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A BTP-Based Family of Variable Elimination Rules for Binary CSPs

The study of broken-triangles is becoming increasingly ambitious, by both solving constraint satisfaction problems (CSPs) in polynomial time and reducing search space size through value merging or variable elimination. Considerable progress has been made in extending this important concept, such as dual broken-triangle and weakly broken-triangle, in order to maximize the number of captured tractable CSP instances and/or the number of merged values. Specifically, m-wBTP allows to merge more values than BTP. k-BTP, WBTP and m-BTP permit to capture more tractable instances than BTP. Here, we introduce a new weaker form of BTP, which will be called m-fBTP for flexible broken-triangle property. m-fBTP allows on the one hand to eliminate more variables than BTP while preserving satisfiability and on the other to define new bigger tractable class for which arc consistency is a decision procedure. Likewise, m-fBTP permits to merge more values than BTP but less than m-wBTP.

Introduction

A wide range of real-life problems issue from Artificial Intelligence (AI) and Operational Research (OR) can be expressed as Constraint Satisfaction Problems (CSPs (Montanari 1974)). A constraint network consists of a set of variables X, each one has a finite set of values called domain D, and a finite set of constraints C. Each constraint is defined over a set of variables and represents a set of valid (or invalid) assignment of values to variables involved by the constraint. A solution to a CSP is an assignment of values to each variable which satisfies all the constraints. Checking whether a given CSP instance has a solution is known to be NP-complete. In general, the main techniques to achieve this task are based on backtracking algorithms, whose worst-case time complexity is O(ed n ) where e, n and d are the number of constraints, the number of variables and the maximum domain size, respectively. In order to reduce this exponential time complexity, many different approaches have been proposed. The first one, called filtering by consistency, consists in removing inconsistent values [START_REF] Mackworth | Consistency in Networks of Relations[END_REF]. This approach leaves the set of solutions unchanged. The second relies on merging values, satisfying some conditions, without affecting the existence of a solution [START_REF] Freuder | Eliminating interchangeable values in constraint satisfaction problems[END_REF][START_REF] Likitvivatanavong | Many-tomany interchangeable sets of values in csps[END_REF][START_REF] Cooper | On Broken Triangles[END_REF][START_REF] Naanaa | Extending the broken triangle property tractable class of binary csps[END_REF]. The last eliminates variables [START_REF] Cohen | Variable Elimination in Binary CSP via Forbidden Patterns[END_REF]2015) or constraints [START_REF] Dechter | Removing redundancies in constraint networks[END_REF] while preserving the satisfiability of the instance.

In a somewhat orthogonal direction, much research has been devoted to identifying tractable classes. In the litterature, several tractable classes have been defined but the broken-triangle property (BTP [START_REF] Cooper | Hybrid tractable CSPs which generalize tree structure[END_REF][START_REF] Cooper | Generalizing constraint satisfaction on trees: hybrid tractability and variable elimination[END_REF]) still remains at the heart of this research area. This property has some interesting characteristics from a solving viewpoint as well as reduction operations viewpoint. Indeed, BTP is not only defined for solving CSP in polytime, but also for reducing the size of CSP instances while preserving satisfiability. Specifically, the absence of broken-triangles has led, under some conditions, to variable elimination or domain reduction by merging domain values while preserving satisfiability. More recently, it has been proved that the presence of certain broken-triangles does not necessarily preclude defining tractable classes [START_REF] Naanaa | Unifying and extending hybrid tractable classes of csps[END_REF][START_REF] Naanaa | Extending the broken triangle property tractable class of binary csps[END_REF][START_REF] El Mouelhi | Hidden Tractable Classes: From Theory to Practice[END_REF]2015;[START_REF] Jégou | The extendable-triple property: A new CSP tractable class beyond BTP[END_REF][START_REF] Cooper | A microstructure-based family of tractable classes for CSPs[END_REF]Cooper, El Mouelhi, and Terrioux 2016) and/or merging values (Cooper, El Mouelhi, and Terrioux 2016). For example, k-BTP authorizes some broken-triangles and defines larger tractable classes than BTP but does not permit value merging. Likewise, m-wBTP does not forbid all brokentriangles and defines a maximal value-merging condition. Unfortunately, none of them allow variable elimination (see (Cooper, El Mouelhi, and Terrioux 2016)) although the initial definition of BTP permits it [START_REF] Cohen | Variable and value elimination in binary constraint satisfaction via forbidden patterns[END_REF]. Moreover, k-BTP seems to be unusable beyond k = 3 and m-wBTP appears to be inexploitable when m > 2.

