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Computational methods for Target Fishing (TF), also known as Target Prediction or

Polypharmacology Prediction, can be used to discover new targets for small-molecule

drugs. This may result in repositioning the drug in a new indication or improving our

current understanding of its efficacy and side effects. While there is a substantial body

of research on TF methods, there is still a need to improve their validation, which is

often limited to a small part of the available targets and not easily interpretable by

the user. Here we discuss how target-centric TF methods are inherently limited by

the number of targets that can possibly predict (this number is by construction much

larger in ligand-centric techniques). We also propose a new benchmark to validate

TF methods, which is particularly suited to analyse how predictive performance varies

with the query molecule. On average over approved drugs, we estimate that only five

predicted targets will have to be tested to find two true targets with submicromolar

potency (a strong variability in performance is however observed). In addition, we

find that an approved drug has currently an average of eight known targets, which

reinforces the notion that polypharmacology is a common and strong event. Furthermore,

with the assistance of a control group of randomly-selected molecules, we show that

the targets of approved drugs are generally harder to predict. The benchmark and

a simple target prediction method to use as a performance baseline are available at

http://ballester.marseille.inserm.fr/TF-benchmark.tar.gz.

Keywords: target prediction, virtual screening, polypharmacology prediction, drug repositioning

INTRODUCTION

Target Fishing (TF) (Cereto-Massagué et al., 2015; Lavecchia and Cerchia, 2015), also known
as Target Prediction or Polypharmacology Prediction, consists in predicting the macromolecular
targets of a query molecule. This problem is the reverse of Virtual Screening (VS) (Schneider, 2010;
Sukumar and Das, 2011), where the goal is to predict the ligands of a query target. Computational
methods for TF are of great interest, as identifying previously unknown targets of a molecule
is the basis of a number of important drug design and chemical biology applications (Ursu and
Waldmann, 2015). Indeed, discovering a new target for a drug could lead to its reposition in a new
indication as well as an enhanced understanding of its efficacy and side-effects (Huang et al., 2014).
Furthermore, these tools can be used for target deconvolution of phenotypic screening hits (Lee
and Bogyo, 2013), which is a prerequisite to gain mechanistic understanding of phenotypic activity
and helpful for drug development. This two-stage process, phenotypic screening followed by
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target deconvolution, constitutes an attractive alternative strategy
for the discovery of molecularly targeted therapies.

The fast growth of freely-available bioactivity resources, e.g.,
PubChem (Cheng et al., 2014) or ChEMBL (Bento et al., 2014),
has sparked a new generation of powerful data-driven methods
for TF. This growth is exemplified by the ChEMBL database,
which in a few years has assembled and fully curated chemical
structures and bioactivities from more than 50,000 scientific
publications (Bento et al., 2014). Moreover, this database is
periodically updated and will eventually incorporate a flood
of new data that is being extracted from the patent literature
(Papadatos et al., 2016). As previously discussed (Cereto-
Massagué et al., 2015), TF methods have been categorized into
those based on molecular similarity (Liu et al., 2014), machine
learning (van Laarhoven et al., 2011), protein structure analysis
(Gao et al., 2008), and bioactivity spectra analysis (Füllbeck et al.,
2009; Holbeck et al., 2010). Some of these methods have been
made available as web servers (Wang et al., 2013; Gfeller et al.,
2014).

