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Preconditioned optimization algorithms solving the
problem of the non unitary joint block diagonalization:
application to blind separation of convolutive mixtures

Omar Cherrak1,2,3 · Hicham Ghennioui1 ·
Nadège Thirion-Moreau2,3 · El Hossain Abarkan1

Abstract This article addresses the problem of the Non Unitary Joint Block 
Diagonalization (NU − JBD) of a given set of complex matrices for the blind separation of 
convolutive mixtures of sources. We propose new different iterative optimization schemes 
based on Conjugate Gradient, Preconditioned Conjugate Gradient, Levenberg–Marquardt 
and Quasi-Newton methods. We perform also a study to determine which of these 
algorithms offer the best compromise between efficiency and convergence speed in the 
studied context. To be able to derive all these algorithms, a preconditioner has to be 
computed which requires either the calculation of the complex Hessian matrices or the use 
of an approximation to these Hessian matrices. Furthermore, the optimal stepsize is also 
computed algebraically to speed up the convergence of these algorithms. Computer 
simulations are provided in order to illustrate the behavior of the different algorithms in 
various contexts: when exactly block-diagonal matrices are considered but also when these 
matrices are progressively perturbed by an additive Gaussian noise. Finally, it is shown that 
these algorithms enable solving the blind separation of the convolutive mixtures of sources 
problem.
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1 Introduction

With the use of more antennas equipped with more receivers, the volume of available data 
is continually increasing and advanced signal processing techniques are often required to be 
able to extract relevant information from this huge amount of data. The problem of the joint 
decomposition of matrices (or tensors) sets can come within this framework, that is why it has 
gained a growing attention from the signal processing scientific community over the recent 
years. Whatever the considered field of application (astronomy, geophysics, remote sensing, 
biomedical, etc.), algorithms addressing the aforementioned problem are of interest if the 
problem at hand can finally be formulated as a problem of Array Processing and Direction-Of-
Arrival estimation, Blind Source Separation (BSS), blind multidimensional deconvolution 
or even data mining or analysis.

Because traditionally a pre-whitening stage was used, one of first problem to have been 
considered was the so-called Joint Diagonalization (JD) of a given matrix set under the uni-
tary constraint. It led to the nowadays well-known JADE (Joint Approximate Diagonalization 
of Eigenmatrices) Cardoso and Souloumiac 1993 and SOBI (Second Order Blind Identifi-
cation) Belouchrani et al. 1997 algorithms. The following works have addressed either the 
problem of the JD of tensors (Comon 1994; Moreau 2001) or the problem of the JD of 
matrix sets, discarding the unitary constraint (Chabriel and Barrère 2012; Maurandi et al. 
2013; Souloumiac 2009; Yeredor 2002). A fairly exhaustive overview of all the suggested 
approaches is available in Chabriel et al. 2014. This first particular type of matrix decom-
position proves useful to solve two kinds of problems i) those of sources localization and 
direction finding and ii) those of blind separation of instantaneous mixtures of sources.

At the same time, people have started to consider a second type of matrix decompositions -
namely joint zero-diagonalization (JZD) -, since it is not uncommon to encounter this problem 
in different field of applications such as blind source separation (and more specifically spatial 
quadratic time-frequency domain methods (Belouchrani et al. 2001; Belouchrani et al. 2013)), 
telecommunications Chabriel and Barrère 2011 and cryptography Walgate et al. 2000. The  
first proposed algorithms operated under the unitary constraint Belouchrani et al. 2001, since  
once again, they were applied after a classical pre-whitening stage. But such a preliminary 
pre-whitening stage establishes a bound with regard to the best performances in the context 
of BSS that is why the unitary constraint was soon discarded, leading to several solutions 
among which are (Fadaili et al. 2007; Chabriel et al. 2008).

Recently, a more general problem has been addressed: that of the joint decomposition 
of a combination of given sets of complex matrices that can follow potentially different 
decompositions (for example when noncircular complex valued signals are considered and 
when people want to exploit additional statistical information by using both Hermitian and 
complex symmetric matrices simultaneously) (Moreau and Adali 2013; Trainini and Moreau 
2014; Zeng et al. 2009). Such issues can arise in various signal processing problems, among 
which are blind identification, separation or multidimensional deconvolution.

In this article, we focus on a fourth type of matrix decompositions, namely the Joint 
Block-Diagonalization (JBD). It is a rather general problem since the aforementioned JD 
problem is a special case of this one, but it could be seen as a part of the third problem even 
if - to our knowledge - only JD problems have been considered in that context up to this 
point. In such a decomposition, the matrices under consideration assume a specific algebraic 
structure,



being block diagonal matrices i.e. they are block matrices whose diagonal blocks are square
matrices of any (possibly even) size while their off-diagonal blocks are all null. First, this
problem was addressed considering positive definite and hermitian block-diagonal matrices
and unitary joint-block diagonalizers. Jacobi like algorithms were suggested (Belouchrani
et al. 1997; De Lathauwer et al. 2002). Then, different alternative methods achieving the
same task but for a non unitary joint-block diagonaliser have been proposed (Cherrak et al.
2013b; Ghennioui et al. 2007; Ghennioui et al. 2010; Ghennioui et al. 2007b; Lahat et al.
2012a; Nion 2011; Tichavsky and Koldovsky 2012; Xu et al. 2010; (Zhang et al. (2016);
Zhang and Zhang (2016) for video event recognition and object recognition)).

In this article, our goal is to investigate the impact/interest of the preconditioning process in
the JBD algorithms to be able to determinewhichmethod offers the best compromise between
efficiency and convergence speed in the studied context (BSS and blind multidimensional
deconvolution). But, first, to be able to derive the different algorithms, the preconditioner
has to be determined. It is the reason why, we start with the theoretical calculation of the
complex Hessian matrices. Then the different optimization algorithms can be derived and the
optimal stepsize can be calculated. Computer simulations are provided in order to illustrate
the behavior of the different algorithms in various contexts: when exactly block-diagonal
matrices are considered but also when these matrices are progressively perturbed by an
additive Gaussian noise. Finally, we show how these algorithms find applications in blind
separation of a convolutive mixture of deterministic or random source signals, based on
the use of Spatial Quadratic Time Frequency Spectra (SQTFS) or Spatial Quadratic Time
Frequency Distributions (SQTFD).

This article is organized as follows: the general problem ofNU − JBD and the principle of
preconditioning are reminded in Sect. 2. In the Sect. 3, we introduce the algebraic calculations
of the Hessian matrices leading to the proposed possibly preconditioned NU − JBD algo-
rithms. In Sect. 4, we show the different classical deterministic iterative optimization schemes
considered and we introduce the calculation of the optimal step-size. Computer simulations
are provided in Sect. 5 in order to illustrate the behavior of the resulting preconditioned
JBD (and possibly JD) algorithms. To that aim, the different algorithms are compared in
various contexts comparing them with “state-of the-art approaches”. The Sect. 6 enhance the
usefulness of these algorithms through one of their possible applications, namely the blind
separation of Finite Impulse Response (FIR) convolutive mixtures of non-stationary sources.
Computer simulations are performed to illustrate the good performance of the suggested
BSS methods. Finally in Sect. 7, a conclusion is drawn.