The main contribution of this work is providing a new weaker-form of BTP, called m-fBTP, which allows variable elimination and defines a new tractable class for which arc consistency is a decision procedure. The results proven in this paper also provide theoretical insight into the relationship between m-fBTP and some others previous extension of BTP such as k-BTP, m-wBTP, WBTP [START_REF] Naanaa | Extending the broken triangle property tractable class of binary csps[END_REF].

So, our paper will be organised as follows: Section 2 recalls some definitions and notations. In section 3, we introduce the flexible broken-triangle property. Next, we show that m-fBTP is a maximal variable elimination condition. Section 4 defines a family of tractable classes based on m-fBTP. In section 5, we compare m-fBTP to some known tractable classes like k-BTP and WBTP. Finally we give a discussion and perspective for future work.

Constraint satisfaction problems constitute an important tool for modeling and solving many different practical problems in Artificial Intelligence and Operations Research. In this paper, we consider only binary CSP instances, defined formally as follows: Definition 1 (CSP). An input binary CSP instance is a couple I = (X, C), with

• X = {x 1 , ..., x n }: a set of n variables. each variable x i has a domain D(x i ) containing at most d values. • C: a set of e binary constraints. Each constraint c ij is a couple (Scp(c ij ), Rel(c ij )) where: -Scp(c ij ) = {x i , x j } ⊆ X, is the scope of c ij , -Rel(c ij ) ⊆ D(x i ) × D(x j ), is the compatibility rela- tion. If the constraint C ij is not defined in C, then we consider C ij to be a universal constraint (i.e. such that Rel(C ij ) = D(x i ) × D(x j )).
The output is called solution, i.e. an assignment of values to each variable in X which satisfies all constraints in C.

A partial solution is an assignment A = (v 1 , . . . , v m ) ∈ D(x 1 ) × . . . × D(x m ) which satisfies all constraints C ij such that {x i , x j } ⊆ {x 1 , . . . , x m }.
Given a binary instance I, deciding whether I has a solution is well known to be NP-complete even for binary CSPs. Neverthless, there are some cases for which solving can be realized in polynomial time. In this case we speak about tractable classes. For example, BTP (for broken-triangle Property [START_REF] Cooper | Generalizing constraint satisfaction on trees: hybrid tractability and variable elimination[END_REF]) represents an important tractable class from a solving viewpoint as well as reduction operations viewpoint. The broken-triangle Property requires the absence of broken-triangles with respect to a given variable ordering. Formally, BTP is defined as follows: Definition 2 (Broken-Triangle Property [START_REF] Cooper | Generalizing constraint satisfaction on trees: hybrid tractability and variable elimination[END_REF]). Given a binary CSP instance I with a variable order <.

A pair of values v k , v k ∈ D(x k ) sat- isfies BTP if, for each pair of variables (x i , x j ) such that x i < x j < x k , ∀v i ∈ D(x i ), ∀v j ∈ D(x j ), if (v i , v j ) ∈ Rel(C ij ), (v i , v k ) ∈ Rel(C ik ) and (v j , v k ) ∈ Rel(C jk ), then either (v i , v k ) ∈ Rel(C ik ) or (v j , v k ) ∈ Rel(C jk ). If (v i , v k ) / ∈ Rel(C ik ) and (v j , v k ) / ∈ Rel(C jk ), we say that (v k , v i , v j , v k ) constitute a broken-triangle on the values v k and v k . A variable x k satisfies BTP if each pair of values in D(x k ) satisfies BTP.

An instance satisfies BTP if all its variables satisfy BTP.

Graphically, BTP can be represented in the microstructure 1 [START_REF] Jégou | Decomposition of Domains Based on the Micro-Structure of Finite Constraint Satisfaction Problems[END_REF] of I as shown in Figure 1. In the following, the absence of edge and the dotted edge will be used to represent forbidden tuples (tuples which violate the constraint).