Here we propose a new classification of TF methods into two
broad categories: target-centric and ligand-centric. Target-centric
methods are defined as those building a predictive model for
each considered target. Each of these models is thereafter used
to predict whether the query molecule has activity against the
corresponding target (other names for the query molecule are
common, such as test compound, test molecule, or test ligand).
Thus, this panel of models provides a set of predicted targets for
any query molecule. Many target-centric TF methods are based
on multi-target Quantitative Structure-Activity Relationship
(QSAR) models (Zanni et al., 2014; Speck-Planche and Cordeiro,
2015). The model is typically trained on large sets of active
and inactive target-ligand instances derived from a database of
target-annotated molecules (the training set). These models have
employed various regression or classification techniques, such as
Kernel Classifiers (van Laarhoven et al., 2011), Winnow (Nigsch
et al., 2008), Ranking Perceptron (Yu et al., 2012), Random
Forest (Yu et al., 2012), or Naïve Bayes Classifier (Koutsoukas
et al., 2013). Instead of supervised learning, other target-centric
techniques are based on unsupervised learning such as the
Similarity Ensemble Approach (SEA) (Keiser et al., 2007, 2009).
SEA constructs a model for each target estimating how likely is
the query molecule to belong to the set of cognate ligands of
the target based on an underlying molecular similarity metric.
In addition, there are target-centric methods that can estimate
whether the query molecule binds to a structural model of
the target (Schomburg and Rarey, 2014). These methods are
in principle able to interrogate targets without known ligands,
although their success largely depends on the accuracy of the
employed scoring function (Ain et al., 2015).

On the other hand, ligand-centric methods are those based
on the similarity of the query molecule to a very large set of
target-annotated molecules. This similarity can be in terms of 2D
chemical structure (Nettles et al., 2006) using circular fingerprints
(Rogers and Hahn, 2010), 3D molecular properties (Cortés-
Cabrera et al., 2013) using Ultrafast Shape Recognition variants
(Ballester and Richards, 2007; Armstrong et al., 2010; Ballester,
2011) or NCI-60 bioactivity spectra (Holbeck et al., 2010) using

cellular fingerprints (Füllbeck et al., 2009). Note that there are
similarity-based methods that are not ligand-centric. This is the
case of TAMOSIC (Wang et al., 2013), which learns the optimal
similarity cutoff for each target with at least 30 ligands.

An important advantage of ligand-centric methods over
target-centric methods has been so far overlooked. Whereas,
ligand-centric methods can interrogate any target that has at least
one known ligand, target-centric models can only evaluate the
typically much smaller set of targets for which a model can be
built. For instance, TarFisDock (Gao et al., 2008) predictions
are limited to 1100 targets with available crystal structure and
known binding site, whereas SEA (Keiser et al., 2007, 2009) only
evaluates targets with at least five known ligands. This means
that target-centric methods are by construction blind to up to
thousands of targets considered by ligand-centric techniques,
but this is not obvious as target-centric performance is only
evaluated on qualifying targets. Target-centric and ligand-centric
methods are nevertheless complementary. Indeed, in cases where
the targets of interest are known to have many ligands, more
accurate target-centric models could be possible and thus these
tools are likely to be more suitable. By contrast, in cases where
evaluating as many targets as possible is preferable, ligand-centric
tools would be more appealing, as these provide a much wider
coverage of the proteome.

Unfortunately, it is unclear how well ligand-centric methods
work in practice due to the limitations of existing benchmarks.
Some validations have been restricted to a few tens of ligand-
rich targets using benchmarks borrowed fromVS (AbdulHameed
et al., 2012) and thus tell us very little about howwell the methods
will perform on the many remaining targets. Furthermore,
some performance measures, such as the Receiver Operating
Characteristic (ROC), Area Under Curve (AUC), do not precisely
measure TF performance. For example, how many true targets
of a query molecule one is likely to find in practice using
a method that has obtained an average ROC AUC of 0.7
over 40 targets? On the other hand, TF is often posed as a
multi-category classification problem, which formulates a binary
classification problem per target and thus the variation of
predictive performance across query molecules has not been
analyzed in these studies. Importantly, these benchmarks exclude
many possible targets of the analyzed molecules because the
corresponding target-centric models could not be trained on
the excluded targets. As a result of these limitations, current
benchmarks offer little guidance on pragmatic questions such as
how many predicted targets have to be tested on average to find a
true target, how many known targets are typically missed or how
such performance varies with the query molecule.

In this study, we propose a new benchmark to validate TF
methods, which naturally lends itself to answer such questions.
This is based on formulating a binary classification problem for
each query molecule. From this new perspective, we provide
a lower-bound for the current performance of ligand-centric
methods representing the minimum that can be expected
nowadays from them. As a byproduct, our analysis provides an
update for the degree of polypharmacology observed in approved
drugs. The rest of the paper is organized as follows. Section
Experimental Setup describes the experimental setup, including
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data selection, data partitions, TF method and performance
metrics. Section Results and Discussion discusses the results.
Section Conclusions presents the conclusions.