2 Problem statement and some recalls about optimization

2.1 The non unitary joint block-diagonalization problem and its assumptions

We recall that the problem of the non unitary joint block-diagonalization is stated in the
following way Ghennioui et al. 2007. Provided that we have a setM of Nm square matrices
Mi ∈ C

M×M , for all i ∈ {1, . . . , Nm} that all admit the following decomposition:

Mi = ADiAH , (1)

where (·)H stands for the transpose conjugate (or Hermitian) operator and the Nm square
N × N matrices Di are block diagonal matrices, i.e. they are all in the form:



Di =

⎛
⎜⎜⎜⎜⎝

Di,11 012 . . . 01r

021 Di,22
. . .

...
...

. . .
. . . 0r−1r

0r1 . . . 0rr−1 Di,rr

⎞
⎟⎟⎟⎟⎠

, (2)

with r the number of considered blocks (r ∈ N
∗), Di, j j , i ∈ {1, . . . , Nm}, j ∈ {1, . . . , r}

are n j × n j square matrices so that n1 + · · · + nr = N where 0i j denotes the (ni × n j ) null
matrix.

A is a M × N (M ≥ N ) full rank matrix while A† is a pseudo-inverse of A (or Moore-
Penrose generalized matrix inverse). It is a N ×M matrix denoted by B (B = A†). The set of
the Nm square matrices Di ∈ C

N×N is denoted byD. The block sizes n j for all j = 1, . . . , r
are assumed known. In the context of blind source separation, A is known as the mixing
matrix whereas B is called the separating matrix, N is the number of sources while M is the
number of sensors. Many BSS methods go through a joint matrix decomposition stage in
order to estimate either the mixing matrix or the separating matrix even if other approaches
have been considered too (direct or deflation methods for example). Moreover, this joint
matrix decomposition problem often brings us back to a joint diagonalisation (resp. joint
block diagonalisation) problem when instantaneous (resp. convolutive) mixtures of sources
are considered. An unitary constraint on the matrices A or B is the result of a preprocessing
stage called spatial whitening of the observations. But studies have proven that this step
establishes a bound with regard to the best reachable performances in the context of BSS.
That is why recently, there has been a strong interest in methods discarding this constraint.

The general NU − JBD problem consists of estimating the matrix A and the block-
diagonal matrices set D from only the matrix set M. It was shown in Ghennioui et al.
2010, a standard way consists of minimizing the following quadratic objective function:

C(2)
JBD(B, {D̂i }) =

Nm∑
i=1

‖OffBdiag(n){BMiBH }‖2F def= CJBD(B), (3)

where ‖ · ‖F stands for the Frobenius norm and the matrix operator OffBdiag(n){·} can be
defined as (Ghennioui et al. 2010):

OffBdiag(n){M} = M − Bdiag(n){M} =

⎛
⎜⎜⎜⎜⎝

011 M12 . . . M1r

M21
. . .

. . .
...

...
. . .

. . .
...

Mr1 Mr2 . . . 0rr

⎞
⎟⎟⎟⎟⎠

, (4)

where

Bdiag(n){M} =

⎛
⎜⎜⎜⎜⎝

M11 012 . . . 01r

021
. . .

. . .
...

...
. . .

. . .
...

0r1 0r2 . . . Mrr

⎞
⎟⎟⎟⎟⎠

. (5)

2.2 Some recalls about optimization and preconditioning

In the literature, one can find many unconstrained optimization methods and some of them, 
namely gradient-descent, steepest descent, relative gradient and conjugate gradient methods



have already been studied and applied in this specific context of JBD (Ghennioui et al. 2010;
Nion 2011). They are known as first-order methods since they only depend on the gradient of
the cost function and not on its second derivatives (i.e. the Hessianmatrix denoted here byH•.
Notice that in the next sectionwewill clarify this notation). To our knowledge, very few, if any,
studies have been led on preconditioned optimizationmethods in such a framework.Yet,when
one is designing an algorithm for a specific application,many conflicting requirements have to
be taken into account (convergence rate (as few iterations as possible), computation time per
iteration (as fewfloating point operations as possible), stability, sensitivity to numerical errors,
robustness versus noise and/or model errors, problems of initialization, storage requirements,
potential parallelization, ease of implementation, real time implementation, just to name a
few), and at the end, for one given application, one must choose the algorithm which offers
the best compromise between all those requirements. That is why we have chosen, here,
to look specifically at preconditioned optimization methods to determine whether they are
interesting or not for joint block diagonalization problems.

The main purposes for which preconditioning is generally used, are:

– to further accelerate the convergence since gradient-descent or steepest descent algo-
rithms are well known for their sometimes slow convergence,

– to increase stability and robustness versus noise or model errors,
– to copewith the fact that variables havewildly differentmagnitudes (since themost simple

form of preconditioning is a scaling of the variables (thanks to a diagonal preconditioner)
with well chosen coefficients),

– to cope with the fact that the cost function can rapidly change in some directions and
slowly in other ones,

– to be able to tackle ill-posed problems,
– to ensure certain constraints such as non-negativity (see for example the nonnegative

matrix factorization algorithm (NMF) based on multiplicative updates suggested by Lee
and Seung Lee and Seung 2000b which can be interpreted as a preconditioned gradient
algorithm).

Sometimes the preconditioning process just speed up the convergence, but there also
exist some difficult cases which cannot be solved without good preconditioning. That is why
several works have addressed the problem of the design of effective preconditioners. First, the
preconditioning has been used in direct methods and, latter this concept has been extended to
the case of iterative processes (Chebyschev acceleration) in (Evans 1968; Turing 1948). The
key issue remains obviously the choice of the preconditioner denoted by P. In the literature,
one can find many works on different types of preconditioners, among which are the Jacobi
and Gauss-Seidel preconditionersWestlake 1968. The first one consists of using the diagonal
of the desiredmatrix while the second one consists of decomposing the preconditioner matrix
into a lower triangular matrix, a diagonal matrix, and an upper triangular matrix. Yet, for non-
symmetric problems, such preconditioners are limited in their effectiveness and robustness
Axelsson 1985.

The analysis of the convergence rate of the proposed preconditioned gradient-descent
method provides a substantial help in the choice of P and directions to follow. If the cost
function is twice differentiable in the neighborhood of a local minimizer, i.e. with Hessian

matrix H•
def= ∇2

BCJBD
def= ∂2CJBD(B,B∗)

∂B∂B∗ then the fastest convergence is obtained when the
preconditioner P minimizes the condition number, namely κ , of the product PH•. The con-
dition number stands for the ratio of the largest singular value of PH• divided by the smallest

singular value of this matrix i.e. κ
def= λmax(PH•)

λmin(PH•) . For quadratic cost functions, the ideal pre-



conditioner would be P = (H•)−1 so that PH• = I since the identity matrix I possesses the
minimal (unity) condition number. But since it is not always easy to calculate or to compute
(H•)−1 (especially when N or M become large in our case), it remains interesting to develop
preconditioners that approximate (H•)−1 and that are cheaper to construct and to apply (Chen
2005a; Benzi 2002).