1 Given a binary CSP instance I = (X, C), the micro-structure of I is the undirected graph µ(I) = (V, E) with:

• V = {(xi, vi) : xi ∈ X, vi ∈ D(xi)}, • E = { {(xi, vi), (xj, vj)} | i = j, Cij / ∈ C or Cij ∈ C, (vi, vj) ∈ Rel(Cij)} v i v k v k v j x i x k x j v i v k v k v j x i x k x j (a) (b)
Figure 1: The assignments (v k , v i , v j , v k ) form a brokentriangle in (a) but do not in (b) thanks to edges between

(v i , v k ) and (v j , v k ).
Considering the variable ordering

x i < x j < x k , the CSP instance of Figure 1(a) is not BTP because of the incompat- ibility of (v j , v k ) and (v i , v k ). Thus, (v i , v j , v k , v k ) consti- tute a broken-triangle. In Figure 1(b), (v i , v k ) ∈ Rel(C ik ) and (v j , v k ) ∈ Rel(C jk ), then the BTP is satisfied.
We now define value merging and variable elimination operations. Definition 3. (Cooper et al. 2016) 

Merging the values v k , v k ∈ D(x k ) in a binary CSP instance I consists of replacing v k , v k ∈ D(x k ) by a new value v k which is compatible with all values which are compatible with ei- ther v k or v k . A value-merging condition is a polytime- computable property such that when it holds on a pair of values v k , v k ∈ D(x k )
, the instance obtained after merging the values v k and v k is satisfiable iff I was satisfiable. Definition 4. [START_REF] Cohen | Variable and value elimination in binary constraint satisfaction via forbidden patterns[END_REF] 

Eliminating a variable x k in a binary instance I = (X, C) consists in replac- ing X by X \ {x k } and C by C \ {C ik ∈ C | i = k}.
A variable-elimination condition is a polytime-computable property such that when it holds on a variable x k , the instance obtained after eliminating x k is satisfiable iff I was satisfiable.

In [START_REF] Cohen | Variable and value elimination in binary constraint satisfaction via forbidden patterns[END_REF], it has been shown that if there is no broken-triangles on each pair of values of a given variable x k in an arc-consistent binary CSP instance I, then x k can be eliminated from I without changing the satisfiability. Next, (Cooper et al. 2016) proved that even when this rule cannot be applied because of the presence of some brokentriangles, it is possible that there is a pair of values (v k , v k ) in D(x k ) which satisfies BTP. In this case, these two values are mergeable. For example, in Figure 1(b), the values v k and v k are mergeable. More recently, (Cooper, El Mouelhi, and Terrioux 2016) showed that even when some brokentriangles are present on a pair of values (v k , v k ) which satisfies m-wBTP, merging v k and v k does not affect the satisfiability. Formally, m-wBTP is defined as follows:

Definition 5. A pair of values v k , v k ∈ D(x k ) satisfies m-wBTP where m ≤ n -3 if for each broken-triangle (v k , v i , v j , v k ) with v i ∈ D(x i ) and v j ∈ D(x j ), there is a set of r ≤ m support variables {x 1 , . . . , x r } ⊆ X \ {x i , x j , x k } such that for all (v 1 , . . . , v r ) ∈ D(x 1 ) × . . . × D(x r ), if (v 1 , . . . , v r , v i , v j ) is a partial solution, then there is α ∈ {1, . . . , r} such that (v α , v k ), (v α , v k ) / ∈ Rel(C α k ).
Graphically, this definition can be represented through the micro-structure graph of Figure 2. The pair (v k , v k ) satisfies 1-wBTP because the value v in D(x ) is compatible with both v i and v j but is not with v k and v k . So we say that the assignments (v k , v i , v j , v k ) forms a weakly broken-triangle which is supported by x .

v v k v k v j v i x x k x j x i Figure 2: A weakly broken-triangle (v k , v i , v j , v k ) since (v k , v ), (v k , v ) / ∈ Rel(C k ).
Contrary to BTP, m-wBTP does not allow variable elimination (see Section 5 in (Cooper, El Mouelhi, and Terrioux 2016)). So, next section introduces the flexible brokentriangle concept which allows merging value and variable elimination while preserving satisfiability.