EXPERIMENTAL SETUP

This section describes the setup of all the numerical experiments
carried out in this study. This setup is composed of the
following elements: data selection, data partitions, TF method,
and measures of predictive performance. All molecular data
processing is done with SQL queries from Python 2.7.9 on a
local copy of the ChEMBL database running PostgreSQL 9.4.3,
with molecular similarity searches using in addition the RDKit
PostgreSQL cartridge (2015.03.1 release).

Data Selection
The first step is constructing datasets from the ChEMBL
database. We started by downloading release 20 as a PostgreSQL
dump (ChEMBL_20 release1), which contains data for 10,774
targets, 1,456,020 molecules with disclosed chemical structure
and 13,520,737 bioactivities.

Single-protein was the most common target type (6018
of the 10,774 targets). In order to provide the most specific
target prediction, we restricted to single-protein targets, which
incidentally constitutes the largest molecular target type in the
database (the “protein complex,” “protein family,” and “nucleic-
acid” types only have 261, 217, and 29 targets, respectively). The
remaining general constraints were requiring the maximum
confidence_score = 9 (i.e., direct single-protein target assigned
by the data curator), activities.published_relation = ‘=’,
assay_type = ‘B’ and standard_units = ‘nM’. As a result of this
process, 888,354 molecules were found to be associated to the
6018 single-protein targets through 4,871,527 bioactivities.

Further requirements are commonly imposed for the
measured bioactivity of a ligand against a target to be counted as
a known target for that ligand. First, the bioactivity measurement
must be of relatively high quality, activities.standard_type
IN (‘EC50’,‘Ki’,‘Kd’,‘IC50’), which discards percentages of
inhibition among other lower-quality measurements. Second,
only complexes with a sufficiently potent bioactivity are retained
(common activity thresholds are 1 and 10 µM meaning that
a ligand hitting any target with an activity higher than 10 µM
will not be considered to be a target in neither of these two
scenarios). Third, only targets with at least n qualifying ligands
are considered. For many target-centric methods, a sufficiently
high number of ligands is needed to build a model for the target,
e.g., those methods based on similarity-ensemble approaches
(n = 5) (Keiser et al., 2009) or multi-target QSAR (n = 20)
(Koutsoukas et al., 2013). In this study, we analyse ligand-centric
methods, which can evaluate any target with at least a known
ligand (i.e., n = 1) and hence result in a much broader search
for targets (3035 molecular targets with 10 µM). An analysis
of the target coverage of TF methods is carried out in Section

1ChEMBL_20 release Available at: ftp://ftp.ebi.ac.uk/pub/databases/chembl/

ChEMBLdb/releases/chembl_20/ (Accessed March 4, 2015)

How Many Targets Are Being Neglected by Target-Centric TF
Techniques.

Data Partitions
Next, we partition each of the two n= 1 datasets as follows. First,
we identify the subset of approved drugs. Second, we search for
all those approved drugs in the ChEMBL database meeting the
criteria, with a suitable chemical structure available and hitting
any of the targets introduced in the previous section. These
are the two approved-drugs sets of query molecules shown in
Table 1. Third, we pick at random two further sets of molecules
of the same size, which we called random-molecules sets. This
will serve as a control group to investigate how target predictions
for marketed drugs differ from those made for other types of
molecules. The rest of ligands forms the set of databasemolecules,
which is the same for both sets of query molecules but different
between thresholds. Table 1 shows the four non-overlapping
data partitions A-D (no query molecule is included as database
molecule too).

A Simple TF Method to Estimate a
Lower-Bound for Performance
For our analysis, we selected a simple two-dimensional chemical
similarity search (Willett, 2014) in order to obtain a lower-
bound for the performance of ligand-centric TF methods. This
goal requires selecting a simple method, rather than an optimal
method which would be unlikely to provide such lower-bound.
Consequently, we selected the dice score on MACCS fingerprints
ad hoc, although there are of course other valid choices too. We
started by generating MACCS fingerprints (Durant et al., 2002)
for all query and database molecules in Table 1. Each fingerprint
encodes the presence or absence of 166 predetermined chemical
groups in the molecule as a binary string of the same size. These
were generated using the RDKit (Lamdrum).