To be able to design a suitable preconditioning matrix P in the context of JBD, we will
start with the calculation of the four exact complex Hessian matrices. Then, we will be able
to derive several new preconditioned algorithms among which is a preconditioned Conjugate
Gradient algorithm. The conjugate gradientmethod is an iterative optimizationmethodwhich
has become really popular in nonlinear optimization (Hager and Zhang 2006; Paatero 1999)
and its efficiencymay be improved by a proper choice of the preconditioningmatrix Axelsson
1985.

3 New preconditioned joint block-diagonalization algorithms

Toestimate the complexmatrixB ∈ C
N×M , the cost function given in (3) has to beminimized.

To that aim, the differential dCJBD of CJBD has to be derived, involving the calculation of the
partial derivatives ∂

∂· of the objective function CJBD with respect to B and B∗ (it is the reason
why, from now on, the objective function is denoted by CJBD(B, B∗) where B∗ stands for
the complex conjugate of the complex matrix B, except in 4.4). Then, the complex gradient
matrix can be derived. In fact, the N × M complex gradient matrix of our real-valued scalar
cost function given in (3) denoted ∇BCJBD has been calculated in Ghennioui et al. 2010 and
found to be equal to:

∂CJBD(B, B∗)
∂B∗ =

Nm∑
i=1

[
OffBdiag(n){BMiBH }BMH

i +
(
OffBdiag(n){BMiBH }

)H
BMi

]
.

(6)

Eventually, the second order differential d2CJBD can be calculated too in order to derive
the complex Hessian matrices. The complex matrix H is a square 2NM × 2NM matrix
constituted of four NM × NM square blocks which are the Hessian matrices:

H =
[

HB,B∗ HB∗,B∗
HB,B HB∗,B

]
. (7)

To calculate the aforementioned matrix H, we follow the same path as in Hjorungnes, A.
2011 (details of this calculation can be found in the Appendix). In short, we have to derive
the expression of the second-order complex differential of CJBD(B, B∗)which is then written
as:

d2CJBD(B, B∗) = [
dvecT (B∗) dvecT (B)

] [A00 A01

A10 A11

][
dvec(B)

dvec(B∗)

]
. (8)

As shown in Hjorungnes, A. 2011, the four NM × NM complex matrices A00, A01, A10

and A11 involved in the above expression are linked to the Hessian matrices by:

HB,B∗
(CJBD(B, B∗)

) = A00 + AT
11

2
= (

HB∗,B
(CJBD(B, B∗)

))T
, (9)

HB∗,B∗
(CJBD(B, B∗)

) = A01 + AT
01

2
, (10)



HB,B
(CJBD(B, B∗)

) = A10 + AT
10

2
. (11)

There are shown to be equal to (see the Appendix 1 for the detailed mathematic develop-
ments):

A00 =
(

MT
i BT ⊗ IN

)
TT
Boff

(
B∗M∗

i ⊗ IN
) +

(
M∗

i BT ⊗ IN
)

TT
Boff

(
B∗MT

i ⊗ IN
)

+ M∗
i ⊗ OffBdiag(n){BMiB

H } + MT
i ⊗ OffBdiag(n){BMH

i BH } = A∗
11, (12)

A10 = KT
N ,M

(
IN ⊗ MiB

H
)

TT
Boff

(
B∗M∗

i ⊗ IN
)

+ KT
N ,M

(
IN ⊗ MH

i BH
)

TT
Boff

(
B∗MT

i ⊗ IN
)

= A∗
01, (13)

where the operator ⊗ denotes the Kronecker product, KN ,M is a square commutation matrix
of size NM × NM and TBoff = IN2 − TDiag, is the N 2 × N 2 “transformation” matrix, with
TDiag = diag{vec(BDiag{1N })}, 1N is the N × N matrix whose components are all ones,
diag{a} is a square diagonal matrix whose diagonal elements are the elements of the vector
a, IN2 = Diag{1N2} is the N 2 × N 2 identity matrix, and Diag{A} is the square diagonal
matrix with the same diagonal elements as A.

One can check that the bigger complex matrix H defined in (7) is hermitian and that two
parts can be distinguished in this matrix H: its block-diagonal part and its off-block diagonal
part.

According to Shewchuk 1994b, it is advisable to consider only the diagonal (real part) of
the Hessian matrix i.e. (9) and (12) to ensure a non increase of the cost function, and to easily
obtain its inverse. The NM × NM preconditioning matrix, denoted by P, that we suggest
thus, reads:

P = (Ĥ)−1, (14)

Ĥ = Diag
{
HB,B∗

(CJBD(B, B∗)
)} = Diag

{
HB∗,B

(CJBD(B, B∗)
)}

. (15)

Hence in the next sections, we can focus on the different possibly preconditioned algo-
rithms that can be derived, and try to better assess their behavior in different contexts.

4 Classical deterministic iterative optimization schemes

To estimate the joint block diagonalizer B, the cost function given in (3) has to be minimized.
To that aim different deterministic iterative optimization schemes can be considered. It means
that B has to be re-estimated at each iteration m, so from now on, it will be denoted by
B(m). This matrix can also be stored in a vector b(m) if the vec(·) operator is applied i.e.
b(m) = vec

(
B(m)

)
. Depending on the considered optimization scheme, B(m) for all m is

updated according to one of the following adaptation rules. For example, when a classical
steepest descent approach is considered (gradient approach if the step size is a fixed positive
scalar i.e. μ(m) = μ for all m), B is updated at each iteration m (m = 1, 2, . . .) according to:

B(m+1) = B(m) − μ(m)∇BCJBD(B(m), B∗(m)
), (16)

or equivalently,
b(m+1) = b(m) − μ(m)g(m)

B∗ , (17)

where ∇BCJBD(B(m), B∗(m)) is the gradient matrix given in (6) or g(m)
B∗ is its vectorized form

i.e. g(m)
B∗ =

(
DB∗(CJBD(B(m), B∗(m)))

)T
and μ(m) is a real positive constant called the step



size (the problem of its choice is treated in the Sect. 4.4). This algorithm may converge
slowly, that is why we are interested in preconditioned algorithms in order to speed up the
convergence.

4.1 Preconditioned non linear conjugate gradient

To further accelerate convergence, conjugate gradientmethodsmodify the search directions to
ensure that they are approximately mutually conjugate i.e. orthogonal with respect to an inner
product related to the Hessian of the cost function. Thus, when the preconditioned conjugate
gradient algorithm is considered, the search direction, d, is given at the first iteration by:

d(1) = −P(1)g(1)
B∗ . (18)

Then, ∀m = 2, . . ., the following adaptation rule is used:
{

b(m+1) = b(m) + μ(m)d(m),

d(m+1) = −P(m+1)g(m+1)
B∗ + β(m)d(m),

(19)

where the expression of the preconditioner P is given in (14)-(15). It should be a positive-
definite matrix, so non positive diagonal elements are prohibited: if it occurs, the algorithm
is no more preconditioned (P is then set to the identity matrix INM and we come back to the
classical non linear conjugate gradient algorithm). In exact line search method, we use the
Polak-Ribière (βPR) formula Polak 1997a which is given by:

β
(m+1)
PR = (g(m+1)

B∗ − g(m)
B∗ )HP(m+1)g(m+1)

B∗

(g(m)
B∗ )HP(m)g(m)

B∗
. (20)

However, several expressions for β are classically used: the Fletcher-Reeves (βFR)
Shewchuk 1994b and the Dai-Yuan (βDY) Yuan 1999. The resulting algorithm is denoted
by JBDPCGEH (EH stands for Exact Hessian).