Flexible broken-triangles

A total absence of broken-triangles on a given variable in an arc-consistent CSP instance allows us to eliminate it without changing the satisfiability of the initial instance. In contrast, a total absence of weakly broken-triangles does not permit variable elimination. In practice, we have many examples of variables which can be eliminated despite the presence of certain broken-triangles while preserving satisfiability. As shown in the inconsistent CSP instance of Figure 3, there is a broken-triangle on v k and v k , but after eliminating x k this CSP instance still remains inconsistent. So, the presence of some broken-triangle on a given variable does not preclude variable elimination while preserving satisfiability. For this, we introduce the flexible broken-triangles.

v v v k v k v j v i x x k x j x i
Like m-wBTP, the m-fBTP is based on the concept of support variables. From a micro-structure viewpoint, these variables prevent the emergence of a new clique2 (corresponds to a partial solution) which was not previously.

We begin by formally defining m-fBTP. Definition

6. A pair of values v k , v k ∈ D(x k ) satis- fies m-fBTP where m ≤ n -3 if for each broken- triangle (v k , v i , v j , v k ) with v i ∈ D(x i ) and v j ∈ D(x j ), there is a set of r ≤ m support variables {x 1 , . . . , x r } ⊆ X \ {x i , x j , x k } such that for all par- tial solution (v 1 , . . . , v r ) ∈ D(x 1 ) × . . . × D(x r ), there is α ∈ {1, . . . , r} such that if (v α , v i ) ∈ Rel(C α i ), then (v α , v j ) / ∈ Rel(C α j ).
In this case, we say that

(v k , v i , v j , v k ) is a flexible broken-triangle. A variable x k ∈ X satisfies m-fBTP if each pair of values v k , v k ∈ D(x k ) satisfies m-fBTP.
In other words, there is at least one value belonging to each parial solution which cannot be compatible with both v i and v j at the same time. If there is no variable which satisfies the previous conditions, then we will say that (v k , v i , v j , v k ) is a purely broken-triangle. For example, the assignments 2 form a purely broken-triangle because

(v k , v i , v j , v k ) in Figure
(v i , v ) ∈ Rel(C i ) and (v j , v ) ∈ Rel(C i ). Conse- quently, the pair (v k , v k ) does not satisfy 1-fBTP.
Three different configurations of Definition 6 are given in Figure 4. In (a), there is no partial solution on the set of variables

{x β , x γ }. Hence v k , v k in D(x k ) clearly satisfies 2-fBTP. In (b), the pair of values v k , v k in D(x k ) satisfies 2-fBTP because for the two partial solutions (v β , v γ ) and (v β , v γ ), we have (v γ , v j ) / ∈ Rel(C γ j ) and (v β , v i ) / ∈ Rel(C β i ). In (c), the pair of values v k , v k in D(x k ) also satisfies 2-fBTP because for the two partial solutions (v β , v γ ) and (v β , v γ ), we have (v γ , v j ) / ∈ Rel(C γ j ) and (v γ , v i ) / ∈ Rel(C γ i ).
One can observe that in Figure 4 (c), the variable x γ alone supports the broken-triangle (v k , v i , v j , v k ), so we can deduce that x γ and x β together support it. In Figure 4 (a) and (b), x γ and x β together support the broken-triangle

(v k , v i , v j , v k ) none of them alone support it. Proposition 1. Given a binary CSP instance I = (X, C), if a pair of values v k , v k ∈ D(x k ) satisfies m-fBTP then it satisfies (m + 1)-fBTP (0 ≤ m ≤ n -4).
We now define the relationship between m-wBTP and m-fBTP. Proposition 2. In a binary CSP instance