As usual, fingerprints could not be generated for a few unusual
molecules and consequently queries could not be performed
for these. This is the case of Gramidicin (CHEMBL1201469),
which is actually not a molecule but a mixture of three
antibiotic compounds. Other examples are some organometallic
compounds such as the anti-rheumatic agent Auranofin
(CHEMBL1366). Table 1 compiles all selected molecules for
which MACCS fingerprints could be generated.

Using their MACCS fingerprints, the Dice score was used to
measure the similarity between a query molecule and all the
database molecules. The Dice score is defined as:

Dice = 2c/(a+ b) (1)

TABLE 1 | Dataset size depending on modeling constraints.

ID Dataset Number of

query-molecules

Number of

database-molecules

A Approved-drugs_Thres 10 µM 745 183,282

B Random-molecules_Thres 10 µM 745 183,282

C Approved-drugs_Thres 1 µM 617 147,027

D Random-molecules_Thres 1 µM 617 147,027
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where a is the number of on bits in molecule A, b is number of
on bits in molecule B, while c is the number of bits that are on at
the same positions in both molecules. For each query, the top k
hits can be identified from the corresponding ranking of database
molecules (these are the k database molecules with the most
similar chemical structure to that of the query molecule). We
consider here k = 1, 5, 10, and 15 to investigate the dependence
of the method with its only control parameter k.

Finally, the known targets for the k hits are retrieved from
the ChEMBL database and returned as predicted targets for the
considered query molecule. Thus, a set of predicted targets is
obtained for each combination of query molecule and k value.
Note that a known target is not just any target annotated in the
ChEMBL database, but one complying with the requirements set
in Section Data Selection for each of the four cases in Table 1.

Measuring Predictive Performance
Each performed query can be posed as a separate classification
problem. For validation purposes, the known targets of the query
molecule are taken as a ground truth. Thus, we assume that
the known targets are all the qualifying targets of the molecule,
whereas the rest of considered targets are non-targets for that
molecule. However, as the query molecule has only been tested
against <0.1% of the ChEMBL targets on average, it is expected
that many unconfirmed targets, especially those coming from
molecules similar to the querymolecule, would be actually targets
if only these could be comprehensively tested. As a result, any
empirically untested target-ligand association that is predicted to
be a true association will have to be rejected as false, despite an
unknown part of these being actually true targets of the molecule.
Wemust therefore keep inmind that this retrospective validation
represents a lower-bound for performance in this sense as well.

Table 2 shows the confusion matrix arising from assessing
target predictions against experimental evidence for each query
molecule. After the assessment, each target prediction can be
classed in one of four categories: TP for True Positive (the
predicted target is a known target); TN for True Negative (the
target was not predicted but anyway is not known to be a target);
FP for False Positive (the predicted target is not known to be a
target, i.e., a false discovery or Type I error); and FN for False
Negative (the target was not predicted and it is actually a target,
i.e., missed discovery or Type II error).

From these quantities, we will calculate four performance
measures per query molecule. Accuracy is the proportion of
correct target predictions:

Accuracy =
TP + TN

TP + FP + TN + FN
(2)

TABLE 2 | Confusion matrix arising from assessing target predictions

against experimental evidence for each query molecule.

Target Predicted Non-predicted

Yes (experimentally tested) TP FN

No (not tested/tested) FP TN

Precision is the proportion of new targets that would be obtained
after experimentally validating the predictions of the method:

Precision =
Number of known targets correctly predicted

Number of predicted targets

=
TP

TP + FP
(3)

Recall accounts for the proportion of true targets that the method
has missed:

Recall =
Number of known targets correctly predicted

Number of known targets

=
TP

TP + FN
(4)

The Matthews Correlation Coefficient (MCC) captures both
types of error in a single metric, with higher values being better
up to+1 (perfect classification):

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(5)

Lastly, the Number of Predicted Targets (NPT) will be also
reported to investigate how this varies with the method’s control
parameter k. The entire workflow is sketched in Figure 1.