4.2 Levenberg–Marquardt algorithm

When the Hessian matrix Ĥ tends to lose its positive-definiteness property through the itera-
tions, and hence may fail to construct descent directions, it is better to stabilize it using trust
region techniques that modify Ĥ by adding a multiple of the identity matrix. It is the principle
of the Levenberg–Marquardt approach Luenberger 1969a:

b(m+1) = b(m) − μ(m)
(

Ĥ(m) + αINM

)−1
g(m)

B∗ , (21)

where α is a relaxation coefficient. We notice that by setting H = INM  in (21) (or by 

considering that α is chosen high enough), the gradient algorithm
̂
in (17) may be obtained. It can also be seen as a variant of the preconditioned conjugate gradient algorithm given in 

(19)  where  β = 0 and where the preconditioner is not directly the inverse of the Hessian but 
is slightly modified. With regards to H, we can use either our solution given in (14)-(15).

The resulting algorithm is denoted by
̂
JBDLMEH (again EH stands for Exact Hessian).

4.3 Quasi-Newton algorithm

In (21), by setting α = 0 and considering that the preconditioner P is a NM×NM  calculation 
of the inverse of the Hessian matrix given by (14) and (15), we obtain the Quasi-Newton



adaptation rule. In this case, the algorithm is initialized using for P(1) (or Ĥ(1)), a symmetric,
NM × NM positive-definite matrix. The resulting algorithm is denoted by JBDQNEH (QN
standing for Quasi-Newton).

4.4 Choice of the step size: Enhanced Line Search or seek of the optimal step-size

It remains essential to find a good stepsize μ in the given search direction d(m) at each
iteration m. This stepsize μ(m) can be found in different ways: it can be fixed or decreased
versus the iterations, or we can opt for a global search with Enhanced Line Search (ELS) or
for an approximation by a line search method like backtracking Vandenberghe 2004 (which
is a locally optimal stepsize method).

This subsection is dedicated to the calculation of the optimal stepsize which is denoted
by μopt. When the preconditioned conjugate gradient algorithm is considered for exam-
ple, it implies the algebraical calculation of the following quantity: CJBD(B(m+1)) =
CJBD

(
B(m) − μD(m)

)
, where D(m) = unvec

(
d(m)

)
or equivalently d(m) = vec

(
D(m)

)
where the vector d(m) is given in (19) (operator unvec enables to come back to a matrix). It is
a 4th-degree polynomial whose expression is given by (to simplify the different expressions,
the dependency upon the iteration m is omitted):

CJBD (B − μD) = a0 + a1μ + a2μ
2 + a3μ

3 + a4μ
4, (22)

where the five coefficients a0, a1, a2, a3 and a4 are found equal to (see the Appendix 1 for
the details mathematic developments),

a0 =
Nm∑
i=1

tr
{

CH
0 OffBdiag(n) {C0}

}
, (23)

a1 = −
Nm∑
i=1

tr
{

CH
1 OffBdiag(n) {C0} + CH

0 OffBdiag(n) {C1}
}

, (24)

a2 =
Nm∑
i=1

tr
{

CH
2 OffBdiag(n) {C0} + CH

1 OffBdiag(n) {C1} + CH
0 OffBdiag(n) {C2}

}
, (25)

a3 = −
Nm∑
i=1

tr
{

CH
2 OffBdiag(n) {C1} + CH

1 OffBdiag(n) {C2}
}

, (26)

a4 =
Nm∑
i=1

tr
{

CH
2 OffBdiag(n) {C2}

}
, (27)

with

C0 = BMiB
H , (28)

C1 = BMiD
H + DMiB

H , (29)

C2 = DMiD
H . (30)

Then, the third order polynomial (31) corresponding to the derivative with respect to μ of
the 4th-degree polynomial given in (22) is calculated and its three roots are derived:

∂CJBD (B − μD)

∂μ
= 4a4μ

3 + 3a3μ
2 + 2a2μ + a1. (31)

Finally the optimal stepsize, μopt, corresponds to the root that leads to the smallest value
of (22).



4.5 Algorithms proposed

The non-unitary JBD proposed algorithms are summarized below:

Data: Nm square matrices M1, M2, . . . , MNm , stopping criterion ε, step-size μ, max. number of
iterations Nmax , number used for restart N0, relaxation coefficient α

Result: Estimation of the joint block diagonalizer B
initialize: B(0); D(0); m = 0;
repeat

if (For (P)CG algorithms only) m mod N0 = 0 then
restart

else

Calculate optimal step-size μ
(m)
opt (root of (31) leading to the smallest value of (22))

Compute gradient matrix ∇BCJBD(B(m+1), (B(m+1))∗) given in (6)
Compute exact Hessian matrix Ĥ given in (15)

JBDCG algorithm
Compute matrix B(m+1) thanks to (16) or (17)

JBDPCGEH
algorithm

Compute exact preconditioner P(m+1) given in (14)
Compute matrix B(m+1) thanks to (19)

Compute β
(m)
PR given by (20)

Compute the search direction D(m+1) thanks to (19)
JBDLMEH

algorithm

Compute matrix B(m+1) thanks to (21)
Calculate the error e(m+1) = 1

Nm
CJBD(B(m+1))

if e(m+1) > e(m+1) then
α = α

10 , e(m+1) = e(m)

else
α = 10α

end
JBDQNEH

algorithm

Compute exact preconditioner P(m+1) given in (14)
Compute matrix B(m+1) thanks to (21) with α = 0

m = m + 1;
end

until ((‖B(m+1) − B(m)‖2F ≤ ε) or (m ≥ Nmax ));

4.6 Complexity of algorithms

To compute the gradient matrix ∇BCJBD
(
B(m+1), (B(m+1))∗

)
whose expression is given in

(6), the algorithmic complexity C1 is:

M 
= N 4NmNM(M + N ) + 2N2Nm
M � N 4NmNM2

M = N 8NmN3 + 2NmN2

To compute the preconditioning matrix according to P = Diag
{
HB,B∗ (CJBD(B, B∗))

}
,

the complexity C2 is:



M 
= N 2Nm (MN (4M + 3N ) + MN4(M + N ))

M � N 8NmM2N + 2NmM2N4

M = N 8NmN3 + 2N6

To update the search direction given in (19), using the Polak-Ribière formula β(m) given
in (20), the complexity is:

M 
= N 2M3N3 + 4Nm (MN (4M + 3N ) + 2MN4(M + N )) + 2NM(M + N )

M � N 2M3N3 + 16NmM2N + 8NmM2N4 + 2NM2

M = N 8N6 + 28NmN3 + 4N4

To compute the coefficients a(m)
0 , . . . , a(m)

4 thanks to (23)–(27), and then to obtain the

optimal step-size μ
(m)
opt by the search of the root of the polynomial given in (31) attaining the

minimum in the polynomial given in (22), the complexity is:

M 
= N 24MNNm (M + N ) + 9N2Nm (1 + N )