I = (X, C), ∀m, 0 ≤ m ≤ n -4, if a pair v k , v k ∈ D(x k ) satisfies m-fBTP, then it also satisfies m-wBTP. Proof. For each broken-triangle on v k , v k , there is a set of r ≤ m (with 0 ≤ m ≤ n -3) support variables {x 1 , . . . , x r } ⊆ X \ {x i , x j , x k } such that for all partial solution (v 1 , . . . , v r ) ∈ D(x 1 ) × . . . × D(x r ), there is α ∈ {1, . . . , r} such that if (v α , v i ) ∈ Rel(C α i ), then (v α , v j ) / ∈ Rel(C α j ). So each value v α in D(x α
) cannot be compatible with v i and v j at the same time. Thus, there can be no partial solution (v 1 , . . . , v r ). As a result, the pair The converse is obiously false by means of Figure 2 where the pair

v k , v k ∈ D(x k ) also satisfies m-wBTP. v k v k v j v β v i v γ x k x j x i x β x γ v k v k v j v β v β v i v γ v γ x k x j x i x β x γ v k v k v j v β v β v i v γ v γ v i x k x j x i x β x γ (a) (b) (c)
(v k , v k ) is 1-wBTP but is not 1-fBTP.
Corollary 1. In a binary CSP instance I = (X, C), merging a pair of values v k , v k ∈ D(x k ) which satisfies 1-fBTP does not change the satisfiability of I.

If we denote by m-fBTP-merging the merging operation based on m-fBTP, we can deduce that 0-wBTP-merging (Cooper, El Mouelhi, and Terrioux 2016) and 0-fBTPmerging correspond to BTP-merging defined in (Cooper et al. 2016) since they are based on zero support variables. Since BTP-merging generalises both neighbourhood substitution [START_REF] Freuder | Eliminating interchangeable values in constraint satisfaction problems[END_REF] and virtual interchangeability (Likitvivatanavong and Yap 2013) and m-fBTP-merging generalises BTP-merging for all m ≥ 0, we immediately obtain the following result:

Corollary 2. m-fBTP-merging generalises neighbourhood substitution and virtual interchangeability.

It is known that if a given variable x k in an arc-consistent binary instance I satisfies BTP then x k can be eliminated without modifying the satisfiability of I [START_REF] Cohen | Variable and value elimination in binary constraint satisfaction via forbidden patterns[END_REF]. A similar result can also be shown for the variables satisfying m-fBTP. To do it, we should prove the following lemma: Lemma 1. Given a variable x k which satisfies m-fBTP, after merging a pair of values v k , v k ∈ D(x k ) into a new value v k , no purely broken-triangle can appear on x k .

Proof. We assume, for a contradiction, that after merging a pair of values v k , v k of a variable x k which satisfies m-fBTP into a new value v k , we introduced a new purely broken-triangle

(v k , v i , v j , v k ). So we have (v i , v j ) ∈ Rel(C ij ) (1), (v i , v k ) ∈ Rel(C ik ) (2), (v j , v k ) ∈ Rel(C jk ) (3), (v j , v k ) / ∈ Rel(C jk ) (4) and (v i , v k ) / ∈ Rel(C ik ) (5). By definition 3, we obtain (v i , v k ) / ∈ Rel(C ik ) (a), (v i , v k ) / ∈ Rel(C ik ) (b), and either (v j , v k ) ∈ Rel(C jk ) (c) or (v j , v k ) ∈ Rel(C jk ) (d).
(2), ( 1), (c), (a), and (4) ⇒ a broken-triangle (v k , v i , v j , v k ) and ( 2), ( 1), (d), (b) and ( 4) ⇒ a brokentriangle (v k , v i , v j , v k ). In both cases, we had at least one broken-triangle before merging v k and v k . So, there is a set of r ≤ m support variables {x 1 , . . . , x r } ⊆ X \ {x i , x j , x k } such that for all partial solution (v 1 , . .

. , v r ) ∈ D(x 1 ) × . . . × D(x r ), there is α ∈ {1, . . . , r} such that if (v α , v i ) ∈ Rel(C α i ), then (v α , v j ) / ∈ Rel(C α j
). In this way, the set of r support variables {x 1 , . . . , x r } also support the broken-triangle

(v k , v i , v j , v k ). Thus, (v k , v i , v j , v k )
is not a purely broken-triangle. But this contradicts our initial assumption. Finally, merging two values v k , v k in the domain of a variable x k which satisfies m-fBTP does not introduce a purely broken-triangle.