RESULTS AND DISCUSSION

Four key questions along with two representative case studies
are addressed in this section. The analysis is based on the
performance obtained by the query molecules in the four datasets
in Table 2, which will be summarized with boxplots of precision,
recall, MCC and NPT.

How Many Targets Are Being Neglected by
Target-Centric TF Techniques?
The first two rows of Table 3 show the number of targets
considered by a ligand-centric TF method with two target
definitions (i.e., activity thresholds of 1 µM and 10 µM). The
remaining rows show the number of targets considered by
exemplary target-centric methods as a result of only considering
targets with at least 5–40 ligands. To allow a fair comparison, we
have calculated the number of targets using the same selection
criteria on chembl20 data (Section Data Selection), except for the
minimum number of ligands required by each method and the
selected activity threshold.

For example, target-centric methods powered by models
requiring at least 40 ligands per target and defining a target with
an activity threshold of 10 µM would be predicting whether the
query molecule has activity against any of the 917 qualifying
single-protein targets. In contrast, a ligand-centric method with
the same activity threshold will be able to evaluate 2118 targets
more, for which the first method is unable to provide any
prediction by construction. Of course, the advantage of target-
centric over ligand-centric methods is that the former will tend
to perform better on those targets with a high number of ligands,
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FIGURE 1 | Generic workflow to apply and validate a ligand-centric method for TF.

TABLE 3 | Numbers of considered targets and number of neglected targets depending on the data selection criteria of the employed benchmark.

Dataset Only targets with

at least

Only targets with

activity below (µM)

Number of

targets in study

Number of targets if

chembl20

Number of

targets neglected

This study 1 ligand 1 2580 2580 0

This study 1 ligand 10 3035 3035 0

Keiser et al., 2007 5 ligands 1 246 1788 792

Mugumbate et al., 2015 10 ligands 10 1543 1804 1231

Koutsoukas et al., 2013 20 ligands 10 894 1378 1657

Wang et al., 2013 30 ligands 10 794 1104 1931

Martínez-Jiménez et al., 2013 40 ligands 10 1258 917 2118

which highlights the complementarity of both approaches. It
would be interesting if the performance of target-centric methods
was evaluated per target and analyzed against its number of
cognate ligands, as it is currently unknown how reliable are their
predictions on the many targets with only a few ligands above the
minimum.

How Many Targets Are Typically Hit by a
Molecule?
For each of the four cases in Table 2, Figure 2 shows boxplots
summarizing the distribution of the number of known single-
protein targets (NKTs) across query molecules.

On the left, a substantial number of strong outliers are
appreciated. These correspond to promiscuous query molecules
such as sunitinib, which has 192 submicromolar targets (262
targets using the 10 µM threshold). In contrast, there are also
seemingly selective drugs like the antiretroviral agent Nelfinavir
with only one known target below 1 µM (HIV-1 protease;
although there are also many non-molecular targets annotated

in ChEMBL for this drug). On the right, we can appreciate that
approved drugs currently have an average of eight known targets
with potency better than 10 µM, although the median number
is three targets. This new estimate is based on 745 drugs and
their 1076 targets and it is two targets higher than previous
estimates using less data (802 drugs and 480 targets) (Mestres
et al., 2009). However, the boxplot’s lower quartile value indicates
that at least 25% of these drugs have just one known target and
thus seem very selective. It is also noteworthy in Figure 2 that the
number of annotated targets for the set of random molecules is
smaller than that for approved drugs, with four targets on average
instead of eight. This substantial difference is likely to be due to
a much higher number of targets being tested during the process
of developing a drug.

How Many Predicted Targets Have to be
Tested to Find a True Target?
Table 4 presents average performance results for approved drugs
(set A), with the TF method using four different k values. As
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FIGURE 2 | (Left) Boxplots with the number of known targets (NKT) across query molecules. (Right) A zoom of the same boxplots on the right (the average number

of known targets is marked with a dashed blue line, whereas the median is given by the continuous red line). A, Approved, 10 µM; B, Random, 10 µM; C, Approved,

1 µM; D, Random, 1 µM.

