.

Initialization k = 0
Input P0 θ , kp

initializing θi,p0 ∼N 0, P0
N

i=1
while k ≤ kp

prediction step
for i = 1 to N

ŷi,pk+1 = 1 − exp −bik k
aik

end for
end prediction step
Input yk+1 the new observed value
correction step

fluctuation yik+1 = yk+1 + wy,i
k

N

i=1
compute Kθ

k+1
for i = 1 to N

θi,ak+1 = θi,pk+1 + Kθ
k+1 yik+1 − ŷi,pk+1

end correction step

θ
a
k+1 = 1

N ∑
N

i=1
θi,ak+1

Pθ,y,a
k+1 = 1

N ∑
N

i=1
θa,ik+1 − θ

a
k+1 yp,ik+1 − yk+1

end while
Output P θk∣Ykp

Algorithm 1: EnKF.
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Proposition 1. Let α ∈ 0, 1 be the desired confidence rate. Let
also kα ∈ℕ be a time index such that the following equation is
satisfied, for all k ∈ kp, kα that

RUL k ≥
1

N 1 − α
〠
N

i=1
RULi k − RUL k

2
13

Thus, one can ensure, with a confidence rate equal to α, that
no failure will occur within the time horizon kp, kα .

For a confidence level α,kα is the future time horizon
defining the good function of the system. The maximum
of this horizon, noted as kmax

α , can be obtained by using
Algorithm 2.

3.2. Numerical Example. To predict the corrosion propaga-
tion on a polycrystalline PV module, data from an acceler-
ated test based on extreme temperature and humidity is
used. In fact, in this study, we use a large corrosion growth
database of polycrystalline PV module that is reported in
[29]. This data set consists of damage trajectory containing

10 measurement points (see Figure 2) based on a constant
stress damp heat of T=85°C and HR=85%.

The recursive state form of the considered damage’s
model used in this simulation is developed by applying the
Euler approximation to the temporal derivative of the model
(see (3)) and introduced in the model (see (5)). More pre-
cisely, the resulting model is as follows:

dk+1 = −dk 1 + ab × ka−1Δh + 1 + ab × ka−1Δhwd
k ,

θk = θk−1 +wθ
k,

yk = dk +wy
k

14

The constants describing this model and the numerical
values used in the simulations are given in Table 1.

3.2.1. The Parameter Estimation. To ensure a perfect
prediction of the PV corrosion, the parameter filtering pro-
cess has to reach the expected value in a finite time horizon.
Therefore, we first study the influence of member’s number
and uncertainties on the parameter’s convergence quality.
Figure 3 illustrates the parameter’s convergence for the dif-
ferent member’s numbers according to three situations: low
(N = 10), medium (N = 50), and high (N = 200). More pre-
cisely, for N = 50 or N = 200, and contrary to N = 10, the
convergence is practically identical and fast. Therefore, to
ensure a good RUL estimation, a member’s number up to
50 is necessary and sufficient.

Now, to illustrate the influence of the measurement uncer-
tainties, N is fixed to 100 by changing uncertainties. Figure 4
shows the convergence of the parameter over time under
one of the following scenarios: scenario S1 σy = 0 01 , sce-
nario S2 σy = 0 05 , and scenario S3 σy = 0 8

The convergence results show that, for the scenarios S1
and S2, the convergence reaches the expected values within
the first five iterations. Therefore, the estimation is qualified
to be satisfactory and perfect for a good RUL estimation,
especially for S2 where the convergence is fast. In S1, the
convergence results are less important than S2, but in gen-
eral, it is very sufficient for a good RUL estimation. However,
for S3, a slight divergence of the estimation is observed in the
8th iteration.

In summary, we conclude that when the convergence is
slow, the estimation can occur outside the horizon “the
window of the measurement time” and prognosis results
are automatically affected.

Initialisation k = kp
Input α ∈ 0, 1 desired confidence level

while RUL k ≥ 1
N 1 − α

∑
N

i=1
RULi k − RUL k

2

k = k + 1
sample RULi k N

i=1

RUL k = 1
N ∑

N

i=1
RULi k

k = 1
N ∑

N

i=1
RULi kp − RUL kp

2

end while
Output kmax

α = k

Algorithm 2: kmax
α estimation.