Lemma 1 cannot be extended to all pair of values which satisfies m-wBTP (and does not satisfy m-fBTP (Cooper, El Mouelhi, and Terrioux 2016)). Indeed, Figure 5(a) illustrates the case of a variable x 4 which satisfies 1-wBTP since the variable x 3 supports all the broken-triangles on x 4 . Figure 5(b) is obtained after merging the values 2 and 1 into a new value 3. Hence, the variable x 3 no longer support the brokentriangle (3, 2, 2, 0) (in bold) because the value 2 ∈ D(x 3 ) is compatible at the same time with 2 (∈ D(x 1 )), 2 (∈ D(x 2 )) and 3 (∈ D(x 4 )). We now establish the link with variable elimination.

1 2 0 0 2 1 1 0 2 1 0 2 x 3 x 4 x 2 x 1 1 2 0 0 3 1 0 2 1 0 2 x 3 x 4 x 2 x 1 (a) (b)
Theorem 1. Given an arc-consistent CSP instance I = (X, C), if a variable x k ∈ X satisfies m-fBTP, then it can be eliminated from I while preserving satisfiability.

Proof. Given an arc-consistent CSP instance I = (X, C) and a variable x k ∈ X which satisfies m-fBTP. Since value merging makes no empty domain, we will merge each pair of values in D(x k ) until obtaining a unique value since merging a pair of values does not introduce a new purely broken-triangle on x k (thanks to Lemma 1). As I is arc-consistent, so any consistent assignment A to X\{x k } can be extended to x k because D(x k ) contains a unique value and each value A[x i ] has a support in D(x k ). So, the unique value in D(x k ) is compatible with each value in A. Thus, x k can be eliminated without changing the satisfiability of I.

A maximal variable-elimination condition

It has been proved that the variable which satisfies BTP can be eliminated while preserving satisfiability [START_REF] Cohen | Variable and value elimination in binary constraint satisfaction via forbidden patterns[END_REF]. In section 3, we have shown that even if a variable does not satisfy BTP it can be eliminated without changing the satisfiability of the instance while this variable satisfies m-fBTP. Thus, in an obvious sense, satisfying BTP is not a maximal variable-elimination condition.

Definition 7. A variable-elimination condition is maximal if the elimination of any other variable not respecting the condition necessarily leads to a modification of the satisfiability of some instance.

In this section, we show that m-fBTP is a maximal variable-elimination condition when m = n -3.

Theorem 2. In an unsatisfiable binary CSP instance I = (X, C), there is no variable not satisfying m-fBTP for m = n -3 and which can be eliminated while preserving satisfiability.

Proof. Considering an unsatisfiable binary CSP instance I = (X, C) and a variable x k which does not satisfy m-fBTP for m = n -3. By the definition of m-fBTP, there is a broken-triangle

(v k , v i , v j , v k ), with v i ∈ D(x i ), v j ∈ D(x j ) and v k , v k ∈ D(x k ). And there is (v 1 , . . . , v m ) ∈ D(x 1 ) × . . . × D(x m ), where {x 1 , . . . , x m } = X \ {x i , x j , x k }, such that (v 1 , . . . , v m
) is a partial solution and for all α ∈ {1, . . . , m} we have (v α , v i ) ∈ Rel(C α i ) and (v α , v ) ∈ Rel(C α j ). In terms of micro-structure we have a (n -1)-clique (a subset of n -1 vertices that induces a complete subgraph) that we denote Cl.

We have a broken-triangle, and so:

(v i , v k ) / ∈ Rel(C ik ), (v j , v k ) / ∈ Rel(C jk ), (v i , v k ) ∈ ik ) and (v j , v k ) ∈ Rel(C jk ).
After eliminating x k , and by definition of elimination, the obtained instance I has (n -1) variables and its micro-structure contains the (n -1)-clique Cl. According to Property 2 in [START_REF] Jégou | Decomposition of Domains Based on the Micro-Structure of Finite Constraint Satisfaction Problems[END_REF], Cl corresponds to a solution of I . Thus, we introduced a solution which did not exist in the initial instance since

(v i , v k ) / ∈ Rel(C ik ) and (v j , v k ) / ∈ Rel(C jk ).
It follows that the elimination of variable which does not satisfy m-fBTP does not preserve satisfiability.