TABLE 4 | Average (av) performance of the TF method on query molecules

from set A= (Approved, 10 µM).

k avNPT avAccuracy avPrecision avRecall avMCC

1 1.92 0.997 0.434 0.212 0.269

5 5.04 0.997 0.352 0.341 0.303

10 7.91 0.996 0.296 0.403 0.300

15 10.32 0.995 0.257 0.437 0.289

These molecules have an average of 8.3 known targets.

k increases, Type I errors increase (lower precision) and Type
II errors decrease (higher recall). In other words, as more top
hits are used to provide predicted targets, fewer known targets
are missed. However, this comes at the cost of having more
false positives, as target inferences are made using increasingly
less similar database molecules. Using the top 5 hits to predict
targets (i.e., k = 5) provides the best compromise between
these conflictive objectives (i.e., the highest average MCC). This
setting leads to 5.04 predicted targets on average over these
query molecules (note that each top hit may have more than
one known target, but collectively provide fewer targets because
some of these are repeated in the set). Lastly, the very high
average accuracy values are due to each classification problem
being highly unbalanced and the method correctly discarding the
vast majority of non-targets. Nevertheless, unlike precision and
recall, accuracy is not suitable to measure Type I and II errors
and hence is not helpful to address the investigated questions.

Figure 3 shows the distribution of the NPT across query
molecules using k = 5. By comparing it with Figure 2, it is
observed that there are substantially more known targets than
predicted targets for approved drugs using the top 5 hits for
predictions (this is not the case for the sets of random molecules,
where most query molecules have a higher number of predicted
targets than of known targets).

Figure 4(left) summarizes the distribution of precision results
across the query molecules. For approved drugs, the average
precision is 0.35 in the 10 µM case (0.38 in the 1 µM case). That
is, despite the simplicity of the method and thanks to the wealth

of data onwhich it relies, only five predicted targets will have to be
tested in order to find two true targets with potency better than 1
µM. In all cases, there is strong performance variability across the
querymolecules, as it can be appreciated by the large interquartile
range of each boxplot. For instance, in set C, the predictions for
the targets of 109 drugs are of the highest precision (precision
= 1), those for other 216 drugs not precise at all (precision
= 0) and those for the remaining 420 drugs have intermediate
precision values (in other words, hit rates are neither 0 nor 100%).
Also, the cases with a tighter activity threshold of 1 µM are on
average slightly better predicted than their counterparts using
10 µM. Specific cases with high- and low-precision performance
will be discussed in Section Representative Case Studies. On the
other hand, the sets with randommolecules obtainedmuch better
results than those with approved drugs. Thus, if we order the four
cases by average precision (dashed blue line in Figure 4), this
gives the following performance hierarchy D>B>C>A (i.e., D
obtains higher average precision than B, B better than C, and C
better than A). Interestingly, this is the opposite ranking for the
number of known targets (A>C>B>D). In other words, those
sets with a higher number of known targets tend to be harder to
predict.

However, the cause of obtaining lower predictive accuracy
with approved drugs is not their higher number of known targets
per se, but an underlying factor correlated with it: the query
drug and its top hits, which should include some of the chemical
derivatives that eventually led to this drug, often have a lower
overlap in terms of known targets. One contributing factor for
a low overlap is that two similar chemical structures do not
always have affinity for the same targets. There is abundant
literature analysing these pathological cases known as activity
cliffs (Medina-Franco, 2013). Furthermore, even the top hits
might not be highly similar to the query molecule, although this
issue will become less frequent as more molecules are included
in chemogenomics databases. Another contributing factor is that
some of the top hits could have been tested against a range
of targets in other studies, which might not have included the
drug and thus this molecule would not have been tested against
the targets (a lower precision for this query molecule would be
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FIGURE 3 | (Left) Boxplots with the number of predicted targets (NPT) across query molecules using k = 5. (Right) A zoom of the same boxplots on the right (the

average number of known targets is marked with a dashed blue line, whereas the median is given by the continuous red line). A, Approved, 10 µM; B, Random, 10

µM; C, Approved, 1 µM; D, Random, 1 µM.