0
0

5C
or

ro
sio

n 
(%

) 10

15

500 1000 1500
Time (hours)

2000 2500 3000

Figure 2: Degradation of polycrystalline silicon PV module under
test 85/85.

Table 1: Constants and simulation values.

Parameter b uncertainty σ1 = 0 1 × 10−12

Parameter a uncertainty σ2 = 0 1
Measure uncertainty σy = 0 05
Damage uncertainty σd = 0 01
Corrosion threshold 70%

Member’s number N = 100
Sampling time Δh = 250 h
Measurement time horizon kp kp Δh = 2500 h
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Figure 3: The member’s number influence on the parameter convergence.

0 500 3000

S3 (𝜎
y
 = 0.8)

S1 (𝜎
y
 = 0.01)

S2 (𝜎
y
 = 0.05)

S3 (𝜎
y
 = 0.8)

S1 (𝜎
y
 = 0.01)

S2 (𝜎
y
 = 0.05)

25002000
Time (hours)

15001000 0 500 300025002000
Time (hours)

15001000

6

5

4

b k 3

2

1

0

3.5

3

2.5

2

1.5

1

0.5

0

‒0.5

a
k

×10‒12

Figure 4: The uncertainty influence on the parameter convergence.
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From results shown in Figures 3 and 4, we have selected
the medium situation N = 50 combined with the scenario
S2 σy = 0 05 We have conducted 100 Monte Carlo simula-
tions of the future corrosion propagation, and the estimated
RUL probability mass is shown in Figure 5. This figure shows
that the mean of RUL is about 2800 h. This value could be
used for maintenance purpose.

3.2.2. Analysis and Discussion. Now, in order to illustrate the
relevance of the EnKF estimation compared to other particle
filters, mainly, sequential importance sampling (SIS) and
sequential importance resampling (SIR), a prognosis perfor-
mance analysis based on accuracy and statistical dispersion
criteria is introduced. Simulation results have been included
to show the effectiveness of EnKF against SIS and SIR. In fact,
in the literature, several metrics are used to measure those
criterions (see, e.g., [30]). Therefore, in this study and for
simplicity reason, we choose the relative accuracy (RA) and
median absolute deviation (MAD) to measure, respectively,
the prediction precision and the dispersion of the particles
RULi k i=1, ,N around the median, which is very important
to compute the exactitude. More precisely, those indicators
are given as follows:

RA k = 100 × RULr k − ̂RUL k
RULr k

,

MAD k =
median j RULj k −mediani RULi k

mediani RULi k
,

15
where RULr denotes the true value of the RUL Note that the
confidence level related to the RUL estimation (see Figure 2)

is derived from 95% of members or particles closest to the
real RUL k After computing those indicators, the RA vari-
ation reaches 95% for the EnKF, while for SIS and SIR, it
reaches 89% and 91%, respectively. Therefore, in terms of
accuracy, the EnKF method gives a better RUL accuracy than
SIS and SIR. However, in terms of member’s RULi k i=1, ,N
dispersion around the median, the results show that MAD
related to EnKF, equal to 9.30%, is worse than 3.58%
computed from the SIR member’s dispersion; however, it is
better than 12.83% computed from the SIS dispersed mem-
bers. We conclude that, in terms of a combined accuracy-
exactitude performance analysis, the EnKF presents the best
prognosis compromise. Furthermore, other metrics can be
developed; for instance, robustness, benefit, and convergence
to illustrate even more the relevance on the EnKF.

4. Conclusion and Future Work

In this paper, the methodology of the PV corrosion prognos-
tic with Bayesian filtering is introduced. More exactly, the
filtering is conceived for the systems having strong nonline-
arity like the corrosion model. The general methodology of
the prognostic is elaborated into two steps. The estimation
of the degradation parameter through an ensemble Kalman
filter and prediction for estimating the remaining useful life
RUL A numerical example, based on an accelerated
corrosion test dataset, is used to illustrate the effectiveness
of the proposed methodology for estimating RUL In our
future work, other filters will be implemented in others to
show the relevance of the proposed methodology. This
methodology will be also implemented to study RUL in real
scenario under our Research and Development project.
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Figure 5: The RUL probability mass function and the damage trajectory estimation.
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