We can now deduce the desired result.

Corollary 3. (n -3)-fBTP is a maximal variableelimination condition.

Tractability of m-fBTP instances

Contrary to k-BTP and m-wBTP which sometimes need a high level of consistency, we show that arc consistency is a decision procedure for m-fBTP. We firstly start with extend m-fBTP definition to instances.

Definition 8. A binary CSP instance I with a variable ordering < satisfies m-fBTP relative to this order if for all variables x k , each pair of values in D(x k ) satisfies m-fBTP in the sub-instance of I on variables x i ≤ x k (m ≤ n -3).

We now prove that m-fBTP is conservative3 [START_REF] Cooper | Generalizing constraint satisfaction on trees: hybrid tractability and variable elimination[END_REF], m-fBTP holds even after enforcing any filtering consistency which only removes values from domains.

Lemma 2. m-fBTP with respect to any fixed variable ordering is conservative.

Proof. It is clear that m-fBTP holds for a binary CSP instance thanks to the absence of some tuples. Obviously, removing values from the domain of any variable in a CSP instance cannot add new tuples. Thus, m-fBTP still holds.

Theorem 3. Arc consistency is a decision procedure for any binary CSP instance I = (X, C) which satisfies m-fBTP

(1 ≤ m ≤ n -3).
Proof. Let I = (X, C) be a binary CSP instance satisfying m-fBTP with respect to a variable ordering <. We begin by enforcing arc consistency. If this results to an empty domain, then obviously the obtained instance has no solution. Otherwise, thanks to Lemma 2, we know that the obtained instance will also satisfy m-fBTP. According to Theorem 1, we can proceed iteratively to eliminate the last variable with respect to < until obtaining an instance with three variables x 1 , x 2 and x 3 . As I is becoming arc-consistent, so there is no empty domain. Hence, D(x 1 ) (respectively D(x 2 )) must contain at least a value v 1 (resp. v 2 ) such that (v 1 , v 2 ) ∈ Rel(C 12 ) (1). We will suppose, for a contradiction, that the assignment A = (v 1 , v 2 ) cannot be consistenly extended to x 3 . For this, we assume that there is no v 3 ∈ D(x 3 ) which is consistent with both v 1 and v 2 . But, by arc consistency, we should have two values v 3 , v 3 ∈ D(x 3 ) such that (v 1 , v 3 ) ∈ Rel(C 13 ) (2) and (v 2 , v 3 ) ∈ Rel(C 23 ) (3). Note that v 3 and v 3 must be different and (v 1 , v 3 ) / ∈ Rel(C 13 ) (4) and (v 2 , v 3 ) / ∈ Rel(C 23 ) (5) (otherwise we contradicts our hypothesis).

In this way, (1), ( 2), (3), ( 4) and ( 5) form a purely brokentriangle on x k which can be supported by no other variable. Indeed, by Definition 6, any variable x must be different from {x i , x j , x k }. Thus, this contradicts our assumption. Finally, A can be consistenly extended to x 3 .

The following theorem is a logical consequence of Corollary 3 and Theorem 3. As with m-wBTP, checking whether it is possible to compute, in polytime, a variable ordering for which a binary CSP instance satisfies m-fBTP still remains an open question.

6 m-fBTP vs some tractable classes based on BTP

We now compare m-fBTP to some tractable classes based on BTP. We start with k-BTP 4 [START_REF] Cooper | A microstructure-based family of tractable classes for CSPs[END_REF].

Theorem 5. m-fBTP and k-BTP are incomparable.

Proof. Figure 2 shows a binary CSP instance which satisfies 3-BTP but does not satisfy 1-fBTP. Figure 6 illustrates the case of an instance which satisfies 1-fBTP but does not satisfy 3-BTP. Indeed, there are broken-triangles on the variable x k for each pair of other variables, but in each case the fourth variable is a support variable.

v v v k v k v j v i x x k x j x i
Figure 6: An instance which satisfies 1-fBTP but does not satisfy 3-BTP, for the variable ordering x < x i < x j < x k .

We move to WBTP 5 [START_REF] Naanaa | Extending the broken triangle property tractable class of binary csps[END_REF].