M � N 24M2NNm
M = N 57N3Nm + 9N2Nm

Finally, the total complexity for the different algorithms that we were able to derive is
summed up in the following table:

Algorithm Algorithmic cost

JBDCG M 
= N 28NmNM(M + N ) + 11N2Nm + 2N3M3 + NM(M + N ) + 9N3Nm
M � N 11N2Nm + 28NmNM2 + 2N3M3 + 9N3Nm + NM2

M = N 17NmN3 + 11N2Nm + 2N6 + 2N3 + 48NmN3

JBDPCGEH
M 
= N 2NmNM(20M + 17N + 5N3(M + N )) + 2N3M3 + 19N2Nm + 9N3Nm

M � N 40NmNM2 + 10M2N4 + 2N3M3 + 19N2Nm + 9N3Nm
M = N 83NmN3 + 20N4 + 2N6 + 19N2Nm

JBDLMEH
M 
= N 2NmNM(18M + 17N + N3(M + N )) + 11N2Nm + 2N3M3 + 9N3Nm

M � N 36NmM2N + 11N2Nm + 2NmM2N4 + 2N3M3 + 9N3Nm
M = N 88NmN3 + 4NmN6 + 2N6 + 2N2Nm

JBDQNEH
M 
= N 2NmNM(18M + 17N ) + 11N2Nm + 2NmMN4(M + N ) + 9N3Nm

M � N 36NmNM2 + 11N2Nm + 2NmM2N4 + 9N3Nm
M = N 69NmN3 + 11N2Nm + 4NmN6

Finally, notice that the global complexity of the different algorithms has to be multiplied
by the total number of iterations Ni needed to reach the convergence. In the case of practical
applications, the computational time necessary to build the set of the Nm matrices should be
counted too.



5 Computer simulations and comparisons

In this section, we present simulations to illustrate the behavior of the suggested precondi-
tioned JBD algorithms (JBDPCGEH , JBDLMEH and JBDQNEH but also of the JBDCG). All
these algorithms are compared with the conjugate gradient JBDCGNION proposed in Nion
2011 and other algorithms proposed in Ghennioui et al. 2010 and Ghennioui et al. 2008a:
The first one is based on a relative gradient approach denoted JBDRGrad and the second
one is based on a (absolute) gradient approach denoted JBDAbsGrad. To that aim, we build a
set D of Nm complex block-diagonal matrices Di (for all i = 1, . . . , Nm), randomly drawn
according to a Gaussian law with zero mean and unit variance. Initially, these matrices are
considered as exactly block-diagonal, then, a random noise matrix of mean 0 and variance
σ 2
N is added on the off-diagonal blocks of the matrices Di , for all i = 1, . . . , Nm . The signal

to noise ratio is defined as SNR = 10 log( 1
σ 2
N
).

To better assess the quality of the estimation and to be able to compare the different
algorithms, an error index is required. We are using the one, I (G) (G = B̂A), that we
introduced in Ghennioui et al. 2007 and defined as :

1

r(r − 1)

⎡
⎣

r∑
i=1

⎛
⎝

r∑
j=1

‖(G)i, j‖2F
max

	
‖(G)i,	‖2F

− 1

⎞
⎠ +

r∑
j=1

⎛
⎝

r∑
i=1

‖(G)i, j‖2F
max

	
‖(G)	, j‖2F

− 1

⎞
⎠
⎤
⎦ ,

where (G)i, j for all i, j ∈ {1, . . . , r} is the (i, j)-th (square) block matrix of G = B̂A. This
error index will be used again in the BSS application (Sect. 6). The best results are obtained
when the error index I (·) is found to be close to 0 in linear scale (−∞ in logarithmic scale).
Regarding to the charts, I (·) is given in dB and is then defined by I (·) dB = 10 log(I (·)).
The matrix A has been randomly chosen in all simulations. Moreover, all displayed results
have been averaged over 30 Monte-Carlo trials.

We consider M = N = 8 (A is square) and r = 4 (with r = 4 for all j = 1, . . . , 4).
The setM of Nm square matrices Mi , i = 1, . . . , Nm consists of Nm = 100 (resp. Nm = 5)
M × M matrices. All algorithms are initialized using the same initialization provided by the
generalized eigenvalue decomposition (GEVD) as suggested in Nion 2011. Notice that the
maximal number of iterations allowed is set at Nmax =120 iterations.

The evolution of the error index versus the number of iterations is illustrated emphasizing
the influence of i) the number Nm of matrices to be block diagonalized, ii) and SNR. In fact,
two cases are considered: i) on the left Nm=100 ii) and on the right Nm = 5 for the considered
matrices set. In addition, we illustrate in the Fig. 1 (resp. the Fig. 2) the evolution of the error
index versus the number of iterations in the noiseless case (SNR = 100 dB) (resp. the noisy
case (SNR = 30 dB)).

From these curves, several observations can be drawn. First we observe that the conver-
gence of algorithms based on an exact preconditioning namely JBDPCGEH , JBDLMEH and 
JBDQNEH are the fastest algorithms. Moreover, comparing the convergence of different gra-
dient approaches namely JBDCGNION and JBDRGrad, we check the interest of our proposed 
preconditioner based on the exact Hessian matrices. Furthermore, we deduce that the conver-
gence speed of the algorithm JBDCG is higher than JBDRGrad, JBDAbsGrad and especially
the algorithm JBDCGNION which follows the same adaptation rule but operates on a different 
cost function. However, the best performances are generally achieved using the JBDPCGEH 
algorithm in difficult contexts: with noise and a set containing a small number of matrices
to be joint block diagonalized. In addition, we note that JBDPCGEH and JBDQNEH converge
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Fig. 1 Comparison of the different algorithms: evolution of the error index I (G) versus the number of
iterations in the noiseless case (SNR =100 dB) for different sizes of the matrix sets. a Nm = 100, b Nm = 5
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Fig. 2 Comparison of the different algorithms: evolution of the error index I (G) versus the number of
iterations in the noisy case (SNR =30 dB) for different sizes of the matrix sets. a Nm = 100, b Nm = 5

to the same solution approximately. However, the others require more iterations to reach the
same performances.

We observe also that themorematrices to be joint block-diagonalizedwe have, the best the
obtained results are. In addition, whatever the considered algorithm, they all reach the same
level of performance (which not too surprising either), yet, the JBDCGNION , JBDRGrad and
JBDAbsGrad algorithms need more iterations. Even though when smaller subsets of matrices
and the SNR value are considered, the results remain relatively good. Not too surprisingly,
the noise affects the performances.

6 Application to blind source separation

In this section, we show how to use the proposed JBD algorithms for solving the FIR con-
volution of non-stationary sources. We recall that the principle of the BSS problem is to



restore multiple sources mixed through an unknown mixing system that we must estimate
from the system outputs only called “the observations”‘. To do this, we are basically inter-
ested in methods based on spatial time-frequency distributions or spectra. It is well known
that this kind of BSSmethods generally need four main steps to guarantee successful signal
separation.