FIGURE 4 | Performance the TF method with k = 5. From left to right, boxplots for precision, recall, and mcc across the query molecules in each of the four data

partitions: A, Approved, 10 µM; B, Random, 10 µM; C, Approved, 1 µM; D, Random, 1 µM. The average and median values of each performance metric are shown

as dashed blue lines and continuous red lines, respectively.

consequently obtained, as such targets would be perceived as false
positives). Importantly, while these are not known targets of the
drug, some are expected to become a known target once tested.
In contrast, a molecule from the randomly-chosen set often has a
larger overlap with its top hits (e.g., in set D, the predicted targets
of 324 randomly-chosen molecules have precision = 1, whereas
those for just 35 randomly-chosen molecules have precision =
0). The latter cases are likely to arise from a situation where a
chemical series is investigated against a set of related targets to
be later abandoned (Waring et al., 2015). This would explain the
lower number of known targets and the smaller predictive errors
for these sets.

How Many Known Targets of the Query
Molecule Are Typically Missed?
Addressing this question is necessary to estimate how many
discoveries are being missed by the ligand-centric method, but
it has not been investigated with regards to employed query
molecule. Figure 4 presents the results in terms of recall (middle
plot). Looking at the recall boxplots, only about 10% of the targets
are on average missed in the sets of random molecules (i.e.,
recall∼0.9), whereas the mean of missed targets for approved
drugs is about 65%. A large part of these missed targets might
be due to more intense research on the drug after approval than

on its chemical derivatives, leading to many targets being tested
in the former but not the latter.

On the other hand, the MCC boxplots (Figure 4 right plot)
show the distribution of the total error across query molecules,
with a high MCC necessarily meaning that the query molecule
obtains low levels of both Type I and II errors. The latter occurs
to most random molecules regardless of the activity threshold
(almost 75% of these query molecules have MCCs higher than
0.6). In contrast, only a small proportion of approved drugs are
in this category. Again, the performance hierarchy is D>B>C>A
for both recall andMCC. Here, a higher number of known targets
in the query molecules is also correlated with the difficulty of
predicting their targets, but this is also explained by the different
ways in which the query molecules and their hits were tested
against targets.

Representative Case Studies
Section How Many Targets Are Typically Hit by a Molecule?
analyzed the NKT across query molecules. As discussed in
Section How Many Predicted Targets Have to be Tested to
Find a True Target?, the NKT of a molecule depends on its
intrinsic polypharmacology, but also on how comprehensively
the molecule has been tested across targets by the relevant
scientific communities (we will call observed polypharmacology
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to the combination of these two factors). In the adopted TF
method, the NPT of a molecule is given by the NKTs from its
top 5 hits according to the dice score on MACCS fingerprints.
Thus, the NPT for the query molecule depends in turn on the
observed polypharmacology of each of these hits. In this section,
we analyse two approved drugs representing cases where the
difference in observed polypharmacology between the drug and
its top hits are large in one direction (NKT>>NPT) or the other
(NKT<<NPT).

The first case has nilotinib as the query molecule. Nilotinib
was presented as a small-molecule selective tyrosine kinase
inhibitor (Manley et al., 2010). However, we now know that this
marketed drug has at least NKT = 67 known molecular targets
under 10 µM, of which 14 are not kinases. In contrast, its top
5 hits collectively hit just nine targets (NPT = 9). This is not
surprising given the intense research interest in nilotinib as a
targeted drug for the treatment of imatinib-resistant Chronic
Myeloid Leukemia (Breccia and Alimena, 2010), but less so
in its top hits from database molecules containing no drugs
by construction. Figure 5A illustrates the proposed validation
approach on nilotinib as the degree of overlap between the target
spaces spanned by the query molecule and its top hits. Since
predicted targets can only be either a true target or not, TP +
FP=NPT. Likewise, known targets are either correctly predicted
or not and thus TP + FN = NKT. As explained in Section
Measuring Predictive Performance, the hit rate is given precision
= TP/NPT, thus precision= 0.89. In other words, the TFmethod
retrospectively obtains an 89% hit rate for nilotinib (i.e., finding
eight true targets of nilotinib in nine predicted targets). However,
59 known targets of nilotinib are missed by this method, as
indicated by a low recall = TP/NKT of 0.12. This evidences that
a method offering a high hit rate, while highly satisfying from a
cost-effectiveness perspective, must be complemented by a high
recall to be optimal.