Theorem 6. 1-fBTP WBTP.

Proof. Obviously because both WBTP and 1-fBTP use a unique support variable and their condition depends only from v i and v j . The converse is false by means of Figure 7(a). In fact, the binary CSP instance satisfies WBTP (both x β and x γ support the broken-triangle (v k , v i , v j , v k )) but does not satisfy 1-fBTP. Theorem 7. 2-fBTP and WBTP are incomparable.

Proof. Figure 7(a) shows a binary CSP instance which satisfies WBTP but does not satisfy 2-fBTP. More precisely, 

(v β , v γ ) is a partial solution but (v γ , v j ) ∈ Rel(C γ j ), (v β , v i ) ∈ Rel(C γ i ), (v γ , v i ) ∈ Rel(C γ i ), (v β , v j ) ∈ Rel(C γ j ).
(2 ≤ k < n) relative to a variable order < if, for all subsets of variables xi 1 , xi 2 , . . . , xi k+1 such that xi 1 < xi 2 < • • • < xi k+1
, there is at least one pair of variables (xi j , xi j ) with 1 ≤ j < j ≤ k such that there is no broken-triangle on x k+1 relative to xi j and xi j .

5 A binary CSP instance equipped with an order < on its variables satisfies WBTP (Weak broken-triangle Property) if for each triple of variables xi < xj < x k and for all vi ∈ D(xi), vj ∈ D(xj) such that (vi, vj) ∈ Rel(Cij), there is a variable x < x k such that when v ∈ D(x ) is compatible with vi and vj, then

∀v k ∈ D(x k ), if (v , v k ) ∈ Rel(C k ) then (vi, v k ) ∈ Rel(C ik ) and (vj, v k ) ∈ Rel(C jk )
which satisfies 2-fBTP but does not satisfy WBTP because v γ is compatible with v i , v j and v k , and v β is compatible with v i , v j and v k . 

Conclusion

BTP relies on absence of broken-triangle to define an important tractable class and to allow reducing search space size through value merging or variable elimination. Recently, many new weaker versions of BTP, which authorize the presence of some broken-triangle like k-BTP, WBTP and m-wBTP, have been studied but none of them define tractable class and permit variable elimination and value merging simultaneously. Moreover, much of these versions, except WBTP, require a high level of consistency. In this paper, we have proposed a new light version of BTP, called m-fBTP for flexible broken-triangle property. m-fBTP is based on support variable concept and permits to cover some imperfections of previous versions. More precisely, it allows value merging, represents a maximal variable-elimination condition and also defines a tractable class solved by arc consistency. m-fBTP is incomparable with the patterns described in [START_REF] Cooper | The power of arc consistency for CSPs defined by partially-ordered forbidden patterns[END_REF] and which characterise tractable classes for CSPs defined by partially-ordered forbidden patterns and solved by arc consistency. It would be interesting to generalise this family of definitions to non-binary CSPs.

Figure 3 :

 3 Figure 3: The dashed variable x k can be eliminated despite the presence of a broken-triangle.
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 4 Figure 4: Three different cases of two values v k and v k which satisfy 2-fBTP.
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 5 Figure 5: (a) A variable x 4 which satisfies 1-wBTP in an arc-consistent CSP instance. (b) The CSP instance obtained from I after merging the values 1 and 2 into a new value 3.
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 4 The class of binary CSP instances which satisfy (n -3)-fBTP defines the biggest tractable class resolved by variable elimination.

  Figure 7(b) illustrates the case of an instance 4 A binary CSP instance I satisfies the k-BTP property for a given k
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 7 Figure 7: (a) A binary CSP instance which is WBTP but is not 2-fBTP. (b) A binary CSP instance which is 2-fBTP but is not WBTP.
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 88 Figure 8 summarizes some relation between tractable classes based on BTP. An arc from c 1 to c 2 (resp. a dashed line between c 1 and c 2 ) means that c 1 c 2 (resp. c 1 and c 2 are incomparable).

A complete subgraph where each pair of vertices are connected.

A class Γ of CSP instances is said conservative with respect to a filtering consistency φ if it is closed under φ, that is, if the instance obtained after the application of φ still belongs to Γ.
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