6.1 The matrix model of the source separation problem

Considering m (m ∈ N
∗) observation signals xi (t), i = 1, . . . ,m, t ∈ Z, and n (n ∈ N

∗)
sources s j (t), for all j = 1, . . . , n which aremixed through a linearFIRmultichannel system
and represented by H(t) = (Hi j (t)). The convolutive model can be simply described by the
following expression :

xi (t) =
n∑
j=1

L∑
	=0

Hi j (	)s j (t − 	) + n j (t), (32)

where Hi j (t) is the impulse response function between the i-th sensor and j-th source with an
overall extent of L +1 taps and ni (t), for all i = 1, . . . ,m are noises. Hence, the convolutive
system can be written as an instantaneous model of source separation problem:

X(t) = AS(t) + N(t), (33)

where:

– The (M×N )mixing matrix A is a block-matrix given by A = (
Ai j

)
for all i = 1, . . . ,m

and j = 1, . . . , n whose blocks Ai j are (L ′ × Q) Toeplitz matrices:

Ai j =

⎛
⎜⎜⎜⎜⎝

Hi j (0) . . . Hi j (L) 0 . . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
0 . . . 0 Hi j (0) . . . Hi j (L)

⎞
⎟⎟⎟⎟⎠

. (34)

– The (N × 1) vector S(t) = [s1(t)T , s2(t)T , . . . , sn(t)T ]T containing sources where the
(Q×1) vectors si (t) (for all i = 1, . . . , n) stands for si (t) = [si (t), si (t −1), . . . , si (t −
Q + 1)]T ,

– The (M × 1) vector X(t) = [x1(t)T , x2(t)T , . . . , xm(t)T ]T (resp. N(t) = [n1(t)T ,

n2(t)T , . . . , nm(t)T ]T ) containing the observed signals (resp. the noise signals)where the
(L ′×1) vectors xi (t) (resp.ni (t)) stands for xi (t) = [xi (t), xi (t−1), . . . , xi (t−L ′+1)]T
(resp. ni (t) = [ni (t), ni (t − 1), . . . , ni (t − L ′ + 1)]T ),

– M = mL ′, N = n(L + L ′) = nQ (with Q = L + L ′ and L ′ ∈ N
∗) and L ′ is chosen

such that M ≥ N to maintain an over-determined model.

We assume that the noises are stationary, white, centered random signals, mutually uncor-
related and independent from the source signals.

6.2 Construction of the t-f matrices set to be joint block-diagonalized

The Spatial Quadratic Time-Frequency Spectrum (SQTFS) of the observations across the 
array at a given t-f point is a (M × M) matrix, admits the following decomposition:



DX(t, ν) = ADS(t, ν)AH + DN(t, ν) + ADSN(t, ν) + DNS(t, ν)AH

= ADS(t, ν)AH + DN(t, ν), (35)

where,

– DS(t, ν) (resp. DN(t, ν)) is the (N × N ) source SQTFS (resp. the (M × M) noise
SQTFS).

– DSN(t, ν) and DNS(t, ν) are the Spatial Bilinear Time-Frequency Spectrum (SBTFS)
between the sources and the noises. These SBTFS are null since the noises are indepen-
dent from the source signals.

We have to recall a very important property, as expressed in Ghennioui et al. 2010, which
allows to solve the BSS problem such that the matrix DS(t, ν) takes a specific algebraic
structure. In fact, it is block-diagonal with one single non null (Q × Q) block on the block-
diagonal. Moreover, the block-diagonal matrix with one single non null block is the only
possibility of block-diagonal matrix when these matrices outcome of spatial time-frequency
distributions or spectrum (SQTFD(or S)).

In order to build the set of matrices denotedMJBD for joint block-diagonalization.We fol-
low the same procedures for the detector proposed in Ghennioui et al. 2010 denotedCConvGH .
All the matrices from the set MJBD admit the decomposition given by equation (35) or (1)
(after the noise reducing process Ghennioui et al. 2010), where the source SQTFD(or S)

matrices DS(t, ν) assume a very specific algebraic structure (block diagonal matrices). As a
result, to tackle the BSS problem, we use our proposed JBD algorithms.

6.3 Estimation of the separation matrix

The matrices belonging to the set MJBD of size Nm (Nm ∈ N
∗) can be decomposed into

ADS(t, ν)AH with DS(t, ν) a block-diagonal matrix with only one non null (Q × Q) block
on its block-diagonal. One possible way to be able to recover the mixing matrix A (or its
pseudo-inverse: the separation matrix B) is to directly joint block diagonalize the matrices
set MJBD. As known, the sources recovered are obtained up to a permutation and up to a
filter which are the classical indeterminations of the BSS in the convolutive context.

FourBSSmethods can be then derived: the first one is denoted JBDPCGEH−TF since it com-
bines the JBD algorithm based on a preconditioned conjugate gradient approach JBDPCGEH

together with the automatic time-frequency points detector CConvGH . The three other meth-
ods denoted respectively JBDQNEH−TF , JBDLMEH−TF and JBDCGTF consist of replacing the
preconditioned conjugate gradient-based JBD algorithm by respectively the Quasi-Newton
algorithm JBDQNEH , the Levenberg–Marquardt algorithm JBDLMEH and the conjugate gra-
dient algorithm JBDCG.

6.4 Computer simulations

In this section, computer simulations are performed in order to illustrate the good perfor-
mance of the four suggested methods and to compare them again with the same kind of
existing approaches: the first one is denoted by JBDCGNION−TF and combines the non-unitary
JBD algorithm proposed in Nion 2011 with the t-f point detector CConvGH . The other algo-
rithms denoted JBDRGrad−TF and JBDAbsGrad−TF combine respectively the non-unitary
JBD algorithm proposed in Ghennioui et al. 2010 and the non-unitary JBD algorithm pro-
posed in Ghennioui et al. 2008a with the same detector.

We consider m = 4 mixtures of n = 2 sources of 128 time samples. The first source
(resp. the second source) is a sinusoidal frequency modulation (resp. a linear frequency
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Fig. 3 The selected t-f points with automatic points detector CConvGH

modulation), L = 3 and L ′ = 2. These sources are mixed according to a mixture matrix A(t)
whose components were randomly generated and whose z-transform A[z] is given by:

⎛
⎜⎜⎝

−0.0134 + 0.2221z−1 + 0.9749z−2 −0.6579 + 0.7521z−1 − 0.0382z−2

−0.7425 − 0.6639z−1 − 0.0891z−2 0.7287 + 0.6049z−1 − 0.3210z−2

0.6173 + 0.3921z−1 − 0.6820z−2 0.9477 − 0.2211z−1 − 0.2301z−2

0.7119 − 0.6532z−1 − 0.2578z−2 0.2533 − 0.7511z−1 − 0.6096z−2

⎞
⎟⎟⎠ ,

We use the Spatial Pseudo Wigner-Ville Spectra (SPWVS) with a Hamming smoothing
window of size 128 and 64 frequency bins. In this example, 30 realizations of signals are
computed. Then, theSPWVS of each realization is calculated. For the noises, we use random
entries chosen from a Gaussian distribution with zero mean and variance σ 2

N .
In the Fig. 4, we have plotted the error index I(G) versus theSNR (≈ 1410 time-frequency

matrices were selected whenSNR ≥ 20 dB (see the Fig. 3 for the selected t-f points). In fact,
the more the SNR decreases (for SNR ≤ 20 dB), the more the performance decreases too.
The resulting error index shows that the four proposed methods show the best performances.
We observe again that the performances of proposed algorithms based on an exact precon-
ditioning namely JBDPCGEH−TF , JBDQNEH−TF and JBDLMEH−TF are the fastest algorithms.
The JBDCGTF method still performs better than JBDCGNION−TF based on conjugate gradi-
ent and which exhibits, in this simulation, the worst performances especially in the noisy
context. However, the JBDPCGEH−TF and JBDQNEH−TF methods that provide the best results
in the same context. Finally, all t-f methods reach the same performances especially when
SNR ≥ 40 dB except, logically, JBDCGNION−TF which operates on a different cost function
Nion 2011.