Figure 5B shows the validation for the second case, which
analyses the antimalarial agent chloroquine. NKT = 3, NPT =
21, precision = 0.05 and recall = 0.33 are obtained in these case.
This represents a modest hit rate of just 5%, implying that a high
experimental effort would have been associated to this discovery.
However, the method obtains a higher recall with chloroquine

than with nilotinib, which means that a lower proportion of
known targets are being missed.

There are a total of 21 FP target predictions in both query
molecules. However, none of these target-ligand pairs have
actually been tested (i.e., no bioactivity associated to them in
ChEMBL). Since they come from the most similar molecules to
the query, it is likely that some of these predictions will result
in the discovery of new targets of these query molecules once
tested. For instance, the only FP of nilotinib is human GRM5
(metabotropic glutamate receptor 5; CHEMBL3227), which is a
known target of the 4th and 5th most similar database molecules
to nilotinib (CHEMBL2346729 and CHEMBL2346732, both with
submicromolar affinity for this target). Another exciting prospect
is one of the 20 unconfirmed FPs from chloroquine, human
CCR4 (C-C chemokine receptor type 4; CHEMBL2414), which
also a clinically-relevant target and also been predicted by two of
the top 5 hits (CHEMBL194930 and CHEMBL195203, both with
single-digit micromolar potency).

CONCLUSIONS

We have shown that ligand-centric techniques for TF are
capable of considering up to thousands of targets more than
target-centric techniques. This important advantage means that
ligand-centric techniques have their niche in TF. We have also
discussed the limitations of current benchmarks to test TF
methods and consequently we have designed a new benchmark
that overcomes them. Using the proposed benchmark, it has
been possible to investigate how reliable are ligand-centric
methods for TF depending on the employed query molecule.
Despite the simplicity of the adopted method and owing to
the wealth of data on which it relies, we have found that only
five predicted targets will have to be tested in order to find
two true targets with potency better than 1 µM on average
over marketed drugs. This level of performance is already useful
for prospective applications and it is encouraging that there
is plenty of scope for methodological improvement. The latter
will be particularly needed to reduce the high number of false
negatives, i.e., known targets that are currently missed by ligand-
centric techniques. It is worth noting that, while this issue

FIGURE 5 | Overlap of the target spaces under 10 µM spanned by the query molecule (blue circle representing its known targets) and its top hits

(green circle representing predicted targets given by the known targets of its top 5 hits) according to the employed TF method. (A) Nilotinib as the query

molecule. (B) Chloroquine as the query molecule.
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has not been investigated yet for target-centric techniques, the
many targets not considered by this class of techniques are
by construction false negatives of any molecule that hits them.
We have argued that this drawback is hard to appreciate as
target-centric techniques only report predictive performance
achieved on the typically much smaller set of considered
targets.

The results for the set of randomly-selected molecules used as
a control group are substantially better than those for approved
drugs. We have discussed how the different way in which
targets are tested against the query molecules and their top
hits is the primary reason for this marked difference. Since
approved drugs have been presumably tested against many more
targets, we consider that their performance level is more realistic
than that of the control set. Interestingly, we have identified
an average of eight known targets under 10 µM in approved
drugs, which reinforces the notion that polypharmacology
is a common and strong event. Lastly, high performance
variability across query molecules has been observed in all
cases. Thus, a promising avenue for future research consists in
investigating which features make the target-ligand pair more

difficult to predict in order to assign a confidence score to each
prediction.

Finally, we are releasing stand-along files implementing
this benchmark, which permits easily comparing multiple TF
methods on the same data. These files can also be used to serve
as a template for the development of advanced ligand-centric TF
methods, inspect our results or reproduce them from scratch.
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