7 Discussion and conclusion

In this article, we are interested in non unitary joint block diagonalization problem which 
is of great interest in different fields of application such that array processing for wide-
band signals and blind sources separation when convolutive mixtures are considered. Our



0 10 20 30 40 50 60 70 80 90 100
−60

−50

−40

−30

−20

−10

0

SNR [dB]

E
rr

o
r 

In
d

ex
 I(

G
) 

[d
B

]

 JBD
PCG

EH−TF

JBD
CG

TF

 JBD
QN

EH−TF

 JBD
LM

EH−TF

 JBD
AbsGrad−TF

 JBD
RGrad−TF

 JBD
CG

NION−TF
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aim, here, was to investigate the relevance/interest of a preconditioning for those algorithms.
Such a procedure usually requires either the calculation of the exact complex Hessian matrix
at each iteration. In this article, the exact calculation has been performed. Then, different
iterative preconditioned joint block diagonalization algorithms have been derived and com-
pared. We have focused our attention on Quasi-Newton, Preconditioned Conjugate Gradient
and Levenberg–Marquardt algorithms. Computer simulations presented in difficult contexts
(noise and/or very few matrices to be joint block diagonalized) have emphasized the good
behavior of the preconditioned conjugate gradient algorithm. This algorithm offers the best
compromise between good performance and fast convergence speed even in complicated
scenarios. The main advantage of the approach suggested here remains its really general
aspect. In fact, it does not rely on restrictive assumptions neither about the considered matrix
set (they only have to be complex but not necessarily hermitian matrices) nor about the joint
block-diagonalizer (it is not necessarily an unitarymatrix). Finally,we have used the proposed
algorithms to show their usefulness in the BSS context. All these algorithms have brought
four time-frequency based BSS methods combined with a t-f points detector CConvGH .

Appendix A: Calculation of the complex Hessian matrices

We consider three square matrices, D1, D2 and D3 in C
M×M and five rectangular matrices

D4, D5, D6 inCN×M , D7 inCM×N and D8 inCF×G . Let tr {·}, d (·) (or sometimes simply d),
vec (·), OffBdiag(n){·} and TBoff respectively denote the trace operator of a square matrix,
the differential operator, the vectorization operator that stacks the columns of a matrix in a



long column vector, the zero-block-diagonal operator defined in Ghennioui et al. 2010 and
the N 2 × N 2 “transformation” matrix defined before. Our developments are based on the
following properties (they can be found in (Ghennioui et al. 2010; Hjorungnes, A. 2011;
Brewer 1978) or Magnus and Neudecker 1999b):

P0. ‖OffBdiag(n){D1}‖2F = tr
{
DH
1 OffBdiag(n){D1}

}
.

P1. (D4 + D5)
T = DT

4 + DT
5 .

P2. (D4D7)
T = DT

7 DT
4 .

P3. (D4D7)
∗ = D∗

4D∗
7.

P4. tr {D1 + D2} = tr {D1} + tr {D2}.
P5. tr

{
DH
4 D5

) = (vec (D4))
H vec (D5).

P6. d (tr {D1}) = tr {d (D1)}.
P7. vec (D1D2D3) = (DT

3 ⊗ D1)vec (D2) ⇒ vec (D1D2) = (IN ⊗ D1)vec (D2)

= (DT
2 ⊗ IN )vec{D1}

P7b. vec (D4D1D7) = (DT
7 ⊗ D4)vec (D1) ⇒ vec (D4D1) = (IM ⊗ D4)vec (D1)

= (DT
1 ⊗ IN )vec{D4}

P8. vec
(
DT
4

) = KN ,Mvec (D4) with KN ,M the unique square NM × NM commutation

matrix defined as: KN ,M = ∑N
n
∑M

m Enm ⊗ET
nm where Enm are N ×M matrices with

a 1 in the (n,m) position and zeros elsewhere: (Enm) = (δnm) (δnm standing for the
Kronecker Delta). As a consequence, the permutation matrix KN ,M has one single “1”
in each row and in each column.

P8b. KN ,MKM,N = IMN and KN ,M = K−1
M,N = KT

M,N .
P9. vec (OffBdiag{D1}) = TBoffvec (D1).

P10. d (vec (D4}) = vec (d (D4)).
P11. d (D4 + D5) = d (D4) + d (D5).
P12. d (D4D7) = d (D4) D7 + D4d (D7).
P13. d

(
D∗
4

) = d (D4)
∗.

P14. tr {D1) = tr
{
DT
1

}
.

P15. (D4 ⊗ D8)
T = DT

4 ⊗ DT
8 .

P16. (D4 ⊗ D8)
H = DH

4 ⊗ DH
8 .

P17. vec (D4 + D5) = vec (D4) + vec (D5).
P18. DH

4 = (
D∗
4

)T .
P19. (D4D7)

H = DH
7 DH

4 .
P20. (D1 ⊗ D2) (D3 ⊗ D7) = (D1D3 ⊗ D2D7).
P21. (D4 + D5)

H = (
DH
4 + DH

5

)
.

P22. OffBdiag(n){D1 + D2} = OffBdiag(n){D1} + OffBdiag(n){D2}.
P23. dD∗

4 = (dD4)
∗.

According to Hjorungnes, A. 2011, the first-order differential of the cost function
CJBD(B, B∗) defined in (3) is given by:

dCJBD(B, B∗) = DB
(CJBD(B, B∗)

)
dvec(B) + DB∗

(CJBD(B, B∗)
)
dvec(B∗), (36)

if the 1 × NM complex vectors DB (CJBD(B, B∗)) and DB∗ (CJBD(B, B∗)) are defined as:

DB
(CJBD(B, B∗)

) = vecT
(

∂CJBD(B, B∗)
∂B

)
,

DB∗
(CJBD(B, B∗)

) = vecT
(

∂CJBD(B, B∗)
∂B∗

)
. (37)



We also recall that the two partial derivatives that are involved i.e. ∂CJBD(B,B∗)
∂B and

∂CJBD(B,B∗)
∂B∗ were calculated in Ghennioui et al. 2010 using some of the previous proper-

ties P0-P20. They were found to be equal to:

∂CJBD(B, B∗)

∂B
=

Nm∑
i=1

[(
OffBdiag(n){BMiB

H }
)T

B∗M∗
i +

(
OffBdiag(n){BMiB

H }
)∗

B∗MT
i

]
, (38)

∂CJBD(B, B∗)

∂B∗ =
Nm∑
i=1

[
OffBdiag(n){BMiB

H }BMH
i +

(
OffBdiag(n){BMiB

H }
)H

BMi

]

=
(

∂CJBD(B, B∗)

∂B

)∗
. (39)

DB∗
(CJBD(B, B∗)

) = (DB(CJBD(B, B∗)))∗. (40)

As shown in Hjorungnes, A. 2011, the second order differential is then given by:

d2CJBD(B, B∗) = dDB
(CJBD(B, B∗)

)
dvec(B) + dDB∗

(CJBD(B, B∗)
)
dvec(B∗). (41)

Thus, we have to evaluate the differential of the two derivativesDB andDB∗ , i.e. dDB and
dDB∗ . We start with dDB. Using the properties P2, P3, P10-P14, P17-P19 in (38), we have:

dDB
(CJBD(B, B∗)

) =
Nm∑
i=1

[
vecT

((
OffBdiag(n){dB∗MT

i BT }
)

B∗M∗
i

+
(
OffBdiag(n){B∗MT

i dBT }
)

B∗M∗
i

)

+ vecT
((

OffBdiag(n){dB∗M∗
i BT }

)
B∗MT

i

+
(
OffBdiag(n){B∗M∗

i dBT }
)

B∗MT
i

)

+ vecT
((

OffBdiag(n){BMiBH }
)T

dB∗M∗
i

+
(
OffBdiag(n){BMH

i BH }
)T

dB∗MT
i

)]
. (42)

Then, using the properties P1, P7, and P17 we obtain:

dDB
(CJBD(B, B∗)

) =
Nm∑
i=1

[ ((
B∗M∗

i

)T ⊗ IN
)
vec

(
OffBdiag(n){dB∗MT

i BT }
)

+
((

B∗M∗
i

)T ⊗ IN
)
vec

(
OffBdiag(n){B∗MT

i dBT }
)

+
((

B∗MT
i

)T ⊗ IN

)
vec

(
OffBdiag(n){dB∗M∗

i BT }
)

+
((

B∗MT
i

)T ⊗ IN

)
vec

(
OffBdiag(n){B∗M∗

i dBT }
)

+
(

IN ⊗
(
OffBdiag(n){BMiBH }

)T)(
MH

i ⊗ IN
)
vec

(
dB∗)



+
(

IN ⊗
(
OffBdiag(n){BMH

i BH }
)T)

(Mi ⊗ IN ) vec
(
dB∗)

]T
.

(43)

While properties P2, P3, P7, P8, P9, and P18 involve:

dDB
(CJBD(B, B∗)

) =
Nm∑
i=1

[ (
MH

i BH ⊗ IN
)

TBoff (BMi ⊗ IN ) vec(dB∗)

+
(

MH
i BH ⊗ IN

)
TBoff

(
IN ⊗ B∗MT

i

)
KN ,Mvec(dB)

+
(

MiBH ⊗ IN
)

TBoff

(
BMH

i ⊗ IN
)
vec(dB∗)

+
(

MiBH ⊗ IN
)

TBoff
(
IN ⊗ B∗M∗

i

)
KN ,Mvec(dB)

+
(

IN ⊗
(
OffBdiag(n){BMiBH }

)T)(
MH

i ⊗ IN
)
vec(dB∗)

+
(

IN ⊗
(
OffBdiag(n){BMH

i BH }
)T)

(Mi ⊗ IN ) vec(dB∗)
]T

.

(44)

The properties P1, P2, P3, P15, P16, P17, P18, P19, and P20 imply the following result:

dDB
(CJBD(B, B∗)

) =
Nm∑
i=1

vecT (dB)
[(

KN ,M
)T (

IN ⊗ MiBH
)

TT
Boff

(
B∗M∗

i ⊗ IN
)

+ (
KN ,M

)T (
IN ⊗ MH

i BH
)

TT
Boff

(
B∗MT

i ⊗ IN
)]

+ vecT
(
dB∗) [(MT

i BT ⊗ IN
)

TT
Boff

(
B∗M∗

i ⊗ IN
)

+
(

M∗
i BT ⊗ IN

)
TT
Boff

(
B∗MT

i ⊗ IN
)

+
(

M∗
i ⊗

(
OffBdiag(n){BMiBH }

))

+
(

MT
i ⊗

(
OffBdiag(n){BMH

i BH }
))]

. (45)

Finally this 1 × NM vector can be rewritten as follows:

dDB
(CJBD(B, B∗)

) = [
dvecT (B∗) dvecT (B)

] [A00

A10

]
, (46)

which leads to the expressions of A00 and A10 given in (12)-(13).
Concerning the second differential dDB∗ , we are taking advantage of (40). Using property

P23, we finally have dDB∗ = (dDB (CJBD(B, B∗)))∗, which leads to:

dDB∗
(CJBD(B, B∗)

) = [
dvecT (B) dvecT (B∗)

] [A∗
00

A∗
10

]
. (47)

But this 1 × NM vector was supposed to be written as:

dDB∗
(CJBD(B, B∗)

) = [
dvecT (B∗) dvecT (B)

] [A01

A11

]
, (48)

implying that: A11 = A∗
00 and that A∗

10 = A01. 



By incorporating (46) and (48) in (41), the results stated by (8) can be found, where Ai j

for i, j = 1, . . . , 2 are given by (12)-(13). The exact expression of the four complex Hessian
matrices given in (9), (10) and (11) can be derived.

Appendix B: Finding the coefficients of the 4th-degree polynomial involved
in the calculation of the optimal stepsize

To determine at each iteration the optimal stepsize, we have to evaluate CJBD(B(m+1)) =
CJBD

(
B(m) −μD(m)

)
. In the following, to simplify the different expressions, the dependency

upon the iteration m will be omitted. Using the properties P19 and P21, the cost function
CJBD(B − μD) can be expressed as:

CJBD (B − μD) =
Nm∑
i=1

∣∣∣
∣∣∣OffBdiag(n)

{
μ2DMiD

H − μ
(

BMiD
H + DMiB

H
)

+ BMiB
H
}∣∣∣
∣∣∣2
F

=
Nm∑
i=1

∣∣∣
∣∣∣OffBdiag(n)

{
μ2C2 − μC1 + C0

}∣∣∣
∣∣∣2
F

=
Nm∑
i=1

tr
{
(μ2C2 − μC1 + C0)

HOffBdiag(n)

{
μ2C2 − μC1 + C0

}}
, (49)

where C0, C1 and C2 are given in (28)-(30).

Using properties P0, P4,P19, P21 and P22, we find that:

CJBD (B − μD) =
Nm∑
i=1

tr
{

CH
0 OffBdiag(n) {C0}

}

− μ

Nm∑
i=1

tr
{

CH
1 OffBdiag(n) {C0} + CH

0 OffBdiag(n) {C1}
}

+ μ2
Nm∑
i=1

tr
{

CH
2 OffBdiag(n) {C0} + CH

1 OffBdiag(n) {C1} + CH
0 OffBdiag(n) {C2}

}

− μ3
Nm∑
i=1

tr
{

CH
2 OffBdiag(n) {C1} + CH

1 OffBdiag(n) {C2}
}

+ μ4
Nm∑
i=1

tr
{

CH
2 OffBdiag(n) {C2}

}
= a0 + a1μ + a2μ

2 + a3μ
3 + a4μ

4. (50)

It finally leads to the results stated by Eqs. (23)–(27).
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